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Operator ideals in Tate objects

O. BRAUNLING, M. GROECHENIG, AND J. WOLFSON

Tate’s central extension originates from 1968 and has since found
many applications to curves. In the 80s Beilinson found an n-
dimensional generalization: cubically decomposed algebras, based
on ideals of bounded and discrete operators in ind-pro limits of
vector spaces. Kato and Beilinson independently defined ‘(n-)Tate
categories’ whose objects are formal iterated ind-pro limits in gen-
eral exact categories. We show that the endomorphism algebras of
such objects often carry a cubically decomposed structure, and thus
a (higher) Tate central extension. Even better, under very strong
assumptions on the base category, the n-Tate category turns out to
be just a category of projective modules over this type of algebra.
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In his 1980 paper “Residues and adeles” [4] A. A. Beilinson introduced
the following algebraic structure, without giving it a name:

Definition 1. A Beilinson n-fold cubical algebra is

e an associative k-algebra A;

e two-sided ideals I;F,Ii_ such that I;“ +I7 =Afori=1,...,m

)

e call I}, := ﬂi:l,...,n IZ-+ NI, the trace-class operators of A.

In his 1987 paper “How to glue perverse sheaves” [5] he introduced the
exact category 1—Tate§l0C for any given exact category C. It was suggestively
denoted by @C in loc. cit. We shall recall its definition in §1.

Although these two papers do not cite each other, some ideas in them
can be viewed as two sides of the same coin. In the present paper we estab-
lish a rigorous connection between them. In fact, the main idea is that the
latter category — under a number of assumptions — are just the projec-
tive modules over the former type of algebras. But this really requires some
assumptions — in general it is quite far from the truth.

Define n-Tateﬁl0 C) = Tateﬁlo( (n — 1)-Tatey,(C) ) and n-Tatey, (C) as the
idempotent completion of n-TateﬁlO (C). We write Pr(R) for the category of
finitely generated projective right R-modules.

Theorem 1. Let C be an idempotent complete split exact category.

1) For every object X € n—TateilO (C) its endomorphism algebra canoni-
cally carries the structure of a Beilinson n-fold cubical algebra.

2) If there is a countable family of objects {S;} in C such that every object
in C is a direct summand of some countable direct sum of objects from
{Si}, then there exists (non-canonically) an object X € n—Tateﬁlo(C)
such that

n-Tatey, (C) — Pf(R) with R :=End(X)

s an exact equivalence of exact categories.



Operator ideals in Tate objects 1567

3) Under this equivalence, the ideals IijE correspond to certain categorical
ideals, which can be defined even if C is not split exact.

See Theorem 15 and Theorem 17 in the paper for details. In other words:
In some sense the approaches of the 1980 paper and the 1987 paper are
essentially equivalent. If C is not split exact, the ideals I;r I still exist,
see Theorem 13 in the text. However, the property If + I, = A can fail to
hold; Example 7 will give a counter-example.

V. G. Drinfeld has also introduced a category fitting into the same con-
text, his notion of “Tate R-modules” for a given ring R [23]. We call it
Tate”"(R) and give the definition later. In loc. cit. these appear without a
restriction on the cardinality. However, if we restrict to countable cardinality,
then Theorem 1 also implies:

Theorem 2. Let R be a commutative ring. Then there is an exact equiva-
lence of categories

Tatel" (R) — Py(E),

where E is the Beilinson 1-fold cubical algebra

E = EndTate{?OT(R) (R((t)>) )

where “R((t))” is understood to be the ‘Tate R-module a la Drinfeld” denoted
by R((t)) in Drinfeld’s paper [23].

See Theorem 18 in the paper. This also reveals a certain additional
structure on endomorphisms of Drinfeld’s Tate R-modules, which appears
not to have been studied so far at all.

Beilinson has originally considered the category 1—Tate§lg(3 , 1.e. without
idempotent completion. Our previous paper [17, §3.2.7| shows:

Theorem 3. The category 1—Tate§l0 (C) can fail to be idempotent complete.
In particular, one cannot improve Theorem 1 to

n—Tateﬁl0 (C) = Pr(R),
i.e. without the idempotent completion, regardless which ring R is taken.

This follows simply since Pr(—) is always an idempotent complete cate-
gory. For some constructions the categories n-Tatey, (C) are too small since
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the admissible Ind- and Pro-limits are only allowed to be taken over count-
able diagrams. This happens for example when writing down the adeles of
a curve over an uncountable base field as a 1-Tate object. In our previous
paper [17] we have therefore constructed categories n-Tate, (C), constraining
the size of limits by a general infinite cardinal . Examples due to J. Stovicek
and J. Trlifaj [17, Appendix B] demonstrate the following

Theorem 4. Fuven if C is split exact and idempotent complete, the category
1-Tate,(C) for k> RNy can fail to be split exact. In particular, one cannot
improve Theorem 1 to general cardinalities k.

A key application of our results are to adeles of schemes, as introduced
by A. N. Parshin and Beilinson [47], [4]. A detailed account was given by
A. Huber [36]. We state the next result in the language of these papers, but
the reader will also find the necessary notation and background explained
in the main body of the present text:

Theorem 5. Let k be a field and X/k a finite type scheme of pure dimen-
sion n. Let F be any quasi-coherent sheaf and A\ C S (X), a subset.

1) Then the Beilinson-Parshin adéles A(A,F) can be viewed as an el-
ementary n-Tate object in finite-dimensional k-vector spaces, i.e. so
that

A(N, F) € n-Tate® (Vecty) .

2) The ring End (A(A,Ox)) carries the structure of an n-fold cubical
Beilinson algebra as in Definition 1.

3) If A={(no>--->mnn)} is a singleton and codimx {n;} = i, there is
a canonical isomorphism End,, yeet (A(A, Ox)) =2 BRI where ERC!
denotes Beilinson’s original cubical algebra from [4, §3, “EA”] (defined
without Tate categories).

See Theorem 22 in the paper — in a way this result is the counterpart
of a recent result of Yekutieli [56, Theorem 0.4], who uses topologies instead
of Tate objects however. Theorem 5 does not follow from Theorem 1 since
adeles with very few exceptions hinge on forming uncountably infinite limits.
Trying to generalize (1), one may also view the adeles as n-Tate objects over
other categories, e.g. finite abelian groups if k gets replaced by the integers
Z, or coherent sheaves with zero-dimensional support. However, for these
variations parts (2) and (3) of the theorem would be false. We refer the
reader to §10 for counter-examples
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Historically, J. Tate’s paper [53] introduced the first example of a Beilin-
son n-fold cubical algebra, but only for the case n = 1. He developed a
formalism of traces for his trace-class operators, lifting the trace of finite-
dimensional vector spaces. We can generalize this to exact categories:

An ezact trace is a natural notion of a formalism of traces for a general
exact category, see §8 for details.

Theorem 6. Suppose C is an idempotent complete exact category and tr_)
an exact trace on C with values in an abelian group Q. Then for every object
X € n-Tate(C) and Iy = Iy (End(X)) its trace-class operators, there is a
canonically defined trace

TX : Itr/[fmftr} — Q,

such that for a short exact sequence A — B — B/A and f € I}, (B) so that
f |a factors over A, we have

m8(f) = 1a(f |a) + B/4(f)-
If X € C, this trace agrees with the given trace, Tx = trx.

See Prop. 19 for the full statement, which is more detailed and gives a
unique characterization of 7 in terms of the input trace. We also get:

Theorem 7. Let C be an idempotent complete exact category. Then for
every trace-class morphism ¢ € Iy, (X, X) some sufficiently high power ¢°"
(or a sufficiently long word made from several such morphisms) will factor
through an object in C.

This generalizes a property which Tate had baptized ‘finite-potent’ and
which plays a key role in his construction of the trace.

Tate and Beilinson used the n-fold cubical algebras to produce (higher)
central extensions. The classical example is Tate’s central extension, which
encodes the residue of a rational 1-form. Ultimately, these constructions
can be translated into Lie (and Hochschild) homology classes. Under mild
assumptions, we can construct these classes also for the endomorphism al-
gebras of n-Tate objects.

Theorem 8. Let k be a field. Suppose C is a k-linear abelian category
with a k-valued exact trace. For every n-sliced object' X € n-Tate(C), the

1See the main body of the text for definitions.
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endomorphism algebra E := End(X) is a Beilinson n-fold cubical algebra
and

1) its Lie algebra gx := Er;e carries a canonical Beilinson—Tate Lie co-
homology class,

¢Beil € H{ﬂ;—l (gX) k);

2) as well as canonical Hochschild and cyclic homology functionals
¢ HH,(E) =k resp. épc: HC,(E) — k.

See Theorem 21 for details. For n = 1 the class ¢pej just happens to
define a central extension as a Lie algebra. Of course, the classical examples
are all special cases of this construction. We provide some examples in §9.

Tate categories and Beilinson cubical algebras have already found quite
diverse applications. Ranging from residue symbols in [53], [4], glueing
sheaves [5], over models for infinite-dimensional vector bundles [23]?, to
higher local compactness and Fourier theory [40], [44], [45], e.g. for the rep-
resentation theory of algebraic groups over higher local fields [39], [29], [30],
[31], [18], [41].

Quite recently, B. Hennion has introduced Tate categories for stable oo-
categories [34], [33]. It would be interesting to study the counterparts of our
results in this context. Higher local fields can be regarded as n-Tate objects
and in [43] D. V. Osipov has already related adeles to categories similar
to n-Tate categories and studied endomorphism rings in this context. In
a quite different direction, A. Yekutieli [54], [56] develops the use of semi-
topological algebraic structures to describe adeles. These also give rise to
an n-fold cubical algebra, but in a different way based on picking coefficient
fields for the individual layers of the involved higher local fields. The relation
to his approach is explained in [16].

1. Tate categories

For every exact category C one can form the corresponding categories of
admissible Ind-objects Ind*C or admissible Pro-objects Pro®C, perhaps with

2Drinfeld’s paper proposes several notions, one of them being Tate R-modules,
which are closest to the subject of this paper. The other are flat Mittag-Leffler
bundles, which are however also related via admissible Ind-objects of projectives.
See [24], [17, Appendix].
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some conditions on the allowed cardinality of diagrams, denoted by a sub-
script as in Indy, or more generally Indj. for x an infinite cardinal. See [50],
[17] for definitions and basic properties. Enlarging C in both of these ways,
we arrive at the commutative square of inclusion functors

C —Ind?C

Pro*C —— Ind*Pro®C.

Definition 2. Let C be an exact category.

1) The category Tate®/C is the smallest extension-closed full sub-category
of the category Ind*Pro®C which contains both Ind*C and Pro“C.

2) Tate(C) denotes the idempotent completion of Tate®C.

3) Define n-Tate®(C) := Tate® ((n — 1)-Tate(C)) and n-Tate(C) := n-
Tate® (€)™ as its idempotent completion.

All of these categories come with a natural exact category structure so
that all basic tools of homological algebra are available, they have derived
categories, K-theory, etc... Versions of the Tate category were first intro-
duced by K. Kato in 1980 in an THES preprint, published only much later
[40], and independently by A. Beilinson under the suggestive name lim C
[5]. The equivalence of these two approaches was established by L. Previdi.
There is also a slightly different variant due to V. Drinfeld [23]. We refer the
reader to [50], [17] for extensive discussions of these categories and compar-
ison results. The ‘C,, categories’ of D. V. Osipov [43] are based on similar
ideas. The definition of Tate categories which we give here is due to [17].

Example 1 (Kapranov). If C is the abelian category of finite-dimensional
k-vector spaces, Tate®C is equivalent to the exact category of locally linearly
compact topological k-vector spaces.

Example 2. If R is a commutative ring and Py (R) the exact category of
finitely generated projective R-modules, Tatey,Ps (R) is equivalent to the
category of countably generated “Tate R-modules” in the sense of Drinfeld
[23]. Without the restriction on countable generation, the latter is in general
only a full sub-category of the former. Both are proven in [17, Thm. 5.30].



1572 O. Braunling, M. Groechenig, and J. Wolfson

Example 3. We refer the reader to the works of Kato [40], Kapranov
[39, Appendix]| and Previdi [50] for a discussion of Tate categories for non-
additive categories. These will not appear in the present paper.

Every object in the category Tate®’C comes with a notion of ‘lattices’.

Definition 3. Let X € Tate®’C be an object. We call a sub-object® L < X
a lattice (or Tate lattice if we wish to contrast the notion to other concepts
of lattices) if L € Pro®C and X/L € Ind*C. The set of all lattices in X is the
Sato Grassmannian Gr(X).

There are two basic properties which control most of the behaviour of
this concept of lattices: If L' < L < X are two lattices in X, then L/L’
lies in the category C [17, Proposition 6.6] . Furthermore, if C is idempotent
complete, any two lattices have a common sub-lattice and a common over-
lattice [17, Theorem 6.7].

2. The motivating classical example

The following algebraic structure was introduced by Beilinson [4] for the pur-
pose of generalizing Tate’s 1968 construction of the one-dimensional residue
symbol [53] to higher dimensions. The constructions in loc. cit. produce a
kind of generalized residue symbol for any such algebraic structure. The im-
portance of this structure extends far beyond just the residue symbol. In a
way, it axiomatizes essential algebraic features of the endomorphism alge-
bra of a well-behaved n-Tate object. Before addressing this, let us recall the
definition:

Definition 4. [4, §1] Let k be a field. An (n-fold) cubically decomposed
algebra over k is the datum (A, (IF), 7):

e an associative k-algebra A;
e two-sided ideals I;F,Ii_ such that IZ-+ +I; =Afori=1,...,n;

e writing I? := I;' NI, and I, := 19N ---N 12, a k-linear map (called
trace)
T ItT/[Ith] — k.

3In this paper, the symbols < and — denote admissible monics and epics with
respect to the exact structure of a category. Moreover, a sub-object always refers
to an admissible sub-object in the sense that the inclusion is an admissible monic.
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In our applications A will usually be unital and 7 very close to a classical
notion of trace, but technically A could be a non-unital algebra and 7 the
Zero map.

Next, let us recall the original key example for this structure, coming
straight from geometry. Suppose X/k is a reduced scheme of finite type and
pure dimension n. We shall use the same notation as in [4]. Notably, S (X),
denotes the simplicial set of flags of points (i.e. S(X), = {(no > > )}
with 7; € X and z >y means that {z} 3 y). Further, given A C S (X),
we write p A = {(m > >n,) | (o > - >np) € A} Finally, A(A, M)
denotes the Beilinson-Parshin adéles for A C S (X),,. This means that for
any coherent sheaf M we define

AL, M) ::HneA%n (M (gi OXm/mf]) (in the case n = 0)

AL, M) =] e xim A A M (g@ OXm/mﬁ,) (in the case n > 1)

and for a quasi-coherent sheaf M we define A(A, M) := (MM/A(A, M)
and the colimit is taken over the category of coherent sub-sheaves of M
with inclusions as morphisms. These colimits and limits are usually taken in
the bi-complete category of Ox-module sheaves. We follow this viewpoint
here as well, at least for the moment. Later, in §10 we shall address a novel
perspective using Tate categories instead.

Definition 5 (Beilinson [4]). Let A={(ny>--->n;)} €5 (X), be given
and M a finitely generated O, ,-module. Then a (Beilinson) lattice in M
is a finitely generated O,,-module L C M such that O,, - L = M. Now and
later on, we shall use the abbreviation

Mp = AN, M)
for M a quasi-coherent sheaf on X.

Whenever we are given a A as above, define A :={(m > -+ > n,)},
removing the initial entry.

Definition 6 (Beilinson [4]). Let M; and M> be finitely generated O, -
modules.
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1) Let Homg (M7, Ms) := Homy (My, Ms) be the set of all k-linear maps.
Then we define?

Homa (My, Mz) € Homy (M, Map)

to be the sub-k-module of all f € Homy(Mia, Map) such that for all
(Beilinson) lattices L1 < M, Ly < My there exist (Beilinson) lattices
Lll — Ml,L/Q — Mg with

Ly — Ly, Ly— Ly, f(Lia) < Loar,  f(Liar) < L,
and for all such Ly, L), Ly, L), the induced k-linear map
J i (La/LY) A — (Ly/La) s

lies in Homa/ (L1 /LY, L/ Lo).

2) Let I}, (M1, Ms) be those morphisms f € Homa (M, M) such that
there exists a lattice L < My with f(Mia) < L.

3) Dually, I, (M, M>) is formed of those such that there exists a lattice
L — M, with f(La/) = 0.

4) For i > 2 we let I}, (M, M>) be those f € Homa (M, M) such that
for all lattices Ly, L}, Lo, LY as in part (1) the condition
7 € Ia'_,l)A/(Ll/Llla /2/L2)

holds. Analogously, we define I, (M1, M2) to consist of those which
satisfy the condition f € Iiia (L1/LY, L,/ Ly) instead.

With these definitions in place we are ready to formulate the principal
source of algebras as in Definition 1:

Theorem 9 (Beilinson, [4, §3]). Suppose X/k is a reduced finite type
scheme of pure dimension n. Let ng > --->mn, € S(X), be a flag with
codimx {n;} =i. Then

n

EBell — Homa (Oy,, Opy) € Endi(Oxa, Oxp)

is a unital associative sub-algebra. Define Ii C Egeﬂ by Ii(@no,(’)m) for
1 <i<n. Then (EX!, (Ii),tr) is an n-fold cubically decomposed algebra.

1Below, the slightly shortened notation Mja resp. Maa refers to (Mp)a resp.
(M)A
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Here “txr” refers to Tate’s trace for finite-potent morphisms, see [53] for the
definition. In particular, ER"” is an example of the algebras in Definition 1.

There are a number of other examples leading to cubically decomposed
algebras:

Example 4 (Yekutieli). Every topological higher local field (TLF) [54],
[55] carries Yekutieli’s canonical cubically decomposed algebra structure [56,
Thm. 0.4]. If the base field k is perfect, one can show that the adéles de-
compose as a kind of restricted product of TLFs. Yekutieli’s cubically de-
composed algebra then turns out to be isomorphic to Beilinson’s. See [16]
for details.

Example 5. Higher infinite matrix algebras also carry a cubically decom-
posed structure. This is probably the simplest non-trivial example [11].

So how can we connect Beilinson’s Theorem with the category Tate®C?

3. Operator ideals in Tate categories

First of all, we will show that the condition of Definition 6, part (1), natu-
rally comes up in the context of lattices of Tate objects. This requires some
preparation. We need to establish some features which would be entirely
obvious if we dealt with k-vector spaces and the notion of lattices from
Definition 5.

It was shown in [17] that Pro-objects are left filtering in Tate®(C) and
Ind-objects right filtering. The following result strengthens these two facts:

Proposition 10. Let C be an exact category.
1) Bvery morphism Y Iy X in Tate? (C) with Y € Pro®(C) can be fac-
tored as Y L L < X with L a lattice in X.
2) Every morphism X ~i> Y in Tate®(C) with Y € Ind*(C) can be fac-
tored as X — X/L %Y with L a lattice in X.

Proof. A complete proof is given in [14, Proposition 2.7]. O

Lemma 1. Suppose C is an exact category. Let X, X' € Tate®'C and Y E
Hom(X, X').
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1) For every lattice L — X there exists a lattice L' — X' admitting a
factorization as depicted below on the left.

2) For every lattice L' — X' there exists a lattice L — X admitting a
factorization as depicted on the right.

L—— X L¢ s X
@ ® @ ®
L'c¢ s X' r'— X’

Proof. This immediately follows from Prop. 10. (1) Here L — X' is a mor-
phism from a Pro-object, so it factors through a lattice L’ of X'. (2) Here
X — X'/L'is a morphism to an Ind-object, so it factors X — X/L — X'/L’
for some lattice L. (]

Lemma 2 (Cartesian sandwich). Suppose C is idempotent complete.
Let X1, Xy € Tate® (C) and L — X1 & X2 a lattice. Then there exist lattices
L C L; of X; so that

Proof. Consider the composed morphism L — X; & Xo — X;. By Prop. 10
this factors through a lattice of X;, say L; — X;. Now we already have

L

Li® Ly & X180 Xo

By [17, Lemma 6.9] the downward arrow is an admissible monic (this cru-
cially makes use of the assumption that C is idempotent complete). Du-
ally, consider the composition X; — X7 @ Xo — (X7 @ X32) /L. Since Ind-
objects are right filtering [17, Prop. 5.10 (2)], there must be a lattice L]
so that the map factors as X; - X;/L, — (X; & X3) /L. Thus, the com-
position L] & L} — X7 ® X9 — (X1 @ X2) /L is zero and by the universal
property of kernels we get a canonical morphism L} & L) — L. Again by
[17, Lemma 6.9] the corresponding morphism of the lattice quotients must
be an admissible epic, so that this is an admissible monic. ]
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Definition 7. Let C be an exact category. For objects X, X’ € Tate®C call
a morphism ¢ : X — X’

1) bounded if there exists a lattice L' C X’ so that ¢ factors as X —
L' — X';

2) discrete if there exists a lattice L C X so that L — X % X' is the
zero morphism;

3) finite if it is both bounded and discrete.

Denote by It (X,X’), I"(X,X’) and I°(X,X’) the subsets of
Hom (X, X’) of bounded, discrete and finite morphisms respectively.

Lemma 3. Suppose C is idempotent complete and s € {+,—,0}. Then for
arbitrary objects X, X', X" the following are true:

1) I* (X, X') is a subgroup with respect to addition.

2) I° (X, X') is a categorical ideal, i.e. the composition of any morphism
with a morphism in I1° lies in I°. Thus, the composition of morphisms
factors as

I’ (X', X") ® Hom (X, X') — I* (X, X")
Hom (X', X") @ I* (X, X') — I’ (X, X").

3) In the ring End(X) the subgroup I* (X, X) is a two-sided ideal.

4) Every morphism in I (X, X') factors through a morphism from an
Ind- to a Pro-object. Every product of at least two morphisms in I°
factors through an object in C.

Example 6. Let C := Vect; be the category of finite-dimensional k-vector
spaces. Define X := k[t] @ k[[t]] and an endomorphism

o : k[t] ® k[[t]] — E[t] @ K[[t]] (a,b) — (0, a).

It is easy to see that ¢ € I°(X, X), but ¢ does not factor through an object
in C. This shows that Lemma 3 (4) cannot be strengthened in this alluring
fashion. Note that this phenomenon is already present in Tate’s original
work [53]. It is the reason why he has to work with ‘finite-potent’ morphisms
rather than finite rank ones.
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Proof. (1) Suppose ¢1,¢2 € I (X, X') are given and they factor as
01: X > Ly — X" and ¢y: X — L) — X'

Then by the directedness of the Sato Grassmannian [17, Thm. 6.7] there
exists a lattice L so that L, C L§ for i = 1,2 and thus without loss of
generality we may assume L) = L% in the above factorizations, so the claim
is clear. The same works for I~ (X, X’) by taking a common sub-lattice. By
I°(X,X")=TI" (X, X')n I~ (X, X')it also works for I°. (2) For ¢ € I+ and
1 arbitrary it is trivial that ¢ o ¢ factors through a lattice, namely the same
as i does. In the reverse direction ¢ o ¢ we have a factorization as depicted
on the left in

r I/ Yl N
X X’ X" ! o1
7 ” X % X m X

since ¢ € I'". Then by Lemma 1 (1) there exists a lattice L” in X” so that
we get a further factorization as depicted above on the right. Thus, we have
a factorization X — L” — X" with L” a lattice, so 1 o ¢ is also bounded.
For ¢ € I~ and v arbitrary, the proof is analogous. This time ) o ¢ trivially
sends a lattice to zero, namely the same one as ¢ and the reverse direction
© 01 requires an argument, very analogous to the above one for I'*: Let L’
be a lattice which is sent to zero by ¢ as shown left in

L Lot

m

/ " 3
X m X > X X ; X/ = X

According to Lemma 1 (2) there exists a lattice L in X so that we can
complete the diagram as depicted on the right. Hence ¢ o1 sends a lattice
to zero. (3) is immediate from (2). For (4) let X —= X’ be a morphism in
I° (X, X'). By boundedness we find a factorization through a lattice L’ so
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that we get the diagram on the left

r L » L

XT>X, XT>X,

and by discreteness a lattice L so that L — X — X' is zero, as depicted on
the right. Since L' < X’ is a monomorphism, the induced upper horizontal
arrow must be the zero map itself. By the universal property of kernels this
yields a factorization

L
0
X —o— I
X/L

Thus, we have obtained a factorization X — X/L — L' — X’ as desired. If
we compose any two morphisms, we may equivalently look at the composi-
tion of these factorizations,

X —»X/L—sL—X - X'/L"—>L"— X",

then L' — X'/L" is a morphism from a Pro-object to an Ind-object. Since
Pro-objects are left filtering in Tate®/C, this factors through a Pro-sub-object
of X'/L", which is therefore also an Ind-object. However, by [17, Prop. 5.9]
an object can only be simultaneously an Ind- and Pro-object if it actually
lies in C. 0

Definition 8. Let X be an elementary Tate object. If there exists a lattice
1 : L — X which admits a splitting s : X — L so that si =idy, we call X
sliced.

Remark 4. Such a splitting must be an admissible epic. To see this, define
g: X — X by g:=idx —is. Then gi = idx ¢ — ¢idz, = 0 and by the universal
property of cokernels, we deduce that g factors as X — X/L A X It q:
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X — X/L denotes the quotient map, a direct computation verifies that the
maps in
q A
X/LSXSL
g S
produce a split exact sequence, with the given splittings. By [19, Lemma 2.7]
this belongs to the exact structure and thus s is an admissible epic.

The following result is the categorical analogue of the decomposition
used by J. Tate in his original article [53, Prop. 1].

Proposition 11. Let C be an exact category.

1) If X is a sliced elementary Tate object, End(X) =11 (X, X)+
I~ (X, X). More generally, there is a short exact sequence of abelian
groups

0— I'(X,X) —I"(X,X)®I (X,X) — End(X) — 0.

2) If C is split exact and idempotent complete, every elementary Tate
object in Tate§IOC is sliced. In particular, each End(X) is a unital one-
fold cubical algebra in the sense of Definition 1.

Proof. (1) Define Pt :=is: X — L < X. This is clearly a bounded mor-
phism. Define P~ := idx —P". We find that after precomposing by L < X
the two morphisms X iq X, X 1: X agree, thus P~ [,=0, i.e. P~ is a dis-
crete morphism. Finally, idx = P™ + P~ by construction. Thus, any mor-
phism ¢ € End (X) can be written as ¢ = Pty + P~ and since bounded
and discrete morphisms form ideals, by Lemma 3, PT¢ is bounded and P~ ¢
discrete. (2) By [17, Prop. 5.23] the split exactness of C implies that TateffoC
is also split exact. Hence, we can pick any lattice (always exists), obtain
L — X, and the split exactness enforces the existence of a splitting. U

Example 7. Let p be a prime number and C the abelian category of finite

abelian p-groups. We shall show that Tate®’C contains both sliced and non-
sliced objects. Specifically, both

“Fp((1))” = colimlim ¢ "F,[t]/#/ and “Q,” = colimlim p~'Z/p’
(] i g

are elementary Tate objects.
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The former is sliced via Fp((t)) =~ Fp[[t]] ® ¢t 'F,[t~!] while the latter
is not. To see this, note that Ind*C is equivalent to the category of p-
primary torsion abelian groups. Hence, if there exists a splitting Q,, ~
I ® P with I € Ind®C, we must have I = 0 since Q,, has no non-trivial
torsion elements at all. Thus, Q, € Pro®C, forcing that Q,/Z, € C, but
this is clearly absurd.

Proposition 11 fails for Q,. Suppose not. Then there exist p €
I7(Qp, Qp) and ¢ € I7(Qyp, Q) so that id = p + ¢. Then pq and gp lie
in 1°(Qp, Qp), so by Lemma 3 they both factor through a morphism
from an Ind- to a Pro-object. So they factor through torsion elements.
Thus, pg = gp = 0. As a result, p = p(p + ¢) = p? and analogously for
q. So these must be idempotents. Thus, in the idempotent completion
we get a direct sum splitting Q, ~ imp @ im¢. Since ¢ kills a lattice,
say L, the map Q, L im q descends to Q,/L — im g, forcing im ¢ to be
an Ind-object and therefore zero. Again, we obtain Q,, € Pro®C, which
is absurd.

We recall that in an additive category a morphism p is an epic if for any

1)

composition

x 2y Lz

which is zero, f must already have been zero. Now suppose we want to find
a definition for ‘locally epic’. Then lattices take over the role of a basis of
open neighbourhoods of the neutral element. Hence, it makes sense to use
the definition of epic morphisms, but restrict both the assumption as well
as the conclusion to lattices. This leads to the following concept.

Definition 9. Let p: X — Y be a morphism of elementary Tate objects.

We call p submersive if for any morphism f and lattice L <— X so that
the diagonal arrow in

f
L' Y —Z
p/o////

Le X

is zero, there exists a lattice L’ < Y (drawn with a dotted arrow) so
that L < Y — Z is zero.
(Slogan: “vanishing on a lattice can be pushed forward”)
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2) Symmetrically, call p immersive if for any morphism f and lattice
L — X so that the diagonal arrow in

!

Y

)J 0o _ -~
p -

X

X/Lé——

Y/L « Z

—

is zero, there exists a lattice L' < Y (whose quotient is drawn with a
dotted arrow) so that Z — Y — Y/L’ is zero.
(Slogan: “vanishing modulo a lattice can be pulled back”)

These two definitions are almost dual. One transforms one into the other
by going to the opposite category and interchanging Ind- and Pro-objects.

Lemma 5. Let C be an idempotent complete exact category.

1) Every admissible monic p : Y — X is immersive.

2) Every admissible epic p: X — Y is submersive.

For example for an arbitrary lattice in an elementary Tate object, the
inclusion is immersive and the respective quotient morphism submersive:

immersive submersive
L¢ X X/L

We shall show in Example 9 that the lemma can fail if we remove the word
‘admissible’.

For a morphism f: X — Y in Tate®(C), and L — X a lattice, the no-
tation f(L) = 0 is shorthand for the statement that the diagram

— X

|l

—Y

commutes. As a first step towards the proof of the lemma, say forp: X — Y

epic, we observe that for Y € Ind*(C) the statement is automatically true,

since then we have that 0 < Y is a lattice, and we certainly have g(0) = 0.
The general case relies on the following lemma.
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Lemma 6. Let C be an idempotent complete exact category. Let g : M — N
be a morphism of admissible Pro-objects M, N € Pro®(C), which is sent to
the zero morphism by the exact functor Pro®(C) — Pro®(C)/C. Then there

exists a commutative triangle
U
7N

M—— N,
where U € C, and g is an admissible epic in Pro®(C).

Proof. We use that C C Pro®(C) is right s-filtering [17, Prop. 4.2. (2)]. By an
observation of Biihler this implies that the class ¥, of admissible monomor-
phisms in Pro?(C) with cokernel in C satisfies a calculus of right fractions,
see [17, Prop. 2.19] for the broader context. Moreover, we also know from
Biihler that Pro®(C)[2;,!] = Pro®(C)/C, [17, Prop. 2.19]. Since g : M — N

and 0 : M — N induce the same map in Pro®(C)/C, we see that there exists
a commutative diagram

M

AN

M——M ——N

LA

M,

where h: M’ < M is an admissible monic with cokernel @ € C. The com-
mutativity of the diagram implies that the horizontal arrow M’ — N is zero.
Therefore, we obtain by the universal property of cokernels a factorization

/ ¢ \
M—7 N
as required to conclude the proof of the assertion. ]

We are now ready to prove that admissible epimorphisms are submersive.

Proof of Lemma 5. We shall only treat the case of an admissible epic, and
leave the necessary modifications for the monic case to the reader. By



1584 O. Braunling, M. Groechenig, and J. Wolfson

Lemma 1 we have a commutative diagram

L—X

| )

M——Y

|

N——Z7

where the horizontal arrows are inclusions of lattices. We also know that
the inclusion Ind*(C) < Tate®(C) is right s-filtering [15, Cor. 2.3], and the
quotient category is equivalent to Pro®(C)/C [17, Prop. 5.34]. Inclusions of
lattices are sent to isomorphisms in Tate®(C)/Ind*(C). Hence, we obtain
that the composition fop is sent to 0 in Tate® (C)/Ind*(C). However, ex-
act functors send admissible epimorphisms to admissible epimorphisms; and
every admissible epimorphism is an epimorphism in the categorical sense.
The relation fop=0o0p in Tate?(C)/Ind*(C) implies now that f =0 in
Tate(C)/Ind*(C).

We have shown above that the morphism M — N in Pro%(C) is sent
to 0 in Pro?(C)/C. By Lemma 6, this yields a factorization M — Q — N
with Q € C. Let L’ be the kernel of the admissible epimorphism M — Q. By
construction L’ C Y is a lattice, and f(L’") = 0. This concludes the proof. [

Example 8. A submersive morphism does not need to be an epimorphism.
For example, for C := Vect the zero morphism k{[t]] RN E[t] is a submersion.
This makes sense topologically since we would think of k[t] as having zero-
dimensional tangent spaces. It is however also a finite immersion, which
appears rather strange from the point of view of topological intuition.

Example 9. Let us construct a (non-admissible!) monomorphism which is
not immersive. Let C := Vect be the category of finite-dimensional k-vector
spaces. We have a morphism

p: klt] — (1)),

the obvious inclusion. This morphism is monic, but it is not an admissible
monic since otherwise a Pro-object would have an Ind-object as a sub-object.
We claim that this morphism is not immersive. Suppose it is. Take Z — Y
to be the identity idyy) and L := k[[t]], which is clearly a lattice in k((t)).
The immersion property now implies that k[¢t] must be a lattice in itself. In
particular, it must be a Pro-object, which is absurd.
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Lemma 7. Submersive morphisms have the following properties:

1) Isomorphisms are submersive.

2) The composition of submersive morphisms is submersive.

Proof. (1) is trivial, just transport the lattice along the isomorphism. (2) Let
P, q be composable submersive morphisms. Let f be an arbitrary morphism
and L a lattice that gets sent to zero by (f o ¢q) o p, i.e. the lower diagonal
arrow in

L"< s 7

The submersiveness of p (for the morphism f o gq) guarantees the existence
of a lattice L’ so that f oq sends it to zero. Now the submersiveness of ¢
yields the existence of a lattice L” which is being sent to zero by f. But this
is all we had to show. U

Lemma 8. Immersive morphisms have the following properties:

1) Isomorphisms are immersive.

2) The composition of immersive morphisms is immersive.

Proof. The proof is essentially dual to the proof of Lemma 7, just reverse
the direction of all arrows. g

Lemma 9 ([17, Prop. 5.23]). IfC is idempotent complete and split exact,
TateﬁloC is split exact.
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Lemma 10. Suppose we are given one of the squares

di t
Xl iscrete X2 Xl bounded X2
submersive resp. immersive
Y] — Y, _—
1 7 2 Y 7 Yo

Then f is discrete (resp. g bounded).

For this statement to be true the monic (resp. epic) would need not be
admissible.

Proof. If X1 — Xj is discrete, there is a lattice L so that the upper row in

di 1,
IC Xl iscrete X2
submersive

is the zero morphism. Since the right-hand side upward arrow is a monomor-
phism, it follows that L — X7 — Y7 — Y5 must already be zero. Now being
submersive implies that there is a lattice L’ in ¥; so that L' < Y7 5 Y5 is
zero. Hence, ¢ is discrete. The argument for the other square is dual. U

We collect a few more useful properties.

Lemma 11. Suppose C is idempotent complete.

1) If p: X =Y is submersive, either no lattice L — X is sent to zero,
or'Y 1is an Ind-object.

2) Submersive discrete morphisms are precisely the morphisms X —Y
with Y an Ind-object.

3) Ifp: X =Y is immersive, either it does not factor through any lattice
mY, or X is a Pro-object.

4) Immersive bounded morphisms are precisely the morphisms X —Y
with X a Pro-object.
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Proof. (1) If a lattice L exists that p sends to zero, being submersive gives
a lattice L' in

e 1

L Y /éY
p L7

LEe—X

so that L' < Y is the zero map. So the zero object is a lattice, which forces
Y to be an Ind-object. (2) if p: X — Y is discrete, a lattice is sent to zero,
so just use (1). Conversely, if Y is an Ind-object, by Prop. 10 the morphism
p factors through a lattice quotient p : X — X/L — Y. In particular p sends
L to zero and so p is discrete. As Y is an Ind-object, the zero object is a
lattice, so p is clearly submersive. (3) and (4) are dual. O

Finally, we can show that the boundedness of a morphism is preserved
under passing to sub-objects or quotients, and analogously for discreteness
and finiteness.

Proposition 12. Suppose C is idempotent complete. Let ¢ : X — X be a
bounded (resp. discrete, finite) morphism and Y — X an admissible monic
such that ¢ |y factors overY, i.e.

Y
5 [
X

Then

©
—_

©
—_—

M =<

1) the restriction ¢ |y: Y — Y is also bounded (resp. discrete, finite), and

2) the quotient map @ : X/Y — X/Y is also bounded (resp. discrete, fi-
nite).

If ¢ is discrete and L' — L — X are lattices so that ¢ factors as

¢:L/L' — L)L,
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then there exist lattices L) — Ly <Y and L, — Ly < X/Y so that ¢ |y
and @ factor as

© |YZ Ll/Lll — Ll/Lll
p: LQ/L/2 — LQ/LIZ
and

Li/L} < L/L' - Ly/L},

is short exact.

Proof. (1, Bounded) As ¢ : X — X is bounded, it factors over a lattice, say
L. Thus,Y < X 5 X factors over L in the target, but by the commutativity
of Diagram 3.1 this means that Y %Y < X factors over L in the target.
Hence, we get the diagram

Y/L' % L _Y

Y
l o
|~

X/Lé——X
By Lemma 5 the admissible monic p is immersive. Thus, a lattice L' as in

the above diagram exists, showing that ¢ |7, is bounded.

(1, Discrete) This is simpler. As ¢ : X — X is discrete, there exists a lattice
L < X sothat L — X 5 X is zero. By Lemma 1 there exists a lattice L' <
Y such that under Y — X it maps to L — X, and then the composition

' 5L X—>X

is zero. Thus, by commutativity L' < Y — Y < X is zero, and by the defin-
ing property of monics, the composition L' < Y — Y must already be zero.
Since L' is a lattice, it follows that ¢ |7, is discrete.

(1, Finite) Just combine both statements.
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(2, Bounded) Consider the commutative diagram

X% .x

XY -2 X)Y.

As ¢ is bounded, there exists a lattice L < X so that ¢ : X — L — X. By
Lemma 1 there exists a lattice L’ < X/Y so that X — X/Y restricted to
L factors over L' < X/Y. In other words, X 5 X — X/Y — (X/Y)/L is
zero. By the commutativity of the diagram,

X > X/Y 3 X)Y = (X)Y)/L

must be zero as well. Since the first morphism is an epic, we deduce that
X/Y 5 X/Y - (X/Y)/L is already the zero map. By the universal prop-
erty of cokernels, this means that there is a factorization p: X/Y — L' —
X/Y, i.e. @ is bounded.

(2, Discrete) As ¢ is discrete, there exists a lattice L < X such that L —
X % X is zero. Thus, we obtain that the diagonal morphism in

Lo XY —F— X)Y

—
—
—
—

0 —
p_ -
—
—
—

Le . Xx

is zero. Following Lemma 5 the admissible epic p is submersive, i.e. there

exists a lattice L' < X/Y such that L' < X/Y 5 X/Y is zero. But this
just means that P is discrete, too.

(2, Finite) Just combine the last two statements.
(Lattices) Finally, combine the above constructions for a discrete morphism
and lattices L' < L < X such that ¢ factors as

¢0: L)L — L/L.

We see that they construct lattices L), L; < Y so that Ly < L and L} —
L’ under Y < X; without loss of generality use the (co-)directedness of
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the Sato Grassmannian [17, Thm. 6.7] to achieve that L} < L; holds, by
replacing L1 by a common over-lattice of the two constructed lattices if
necessary. Proceed similarly for the quotient X/Y. U

4. General Tate objects

In this section we extend the previous definitions to non-elementary Tate
objects.

Let C be an exact category. We recall that its idempotent completion C*
is the category whose objects are pairs (X,p) with X € C and p: X — X
with p? = p an idempotent. Its morphisms are

(4.1)  Home:((X,p), (Y, q)) = {f € Home(X,Y) | qfp = f}
={f|3g € Hom¢(X,Y) so that f = qgp}.

We refer to [19, §6] or [49, Ch. II] for a detailed construction and basic
properties of the idempotent completion. Recall that Tate(C) := (Tate®/C).
We will now define all basic types of morphisms between general Tate objects
by simply requiring that the morphism of the underlying elementary Tate
objects has the relevant property. This is, by the way, the same mechanism
which is employed to equip C* with an exact structure: A kernel-cokernel
sequence in C* is called exact iff it is a direct summand of an exact sequence
in C. For example, if p is an idempotent of X,

(42) (va)_>X_>(X71_p)
is a direct summand of

1- ;")
x5 xax 2 x.

Hence, Sequence 4.2 is actually a short exact sequence in C*. In particular,
(X,p) — X is an admissible monic and, since 1 — p is also an idempotent,
it also follows that X — (X,p) is an admissible epic. See [19, Prop. 6.13]
for more on this. In particular, admissible monics and epics in C* are rep-
resented by admissible monics and epics in C.

Lemma 12. Let C be a split exact category and C* its idempotent comple-
tion. Then C' is also split exact.

Proof. Suppose 0 =+ A — B — C — 0 is an exact sequence in C*°. Then by
definition [19, §6, cf. Prop. 6.13] it arises as a direct summand of an exact
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sequence in C, viewed as a sequence in C*¢. Thus, there is an exact sequence
in C so that

7

00— Ap A “sBaB scapc —0

is exact in C. Since C is split exact, there exists a left splitting 7 : B ® B’ —
A @ A’ so that wi = 1. It is now easy to check that B — B@® B’ 5 A @ A’ —
A, where the outer arrows are the inclusion and projection from the direct
summands, is a left splitting of the original exact sequence. 0

Definition 10. For objects X, X’ € Tate(C) we say that ¢ : X — X' is

1) bounded,
2) discrete,
3) finite,
4)
)

5

1mmers1ve

submersive,

if, when unwinding the definition of idempotent completion, we have
X =(Y,p)and X' = (Y',q)and p : Y — Y’ (so that gpop = ¢) is a morphism
of elementary Tate objects so that ¢ has the named property.

Lemma 13. Let C be an idempotent complete exact category. In Tate(C)

1) Lemma 3 remains valid, i.e. bounded, discrete and finite morphisms
form categorical ideals,

2) Lemma 5 remains valid, i.e. admissible monics (resp. epics) are im-
mersive (resp. submersive) as before.

Lemma 7 remains valid, i.e. submersions behave as before.

)

4) Lemma 8 remains valid, i.e. immersions behave as before.
) Lemma 9 remains valid, i.e. if C is split exact, Tatey,C is split exact.
)

Lemma 10 remains valid, i.e. given
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di t
Xl iscrete X2 Xl bounded X2
submersive resp. immersive
Y — Y- _—
1 7 2 Y1 7 Yo

f is discrete (resp. g bounded).

Proof. Nothing really happens. We give some details nonetheless: (1) The
ideal property follows from the corresponding property for elementary Tate
objects since Homeic (X, X') is a subgroup of Home(Y,Y”) for X =: (Y, p)
and X’ =: (Y',q), Equation 4.1. (2), (3), (4) similar. (5) Use Lemma 12 for
split exactness. For (6) note that we have such squares in Tate(C) only if
they come from a square of elementary Tate objects with morphisms with
the same properties, so Lemma 10 applies to this square, implying that f is
discrete in Tate®’C and then so is in Tate(C). Analogously for g. (]

Remark 14. Clearly our approach is based on drawing parallels to similar
concepts in functional analysis. For example our notion of bounded mor-
phisms is not too remote from the concept of a compact operator. The
same remark applies to trace-class operators. The idea to look at higher
local fields, i.e. special cases of n-Tate objects over vector spaces, from a
functional analytic perspective has already been pursued in the work of A.
Cémara [20] and [21].

5. Cubical structure

In Beilinson’s definition, that is Definition 6, an interesting continuity con-
dition appears. One looks at all k-linear maps “such that for all lattices
Ly < My, Ly < My there exist lattices L} < Mj, L < My such that

Ly = Ly, Ly<— Ly, f(Lia) = Loar,  f(Lin) = Lo,

holds.”

In order to relate this to Tate objects, we first need to show that the
very definition of morphisms of Tate objects implies this kind of behaviour
automatically. This is not entirely obvious from the outset due to the rather
different style of definition of lattices:
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Lemma 15. Suppose C is an idempotent complete exact category and
X1, Xo € TatelC. Let f € Hom (X1, Xo) be an arbitrary morphism. For all
lattices Ly — X1, Ly < Xo there exist lattices LY, L, and a double lattice
factorization

X3 %Xg

J J

(5'1) L1 J >L/2
L g » Ly

and for all such Ly, L}, Lo, L, we get an induced morphism
7L1/L3—>L/2/L2 mn HOHIC (Ll/Lll, /2/L2)
in the category C.

We keep the notation f for later use.

Proof. From the assumptions we just get the diagram depicted on the left
in:

X, — 1 x x,—1  x
L Ly : » L)
Lo Lo

By Lemma 1 (1) the restriction f |, factors through some lattice of Xa, say
Lo. By the directedness of the Sato Grassmannian [17, Thm. 6.7] we can
find a common over-lattice of both Ly and Lo, call it L), so that we arrive
at the diagram on the right. By Lemma 1 (2) there exists some lattice L
of X7 so that f ‘il factors through Lo. By the codirectedness of the Sato
Grassmannian [17, Thm. 6.7] we can find a common sub-lattice of both L
and Ly, call it L', so that we arrive at the Diagram 5.1. Finally, this induces
a canonical morphism f : Ly /L] — L%/Ly and by [17, Prop. 6.6] quotients
of nested lattices lie in the base category, i.e. both source and target of f lie
in the sub-category C. O
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Later, we will need to understand how the composition of morphisms
leads to the composition of such induced morphisms f. In order to do this,
we need to be able to find intermediate double lattice factorizations. The
best we can hope for in this direction is the following existence result:

Lemma 16. Suppose C is idempotent complete. Let X i) Xy L5 X5 be
arbitrary morphisms between elementary Tate objects. Then for every double
lattice factorization as in Diagram 5.1 for the composite g o f we can find
lattices Ly in X1, Lo, LYy in Xo and Ls in X3 so that

Ll/le L>L2/L/2L>E3/L3

S

Li/L} oo Ly/Ls

commautes.

Proof. For the beginning, let f, g be arbitrary morphisms. Suppose we are
given a double lattice factorization for g o f, i.e.

XlLXg

J J

L ————— I

J J

L, —— L

In general there is no reason why it should be possible to factor the two
lower horizontal arrows over lattices in Xs. Thus, we first need to refine a
given factorization. Using Lemma 1 (1) there exists a lattice Ls in X5, and

(using the Lemma again) a lattice Lg so that the diagram depicted below
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on the left commutes:

; X1 ! Xo—2— X3

X1 X2 < X3 \j\ ‘?
: \; L2 e L3

L2 >L3 / B J

T /

j Ll 3

Ly - Ly J J
J J Ly 3 Ls
L Ls N L

El > le .

Here we may have without loss of generality replaced Lz in the diagram
by a common over-lattice of L% and Ls so that the diagram still commutes
(use directedness of the Sato Grassmannian). Now consider the bottom hor-
izontal arrow in this diagram. Analogous to the previous refinement, using
Lemma 1 (2) we find a lattice L} in X9 which (after possibly replacing L}
by a common sub-lattice with Ls) fits in the diagram depicted above on the
right. Repeating this step again for L; yields the full diagram on the right.
Taking quotients we get Diagram 5.2. O

The following definition is a fairly precise imitation (even regarding the
naming of the variables) of the continuity condition employed by Beilinson
in his adele paper, compare with Definition 6, or see the original paper [4].

Definition 11. Suppose C is idempotent complete. Let X1, X € n-Tate®C
be elementary n-Tate objects.

1) Let I{ (X, X2) for s € {+,—,0} denote the bounded, discrete and
finite morphisms in Hom (X7, X5) respectively, exactly as in Defini-
tion 7.

2) Fori=2,...,nlet I (X1, X3) denote the morphisms f € Hom (X7, X»)
such that for all lattices Ly, L}, Lo, L}, and double lattice factorizations
as in Diagram 5.1 we have

f €Iy (L1/Lh, Ly/ La).

3) We define
I (X1, X2) = (] I} (X1, Xs),

=1,....,n

its elements will be called trace-class morphisms.
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As in §4 this immediately implies a reasonable definition for general (i.e.
non-elementary) Tate objects:

Definition 12. If (X1,p;1) and (Xo,p2) are general Tate objects, define
I? (X1, X2) to consist of those morphisms f : (X1, p1) — (X2, p2) such that
the underlying morphism of elementary Tate objects X; — Xo lies in
I? (X1, X2) in the above sense.

Theorem 13. Suppose C is idempotent complete and X, X', X" € n-Tate'C
or n-Tate(C).

1) The I7 (—,—) fori=1,...,n are categorical ideals. This means that
the composition of morphisms factors as

I7 (X', X") @ Hom (X, X') — I7 (X, X")
Hom (X', X") @ I} (X, X') — I} (X, X") .

2) In the ring End(X) the I (X, X) are two-sided ideals.

3) Ewvery composition of > 2" morphisms from Iy (—,—) factors through
an object in C. For words in < 2" letters this is in general false.

The following argument is very close in spirit to the handling of lat-
tices by A. Yekutieli in [56]. However, we encounter a number of additional
technical issues because of the less concrete notion of lattice we work with.
There is also a similar study in the case of vector spaces and n-local fields
by D. V. Osipov [43].

Proof. (1) We only show this for elementary Tate objects since the general
case follows directly along the same lines as the proofs in §4. We will reduce
this to the case of a single Tate category, notably Lemma 3. Let f,g be
composable morphisms as depicted in the top row of the diagram below. In
order to prove that g o f lies in I? (for some s and i), the condition to check
reduces to proving a property g o f induced to a certain iterated subquotient
of lattices. The lattice subquotients arise from an inductive choice. More
precisely: Starting with m := 1, consider any double lattice factorization of
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the composition as in diagram

X3 Xo X3
J J
(5.3) Ly A
J J
L L3

with X1, Xo, X3 being elementary (n —m + 1)-Tate objects. By Lemma 16
we can construct a commutative diagram

Ll/f/l L)IQ/L/QLEB/L?’

| T
submersive immersive
/ g9of /
L/ L4 3/Ls3

where the left and right outer arrows are an admissible epic (resp. monic)
and thus are submersive (resp. immersive) by Lemma 13. Now continue
with a picking another double lattice factorization as in Equation 5.3, but
this time with Mmyey 1= Mg + 1 and using the top row of the above dia-

gram in place of X3 i) X, -2+ X3. Note that the objects in this new row
are quotients of nested lattices, so by [17, Prop. 6.6] they are elementary
(n — m)-Tate objects. Repeat this until we reach m = i. For the rest of the
proof g o f will refer to the respective morphism coming from the last step
in this inductive procedure, i.e. when m = ¢. In particular, g o f is a mor-
phism between (n — i)-Tate objects and from now on the word lattice will
only refer to lattices in such. No more interplay of lattices of varying Tate
categories will be needed, let us also rename the entries of the above diagram
into neutral terms

|

g
Wi A Wa
submersive immersive
gof
Z Z

Now by assumption one of f or g lies in I°, so by Lemma 3 the entire top
row lies in I°. Then by Lemma 10 it follows that the bottom row lies in I as
well. (2) trivially follows from (1). For (3) first note that it suffices to show
this for elementary n-Tate objects. Now we show the claim by induction on
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n. For n =1 Lemma 3 gives the claim. Hence, assume the case n — 1 has
been dealt with and suppose f; € Iy (—,—) for j =1,...,2" are given and
composable so that fi o--- o fon makes sense. By a minimal variation of the
argument for Lemma 3 there is a factorization of fj o fj41 as

(5.4) Xy = X /L7 e x,,

where L is a lattice in X7 and L’ a lattice in X5. Following the argument
of Lemma 3 further, the composition of any two morphisms having a fac-
torization as in Equation 5.4, factors through an object in (n — 1)-Tate(C).
Thus, for every second index there is a factorization fifa, f3fa, f5f6,-- -
X, = Cy — X, with ‘*’ replaced by suitable indices and with C; € (n — 1)-
Tate(C). Now if we compose these 2" /2 = 2"~! morphisms, by induction it
factors over an object in C. To see that one cannot do with less than 2"
morphisms, we ask the reader to adapt Example 6 accordingly. (]

Definition 13. Suppose we are given A := End(X) in the situation of The-
orem 13. Pairwise commuting elements P;" € A (withi = 1,...,n) such that
the following conditions are met:

° Pi+2 — f)i+‘
° PZ-+A - I;_.
e P"ACI; (and we define P, :=14 — P;")

will be called a system of good idempotents. We shall call an (elementary)
n-Tate object n-sliced if A = End(X) admits a system of good idempotents.

A very explicit example for good idempotents will be given in Exam-
ple 10.

Proposition 14. For every n-sliced object X € n-Tate®(C) or n-Tate(C)

we have
(5.5) LN (X, X)+1I; (X,X)=End(X)
foralli=1,...,n. Moreover, End(X) is a Beilinson n-fold cubical algebra

as in Definiton 1.

Proof. By Theorem 13 we have the necessary ideals Iii. In order to meet all
axioms of Definiton 1, it suffices to prove Equation 5.5. However, this can
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be done using the idempotents, by an immediate generalization of the proof
of Prop. 11. O

Lemma 17. If X € C then every endomorphism is trace-class, i.e.
Iy, (X) = Endn—Tate(C) (X) = EndC(X)

Proof. The first equality holds since every sub-object of X € C is a lattice
with respect to the top 1-Tate structure, n-Tate(C) = Tate((n — 1)-Tate(C)).
Then for all quotients N/N’ of such lattices N’ < N < X, we still have
N/N’ € C. Thus, inductively, every endomorphism is trace-class. Then sec-
ond equality holds since the embeddings C — Tate(C) are all fully faith-
ful. O

6. The countable split exact case
With the previous results we have seriously approached arriving at a struc-

ture as in Definition 1. Suppose C is an idempotent complete exact category.
Now suppose X is an elementary n-Tate object. We may present it as

L
(6.1) X = oligl'&nf},
L, 1, 1

where L) < L; < X are a nested pair of lattices. One could also write this
as

L
(6.2) X = coli Jim f}

LeGr(X)L,eGr(X),L}CLy, 1
where Gr(X) denotes the Sato Grassmannian of all lattices in X.

Remark 18. Let us look at the situation of a general n-Tate object, with-
out the cardinality hypothesis. We can always write X as an Ind-diagram
(of Pro-objects) or Pro-diagram (of Ind-objects)

X
. X = colimL X =lim —
(6.3) _OLilglla %Ll

where L1 runs over the partially ordered set of lattices in X. The first presen-
tation follows trivially from [17] and would work for a general exact category
C; for the second one needs the dual viewpoint developed in [15, § Duality],
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requiring C to be idempotent complete. This asymmetry stems from [17]
defining the Tate category as a sub-category of Ind*Pro®C so that some ‘pre-
ferred viewpoint’ is built into the theory. Working from the outset with the
opposite category would shove the idempotent completeness assumption to
the first presentation and remove it from the second. The presentation in
Equation 6.2 can be obtained by first using the left-hand side presentation
in Equation 6.3, and then employing the right-hand side presentation for
each L; individually. The co-directedness of the Sato Grassmannian and
[15, Corollary 2] imply that instead of L; = Jim %/1 with L) running through
I

lattices of the Pro-object L1, we may alternatlively run through the lattices
L of X which are contained in L.

By [17, Prop. 6.6] any such quotient L;/L] is an (n — 1)-Tate object.
This observation generalizes to the case where X is a general n-Tate object
by refining our presentation to

L
X = Pcolig@ [71’
Ly L}

where P denotes an idempotent. By induction it follows that

L
X = PCOli[[!@l PLhL’l coli @PLI,LQ,Lz,L; ce COli![!@ P() L—77
Ly Iy Ly L L, L n

where L} < L; are nested lattices of the elementary n-Tate object under-
lying X, L, < Ly are nested lattices of the elementary (n — 1)-Tate object
underlying L;/L}, L — L3 are nested lattices of the elementary (n — 2)-
Tate object underlying Lo/L),. .., and finally L,,/L] is an object of C. The
letters P, PL, 1, ... denote idempotents cutting out the respective Tate ob-
jects.

The results of the last section on double lattice factorizations, notably
Lemma 15, tell us that any morphism

fiX1—>X2

of n-Tate objects stems from a system of compatible morphisms L,,/L! —
N,,/N] in the category C so that f is induced from assembling these mor-
phisms into

cohg@m .- coli @ Ir — cohm@m . -cohm@ N
L, L L, L, ™n N, Ny N, N, =T
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If we take over from Lemma 15 the notation that the induced morphism of
a double lattice factorization is f, the morphisms L, /L) — N,,/N}, here are
nothing but “n-fold overline f”.

Theorem 15. Suppose C is a split and idempotent complete exact category
and X € n-TateﬁlO (C) or n-Tatey,(C), i.e. X is a countable n-Tate object.
Then X is n-sliced and End(X) carries the structure of an n-fold cubical
Beilinson algebra in the sense of Definition 1.

Proof. For a 1-Tate object this is literally Prop. 11. In general, by Prop. 14,
it suffices to find a system of good idempotents. Proceed by induction in n.
Write an elementary n-Tate object as

(6.4) = MLT.

As any quotient Ly /L] is an (n — 1)-Tate object and we assume our claim,
i.e. the existence of a system of good idempotents, for n — 1, the idempotents
supply a direct sum decomposition

L= @ PPy (DL,

81,...,Sn71€{i}

If Ly — Ly is a larger lattice in X and L, — L) a smaller lattice, the split
exactness allows one to find a direct sum decomposition

L L
L’2 o~ L’1 @ (another (n — 1)-Tate object).

We can use the same idempotents Pli, R Pni_1 to decompose the new sum-
mand. As our indexing categories are countable, we can exhaust X in this
fashion to get a choice of n — 1 good idempotents on all of X. Finally, on
all of X, we get a further idempotent PF, just by splitting the entire pre-

sentation of Equation 6.4 as

0— L — Coth — cohg — 0,

where L is some fixed lattice of X. This gives us a full system of n good
idempotents and thus proves our claim. If X is a general Tate object, (X, p),
use the idempotents pPiip of the underlying elementary Tate object X in-
stead. O
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Open Problem. What is the correct analogue of this theorem in the con-
text of Hennion’s Tate categories for stable co-categories? [34]

We close this section by presenting an example where it is particularly
easy to find a system of good idempotents.

Example 10. Let R be a ring, possibly non-commutative. Define the ring
of formal Laurent series by R((t)) := R[[t]][t™']. Then R((t1))((t2))--- ((tn))
canonically has a representative in n-Tate®(Modg) via

X = "R((t1))((t2)) -~ ((tn))”
— Ohgl'&n"'COHQ@NRHL‘"’t”}/(t]fa”"t%n)'
in  Jn v 1 n

1

When evaluating the colimits and limits in Mod g, we get the usual R-module

R((t1))((t2)) - - ((tn))

and with a little more work one obtains the ring structure on it. Since the
(co)limits are taken over projective R-modules so that this object actually
could be constructed on the left in

n—Tateﬁlo(Pf(R)) — n-Tate (ModR),

we deduce that the implications of Thm. 15 apply to this particular object.
For i =1,...,n define idempotents

+ E m Mo, _2 : m M,
Pi am17"'amnt1 e tn = 5mi20am1,.‘.,mnt1 1., tn

for am,,..m, € Rand P, :=1— Pf. This is a system of good idempotents
for X in the sense of Definition 13. A description of the ideals I7- | is easy
to give; the statements would be analogous to those in Lemma 27 in §10.

Remark 19. A different approach has been introduced by A. Yekutieli. He
developed the concept of semi-topological rings in [54], [55]. If one prefers
Yekutieli’s semi-topological theory over n-Tate objects, an analogous con-
struction is possible: If R is a semi-topological ring, e.g. with the discrete
topology, Yekutieli shows that R((¢1))((t2)) - ((t,)) also possesses a canon-
ical structure as a semi-topological ring itself. He has established a result
in the style of Theorem 15 in [56]. Whichever way one proceeds, one needs
a replacement for classical topological concepts: For example, it is known
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that for n > 2 an n-local field like k((¢1)) - - - ((¢n)) is not a topological field.
A. N. Parshin and I. B. Fesenko have resolved this issue by using sequential
topologies, cf. [26]. K. Kato’s version of Tate categories was also introduced
to address exactly this issue, we refer to the introduction of [40]. See [16] for
a comparison of these different viewpoints.

7. Relation to projective modules

For a possibly non-commutative ring R we denote by Py(R) the category of
finitely generated projective right R-modules. First, let us recall the follow-
ing:

Theorem 16. ([17, Thm. 5.30]) Suppose R is a commutative ring.

1) Then TateP"(R) admits a canonical fully faithful embedding as a sub-
category of Tate(Py(R)).

2) When restricting to countable cardinality, this becomes an equivalence
of categories,

Tatel," (R) — Tatey, (Pr(R))

We shall also need a result identifying split exact categories and projec-
tive module categories, a type of projective generator argument. It applies
to a wide range of situations, so let us state it in this generality.

Lemma 20. Let C be an idempotent complete, split exact category such
that every object is a direct summand of some fixed object S € C. Then the
functor

(7.1) C — P(Ende(S))
Z — Home(S, Z)

is an exact equivalence of exact categories.

Proof. Firstly, define E := End¢(S) and note that for any Z € C the group
Home¢ (S, Z) becomes a right E-module by the composition of morphisms,
i.e.

Home(S, Z) x Home (S, S) — Home(S, Z).
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This produces a functor C — Mod(F). Thus, for any objects Z1, Zs € C we
get an induced map of homomorphism groups

(7.2) Home (21, Z2) — Hompeq(r) (Home (S, Z1), Home (S, Z2)).

For Z1 = Z5 := S it is an isomorphism. It also sends idempotents to idem-
potents, so the object S and all its direct summands are sent to E and direct
summands of it. However, by assumption any object of C is of this shape,
so this gives an alternative description of the same functor, and therefore
implies that the map in Equation 7.2 is an isomorphism for arbitrary 21, Z5.
So the functor is fully faithful. Moreover, we see that every object is sent to a
direct summand of the free F-module F, so the image of the functor consists
of finitely generated projective F-modules, which shows that the functor is
well-defined. Conversely, every finitely generated projective E-module M is
a direct summand of E®" for some n. Since Equation 7.2 is also an iso-
morphism for S9", the idempotent defining M comes from an idempotent
of SP". As C is idempotent complete, this idempotent possesses a kernel.
This shows that the functor is essentially surjective. As a result, we have an
equivalence of categories and since both are split exact, this equivalence is
necessarily exact. In either case, the only short exact sequences are the split
ones. This finishes the proof. O

Remark 21. Let us quickly address the uniqueness of such a presentation.
Suppose S, S” € C are objects both satisfying the assumptions of the lemma.
For example, S’ := S @ S. Then the equivalences of categories are related
by the functor

Pf(Endc(S)) — Pf(Endc(S/))
Mv— M ®Ende () HomC(S', S),

which itself is an exact equivalence. Note that this is precisely the shape
of a Morita equivalence: Homg (5’ S) is the Morita bimodule with the rings
End¢(S) and Ende(S”) acting from the left- and right respectively. Exchang-
ing the roles of S and S’ yields the Morita bimodule for the reverse direction.

Suppose C is a split exact category. Moreover, suppose there is a col-
lection {S;}ien of objects S; € C such that every object X € C is a direct
summand of some countable direct sum of these S;. Then C’ := Tatey,C is
idempotent complete and split exact by Lemma 13. Moreover, there is the
canonical object
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(7.3) Y i=TInS & OnS,

defined by

HNS = HNHieNSi> and @NS = @N@ieNSia

viewed as a Pro®-object (respectively Ind“-object), and it follows from [17,
Prop. 5.24] that every object X € Tate§l0C is a direct summand of Y. Then
of course the same holds in the idempotent completion C’. As a result, we
have shown the assumptions of our argument, but for Tatey,C instead of C
and for the family {S;};,cn we can take the single object Y. We may now
iterate this procedure to obtain the following.

Definition 14. Let C be a split exact category. For any object X € C define
X(1) :=[InX ®@PnX € Tate’lC.
This is just a special case of Equation 7.3 in the case of a single object.

Definition 15. Let C be a split exact category and {S;}ien a collection
of objects such that every X € C is a direct summand of a countable direct
sum of objects in {S;}. Then we call

$ = (TInS & ®nS) (22)) -+ ()
a standard object for n-Tatey,C.

Theorem 17. Let C be a idempotent complete and split exact category with
a countable collection {S;} of objects as in Definition 15.

1) Then every object X € n-Tatex,C is a direct summand of a standard
object.

2) There is an exact equivalence of exact categories
n-Tatey,(C) — Py (R)

for R := Endn_TateNo(c)(S) and S any standard object.

3) Under this equivalence, the ideals IijE i R correspond to the categorical
ideals of Definition 11.
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Proof. The first claim is just [17, Prop. 7.4] and the second is a direct con-
sequence thanks to Lemma 20. Part (3) is obvious for the standard object
and then use that every object is a direct summand of the latter. U

Let us now adapt this result to the case of ‘Tate modules a la Drinfeld’,
we refer to [17, §5.4] for a definition and background information. This type
of object has been introduced by Drinfeld in his paper [23] as a candidate
for the local sections of a reasonable notion of infinite-dimensional vector
bundles over a scheme.

Theorem 18. Let R be a commutative ring. Then there is an exact equiv-
alence of categories

Tatel" (R) — Py(E),
where E is the Beilinson 1-fold cubical algebra

E:= EndTatefd"(R) (R((t))) ’

where “R((t))” is understood as the Tate module & la Drinfeld with this name
in Drinfeld’s paper [23].

Proof. We claim that we have exact equivalences of categories, namely
Tatel" (R) — Tatey, (Pf(R)) — Py (E),

where the first equivalence stems from Theorem 16. The latter exists since
P¢(R) is an idempotent complete split exact category so that Theorem 17
is applicable with
E = Endrate,, (P, (r)) (R((1))) -

To justify this, note that every finitely generated projective R-module is a
direct summand of a finitely generated free module R¥™ for n large enough,
so R((t)), as in Definition 14, is indeed a standard object. However, now
using the equivalence of Theorem 16 again, the full faithfulness yields an
isomorphism of rings

E = EndTateEOT(R) (R((1))),

where now R((t)) is to be understood as the (rather: one choice of a) Tate
module a la Drinfeld corresponding to the Tate object with the same name.
However, Drinfeld himself introduced the corresponding object already in
his original paper [23, §3, especially Example 3.2.2], and in fact it is also
called R((t)) in loc. cit. This establishes the claim. O
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Open Problem. [t would seem interesting to study the analogous problem
without the restriction to countable cardinality. This probably would lead to
a very complicated picture. Kaplansky has shown that a projective module
over a ring must necessarily be a direct sum of countably generated modules.
Qver the years it has become increasingly clear that this perhaps surprising
appearance of questions of cardinality permeate the entire field [10]. See for
example [35] or [24] for intricacies in the context of Drinfeld’s ideas.

8. Trace-class operators

Suppose A is an n-fold cubical algebra as in Definition 1. Then we call the
intersection of ideals
Lp= () IinI;
i=1,...,n

the ideal of trace-class operators in A. Let us say a few things about the his-
torical precursors of this concept: While the name is inspired from a vaguely
related definition in functional analysis, the present format originates from
Tate’s 1968 article on residues for curves [53]. He considers a 1-fold cubical
algebra of k-linear maps and wants to define a trace on I, mimicking the
usual trace. Sadly, the maps in his ideal I need not have finite rank, so a
priori it is not clear whether a notion of trace exists for them at all. Tate
then follows the principle that any nilpotent map should have trace zero, no
matter whether it has finite rank or not. From this he distills the concept of
a ‘finite-potent” map — a map for which some finite power has finite rank.
Tate manages to develop a well-defined trace for such maps. Nonetheless,
this trace has some fairly mysterious properties. Most notably it is not al-
ways linear, as was conjectured by Tate and later shown by F. Pablos Romo
[46], see also [2], [51] for a fairly complete analysis of this issue. However,
in all applications of Tate’s trace one usually only needs it for trace-class
operators, i.e. maps in Iy, rather than all finite-potent maps. Restricted to
I, Tate’s generalized trace becomes linear and very well-behaved. In this
section we shall generalize this concept to Tate categories. Just as Tate’s
original work takes the classical finite rank trace as input, we shall also
use a notion of trace on the input category C as the starting point for the
construction:

Definition 16. Let C be an exact category. An ezact trace on C with values
in an abelian group @ is for each object X € C a group homomorphism

try : Ende(X) — @
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so that the following properties hold:

1) (Zero on commutators) For f, g € End¢(X ) we have trx(fg — gf) = 0.

2) (Additivity) For a short exact sequence A <— B — B/A and f €
End¢(B) so that f |4 factors over A, we have

(8.1) trp(f) = tra(f |a) + trp/a(f)-

Example 11. For C := Vect; the usual trace of a k-linear endomorphism
is an exact trace with values in the base field k.

Example 12 (Hattori-Stallings trace). Suppose R is any unital associa-
tive ring, not necessarily commutative. Let Pr(R) be the category of finitely
generated right R-modules. For any X € Py(R) the Hattori-Stallings trace
is the morphism

try : Endg(X) — R/[R, R)
X ® XY — R/[R, R]

r®z’ — zV(x).

It is an exact trace. In fact, it is known to be universal on the category
P¢(R), i.e. any exact trace with values in an abelian group @ arises as the
composition of the Hattori-Stallings trace with a morphism R/[R, R] — Q.
See [32], [52] for the original papers, [3, §1] for a review. If R := k is a field,
we recover the classical trace.

Example 13. In Tate’s theory in [53] every nilpotent endomorphism has
trace zero. This need not hold in our context — for entirely trivial reasons.
We give an explicit counter-example nonetheless: Take C := P¢(Z/2'0). De-
fine a trace trg o0 : End(Z/2'") — Z /2" as the identity. Since C is split ex-
act, the axiom regarding additivity for exact sequences determines a unique
continuation of trgz 10 to the entire category C. Clearly, multiplication with
2 is a nilpotent endomorphism of Z /29, yet has trace 2.

Once such a trace is available, we can lift it to the trace-class operators
of n-Tate objects:

Proposition 19. Suppose C is an idempotent complete exact category and
tr(_) an ezact trace with values in an abelian group Q. Then for every object
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X € n-Tate(C) there is a canonically defined morphism
Tx Iy = Q

and these morphisms are uniquely determined by the following properties:

1) If X € C then mx(f) = trx(f) for all f € End(X).
2) Suppose N' — N < X are any lattices of X such that ¢ € Iy (X) ad-

mits a lift
N
j
v
X—2 X
and for which ¢ |N+ is zero, and thus factors as N/N' N N/N'. Then

7x () := Tn/N/ (@) This element is independent of the choice of N, N'.
3) (Zero on commutators) For f,g € I, (X) we have 7x(fg —gf) = 0.

4) (Additivity) For a short exact sequence A — B — B/A and f € I1,(B)
so that f |4 factors over A, we have

8(f) = 1a(f |a) + 7B/4(f)-
We automatically have f |a€ Ii;(A) and f € I.(B/A).

The endomorphism group in (1) makes sense in view of Lemma 17.

Proof. (Step 1) The case n = 0 is trivial and directly reduces to the axioms
of an exact trace. We deal with the case of an elementary 1-Tate object X
first, i.e. assume n = 1. Suppose X = X is any endomorphism in Tate®(C).
We call a diagram

N Py N

X7 .x

a 1-factorization if N — X is a lattice, the diagram commutes, and @ fac-
tors over p: N/N' — N/N' with N' < N < X a further (smaller) lat-
tice. For any 1-factorization of ¢ we can define a preliminary trace by
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7(p) = try/n () € Q for the simple reason that any quotient of lattices,
e.g. N/N', must be an object in C, [17, Prop. 6.6]. Next, we note that
any finite morphism has a 1-factorization: Since ¢ is bounded, it factors as
X — N — X. Now, restrict this to IV. Since ¢ is also discrete, there exists
some lattice V with V < X — X being zero, so let N’ be any common sub-
lattice of V' and N. Such exists because of the co-directedness of the Sato
Grassmannian [17, Theorem 6.7]. Now N and N’ satisfy all necessary crite-
ria. Suppose we find a further 1-factorization with N’ replaced by a smaller
lattice N”. From N” < N’ < N we get the short exact sequence

N’ N N
N7 NN

Since p already vanishes on N’ the trace must be zero on the left-hand
side term. The additivity axiom of the trace, Equation 8.1, implies that
try/n (P) = try/n (P) + 0. Similarly, if we replace N by a larger lattice
NT, we get the short exact sequence

N (_>NJr Nt
- N
N’ N’ N

and as @ factors over N by assumption, the trace must be zero on the right-
hand side term. Again, we get try+ /() = try/n(®) + 0 by Equation 8.1.
This shows that our preliminary definition of a trace is independent under
replacing N’ by a smaller lattice and N by a larger one. Since any two
lattices have a common sub-lattice and over-lattice, [17, Theorem 6.7], and
try/n/ (9) € Q is unchanged under replacing lattices this way, we conclude
that try/n (@) is actually independent of N and N’. In the same way we
can show that the trace is linear: Pick N;, N} for ¢ = 1,2 and both mor-
phisms in consideration and then verify the claim by replacing N1, No by a
joint over-lattice, resp. sub-lattice for Ni, N. For a general (not necessarily
elementary) 1-Tate object, we proceed as in §4: The morphism ¢ is called
finite if the underlying morphism of elementary Tate objects (X, p) — (X, p)
is finite, so we can take the trace which we have just constructed.
Summarizing our findings, we have seen that axioms (1) and (2) actually
dictate a well-defined construction of a group homomorphism 7x : I, — Q.
This implies the uniqueness and it remains to show that axioms (3) and
(4) hold. Vanishing on [I;, I;y] is immediately clear since we find ¢ o ¢’ =
P o ¢ for composable trace-class morphisms ¢, ¢', so the 1-factorization of
a commutator can be expressed as the commutator of 1-factorizations. Now
use the vanishing of exact traces on commutators. This proves (3). For (4),



Operator ideals in Tate objects 1611

suppose
(8.2) A— B —» B/A

is a short exact sequence and f € I (B) is such that f |4 factors over A. In
this situation, Prop. 12 guarantees that f |4€ I;.(A) and f € I;.(B/A) are
also trace-class. Moreover, if f factors over N/N'| it supplies us with a short
exact sequence

Ni/Nj < N/N' — Ny/Nj,

where N{ < Nj < A and Nj < Ny — B/A are lattices. Of course these
quotients are objects in C, so the additivity of the exact trace tells us that

tr, v (f) = trvyne (f [a) + trag v, (),

but by (1) and (2) each of these traces is just a way to evaluate our trace
7(-), and we get

78(f) = 7a(f [4) + TB/A(]):
which is exactly what we wanted to show. This settles axiom (4).

(Step 2) For an elementary n-Tate object proceed exactly as above, but com-
bined with an induction: Define a n-factorization just like a 1-factorization

N Y N

X—2 X
but with @ : N/N’ — N/N' an endomorphism of an (n — 1)-Tate object. By
the definition of trace-class operators, Definition 11, this is now again a
trace-class operator for this (n — 1)-Tate object:

pel, =1 NI N (ﬂi:2,...,nji+ n If) ;

from which we deduce that @ € I;,,(N/N'), as (n — 1)-Tate objects. Next,
pick a (n — 1)-factorization for @ and proceed this way until we get a
I-factorization. Define 7(¢) as before by 7(p):=try/n/(®) of this 1-
factorization. As in the case of 1-factorizations, verify that for any j-
factorization (j = 1,...,n), replacing lattices by over- resp. sub-lattices does
not affect the value of try,/n/(%): We prove this by induction starting from
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j = 1. But this case has already been dealt with in Step 1. For j > 2 use
the same argument as in Step 1, adapted as follows: In Step 1 we essentially
only used the additivity property of the exact trace. Replace this by using
the additivity of our 7, i.e. its axiom (4), of the previous induction step
j—1.

Now, by construction properties (1), (2) in our claim are satisfied. Prop-
erty (3) follows easily as in Step 1. In order to show axiom (4), we can again
just copy the proof in Step 1 since it only uses the additivity of the exact
trace, which we can again replace by the additivity of our 7, axiom (4), of
the previous induction step. O

It would be very nice if one could prove the following result in greater
generality.

Proposition 20 (Strong Commutator Vanishing). LetC be an abelian
category. Suppose X € n-Tate(C) and R := End(X), I, C R the trace-class
ideal. Then

TX([IL‘T: R]) =0,

i.e. a commutator of a trace-class endomorphism with an arbitrary endo-
morphism vanishes.

Proof. Let X € n-Tate(C) and ¢ € R, ¢o € I;(R). Since I, is a two-sided
ideal, ©q, wpo and pop are all trace-class and thus we know that for each of
them we can quotient X — X step-by-step through lattices as in Prop. 19
(2), going from n-Tate objects to 0-Tate objects while preserving the value
of 7, so that we may assume from the outset that X € C. We can also
find such lattices simultaneously for all three of them since in each step the
directedness and co-directedness of the Sato Grassmannian [17, Theorem 6.7]
assures us that we can take a common over- (respectively sub-)lattice of the
lattices we find for each individual morphism. Now consider the commutative
diagram

ker(po) —2 ker(go)

N 'a)
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The kernel and image exist since C is abelian. The top horizontal arrow is
clearly the zero map so that 7x (¢¢0) = Tim(e,) (o) by the additivity axiom
of the trace. Moreover, we have the commutative diagram

im(ip0) = im(po)

e )

Pop

X /im(ipo) ©5 X /im(ipo)

Again, by additivity we must have 7x (00¢) = Tim(eo)(¢0%), since the bottom
horizontal arrow is the zero map. U

9. The Tate extension

Next, we recall a construction due to Beilinson [4], generalizing Tate’s inge-
nious insight from [53] for n = 1:

Construction 1. Let k be a field. For every n-fold cubically decomposed
algebra (A, (Iijc)7 T) over k, as in Definition 4, there is a canonically defined
Lie cohomology class

Ppenl € H{5H (g, k),

where g := Ar;e is the Lie algebra associated to A via the commutator [z, y]y
=y — yzT.

This cohomology class was introduced in [4]. An explicit formula and
example computations can be found in [11], [12].

Example 14. For n = 1, Tate constructs “the original” cubically decom-
posed algebra in [53, Prop. 1] — this is the example which has started the
entire subject in a way. It was independently found by many others, notably
Kac-Peterson [38] or the Japanese school, cf. Date-Jimbo-Kashiwara-Miwa
[22]. There are also the computations by Feigin and Tsygan [25], covering
the other cohomological degrees as well. For a certain field K, Tate’s paper
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[53, Theorem 1] constructs a map, following the notation of loc. cit.,
res: K N K — k, (the “abstract residue”)

which can be re-interpreted as ¢pei € Hﬁie(K Lie, k). It produces a map
Q}( e k, fdg + res(f A g), which agrees with the usual one-dimensional
residue of a rational 1-form at a point. Going well beyond the viewpoint in
[53, Prop. 1], one can regard the Lie 2-cocycle ¢pei as defining a Lie algebra
central extension

k—9— K.

The Lie algebra g is an example of what is nowadays called Tate’s central
extension. In this case, g is known as the Heisenberg Lie algebra. The theory
is presented and used from this perspective for example in [8, §2.4], [6, §2.10,
§2.13], [7, §2.7], [9], [28], etc... Applications abound.

Example 15. For n = 2, the cocycle ¢pe € HP, (g, k), applied to a doubly
infinite matrix Lie algebra, has been studied in great detail by Frenkel and
Zhu [28].

The construction of a trace for trace-class operators in the previous sec-
tion allows us to define a higher Tate extension class for the Lie algebras
underlying endomorphism algebras of suitable n-Tate objects. In [12] Beilin-
son’s construction was lifted from Lie cohomology to Hochschild and cyclic
homology. These generalize analogously to our present situation.

Theorem 21. Let k be a field and let C be a k-linear abelian category
with a k-valued ezxact trace. For every n-sliced object X € n-Tate(C), the
endomorphism algebra E := End(X) is a cubically decomposed algebra in
the sense of Definition 4.

1) In particular, its Lie algebra gx := Ep;e carries a canonical Beilinson—
Tate Lie cohomology class,

bpeil € Hit  gx, k)

via Construction 1. Alternatively, one may view this as a functional
OBeil : HE) (ax, k) — k.

2) There is also a canonical Hochschild homology and cyclic homology
functional

¢ : HH,(E) =k resp. épc: HC,(E) — k.
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The Hochschild and the Lie invariant are not completely independent of
each other, cf. [12] for details on the interplay of these constructions.

Example 16. Recall that, by Theorem 15, if C is split exact and idempo-
tent complete, every countable n-Tate object is automatically n-sliced. For
example, if we consider the category C := Vecty, then the above theorem
applies to all objects in n-Tatey,(C).

Proof. (1) By Prop. 14, the endomorphisms E := End(X) form a Beilinson
cubical algebra, but so far without a trace formalism 7. Prop. 19 promotes
the k-valued exact trace on C to a trace

TX - Itr/[-[th Itr] — k

for any n-Tate object X and I, = I}, (X, X) its trace-class operators. As
C is abelian, Prop. 20, shows that this trace satisfies the stronger axioms
of a cubically decomposed algebra. Finally, Construction 1 applies and pro-
vides us with ¢pei; here we refer to [4] for the actual construction. (2) The
construction of these maps just takes a cubically decomposed algebra as its
input, so we can directly feed E into [12]. We leave the details regarding the
existence of local units to the reader. 0

Example 17. If n = 1, this means that gx comes equipped with a canon-
ical Lie central extension

0—k—gx —gx —0

and if C := Vecty and if we employ the usual trace, this produces most of the
classical examples of Tate’s central extension. For example, if g is a simple
Lie algebra, its loop Lie algebra

g((1)) = colimlim ¢ ~'g{t] /¢

can naturally be viewed as an object in 1-Tatey,C. The adjoint representa-
tion can be promoted to a Lie algebra embedding

ad : g((t)) = € := End 1 Tatey, ¢ (9((£)) Lie

(on the left-hand side view g((t)) as a plain Lie algebra and not as a 1-
Tate object). The pullback of ¢pe1 € Hf: (€, k) along ad is the Kac-Moody
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cocycle. This mechanism defines a higher Lie cohomology class also for higher
loop Lie algebras g((t1)) --- ((tn)), [28], [11].

Example 18. The classical residue for a rational 1-form on a curve can
be obtained as follows: Let X/k be a smooth integral curve and z € X a
closed point. Then the field of fractions of the completed local ring at x has
a canonical structure as a 1-Tate object in C := Vect;: To see this, observe
that

OXJ = @1 OX,SC/m?X,x
7

is a Pro-object of finite-dimensional k-vector spaces. The field of fractions
K Cx,z := Frac (’)Xa; can be written as the colimit over all finitely generated
@) Ox z-submodules of K x,z- Combining both presentations allows us to view
ICXJ; € 1-Tatey,C. Of course, this is only a special case of the Parshin-
Beilinson adeles, see §2. The Hochschild functional of Theorem 21 supplies
us with a canonical map

o HH, (Endl-TateROC (EX,I)) — k.

Since the multiplication map z +— « - z for any a € K X,z defines an endo-
morphism of this 1-Tate object, there is a canonical ring map from the
rational function field &k (X) (or Kx ) to the above endomorphism algebra.
Composing them, we get

HH(k (X)) — k

and the Hochschild-Kostant-Rosenberg isomorphism identifies the left-hand
side with Q}C X)/k° This map turns out to be the residue. This is the Hochs-
child analogue of Tate’s construction of the residue. See [12] for details.

Note that Beilinson’s paper [4] would have used Beilinson’s cubically
decomposed algebra, see Theorem 9, instead of using a Tate category. How-
ever, by our Theorem 5 these are isomorphic. Alternatively, one could also
use Yekutieli’s cubically decomposed algebra, see [56].

Remark 22. The structures produced by Theorem 21 can be viewed as
“linearizations” of a more involved non-linear extension on the level of
groups, resp. algebraic K-theory. See [13] for the non-linear version. For
K-groups in low degrees, notably K; and Ks, this has been pioneered by
[38] and [1]. See [48] for the analogue in topological K-theory.
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10. Applications to adeles of schemes

We refer to [17, §7.2] for a detailed treatment of the relation between Parshin-
Beilinson adeles and n-Tate objects. Let Ab (resp. Abs) be the category
of all (resp. finite) abelian groups. Suppose X is a scheme, finite type of
pure Krull dimension n over Spec R for R some Noetherian commutative
ring. Moreover, let F be a quasi-coherent sheaf on X and we fix a subset
A C S (X), of the flags of scheme points.

The treatment of [17, §7.2] views adeles as an elementary n-Tate object
in coherent sheaves of X with zero-dimensional support, i.e. with a slight
abuse of language, we could say

A(A, F) € n-Tate®(CohpX) .

This gives an exact functor QCoh (X) — n-Tate®(CohgX), F s A(A, F).
Of course, one might wish to distinguish between A(A, Ox) as an n-Tate ob-
ject of coherent sheaves, or as the Ox-module sheaf one obtains by carrying
out the respective limits and colimits in the bi-complete category of Ox-
module sheaves A(A, F) € Mod(Oyx). However, this distinction will always
be clear from the context.

Remark 23. The category of quasi-coherent O x-module sheaves QCoh (X)
is also bi-complete, but carrying out the limits in this category instead would
not form an exact functor n-Tate®(CohygX) — QCoh (X), and furthermore
the resulting objects do not appear to be particularly interesting. In fact,
in QCoh (X) even taking countable infinite products [[, is not an exact
functor.

However, if R =k is a field, we may alternatively take global sections,

CohgX L>Vectf, and view the adeles as an n-Tate object in finite-
dimensional k-vector spaces,

A(A, F) € n-Tate®(Vecty) .

For applications in number theory it is interesting to look at schemes of
finite type over Spec Z. Then the global section functor allows to formulate
the adeles as an n-Tate object in finite abelian groups, that is

A(A, F) € n-Tate®(Aby) .

All these variations of the adeles provide a rich source of examples of higher
Tate objects. We shall show:
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Theorem 22. Let k be a field and X/k a reduced finite type scheme of pure
dimension n. For any quasi-coherent sheaf F and subset A C S (X), the
Beilinson-Parshin adéles A(AN,F), viewed as an elementary n-Tate object
in finite-dimensional k-vector spaces, i.e. so that

A(N, F) € n-Tate® (Vecty),
is n-sliced (cf. Definition 13). In particular,
EJat .= End (A(A, Ox))
carries the structure of an n-fold cubical Beilinson algebra (cf. Definition 1).

The claim of this theorem fails if we instead view the adeles as n-Tate
objects over Cohg (X) or Aby. These variations are usually not n-sliced. We
defer the proof and begin with some negative examples:

Example 19. Suppose X := SpecZ[t]. We shall only consider singleton
flags A = {(no > m > n2)}, defining objects in the category 2-Tate®(Aby).
We shall look at some examples modelled after 2-local fields of mixed char-
acteristics (0,0, p) and (0, p, p).

1) A((0) > (t) > (p,t), Ox) evaluates to what could be called Q,((?)).
The objects t"Q,[[t] for n € Z are lattices and the relative quotients

(10.1) 2O qoem-n

" Qp[t]]

for m > n lie in 1-Tate?’(Ab;). Here the sub-objects piz,?(”‘m) are
examples of lattices, with respective quotients ~ (Z/p’Z)®"~™ € Ab i
We have

(10.2) LN (X, X)+ 1 (X,X)=End(X)

for i = 1 by the presence of the splitting Q,((¢)) — Q,[[t]] which chops
off the principal part of the Laurent series. On the other hand, for
i = 2 Equation 10.2 fails. It suffices to apply Example 7 to the lattice
quotients appearing in Equation 10.1.

2) A((0) > (p) > (p,t),Ox) evaluates to something interesting. It is de-
noted by Q,{{t}} in [27], and can be described explicitly as doubly
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infinite Q-valued sequences with boundedness conditions, namely

+0o0
Qy{{t}} = { Z a;it'|IC € R:a; € Qp, |ai|p < C’i—ljr—noo |ai|p -0 } .

It carries the structure of a 2-local field. The objects L,, := p" A((p) >
(p,t),O0x) for n € Z, which identify with

+oo
Ln = { Z aiti

1=—00

a; € Qp: ‘ai|p S p_nviljirloo |ai|p =0 } )

are lattices and the relative quotients

pnA((p) > (pa t)7OX)
pmA((p) > (pat)7OX)

~(2/p""Z)((1))

for m > n lie in 1—Tateel(Abf). Here we are in the opposite situa-
tion. Equation 10.2 holds for ¢ = 2, but fails for ¢ = 1. The argument
of Example 7 can be adapted to show the latter. For this note that

Q,{{t}}/Ly is a p-primary torsion group.

See for example [27, Ch. I] or [42] for a further discussion of higher local
fields. These sources also explain the construction of F'{{t}} for F' a general
complete discrete valuation field. We leave it to the reader to formulate its
Tate object structure in general. All these higher local fields arise as special
cases of adeles of suitably chosen singleton flags.

Example 20. Suppose X := Spec k[t] and we view its adeles as an elemen-
tary 1-Tate object in 1-Tate®(CohgX). We show that it cannot be sliced.
For simplicitly, let us look at A = {(0) > (¢)} and A" = {(¢)}. Then

AN, Ox) = A(D,Ox) — AN, Ox) /AL, Ox)
is a short exact sequence. Roughly speaking, it identifies with
RIIH] <> k((5)) — k(1)K
The Ind-object k((t))/k[[t]] = ohg%k[[t]]/k[[t]] is t-torsion. In particular, if

i
there was a section to k((t)), the latter would have to possess non-trivial ¢-
torsion elements. This is a contradiction. Quite differently, in 1-Tate® (Vect )
a section exists.
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Proof of Theorem 22. This is not very difficult because we can produce the
required idempotents explicitly. For the sake of simplicity let us write 7’
to denote the i-th ideal power of the ideal sheaf of the reduced closed sub-
scheme m for a given scheme point n € X. Moreover, let us write “O < f *1>”
to denote coherent sub-sheaves of Ox ,, indexed by f, so that the quasi-
coherent sheaf Ox , is presented as the Ox-module colimit over them, i.e.
as depicted on the left below:

: - 1 1
Ox,y=colimO(f™h).  Rp = colim FRCR M
fén f¢p

(This notation is supposed to be suggestive of the corresponding presenta-
tion if R is a ring and P € Spec R a prime ideal, as depicted above on the
right). We unwind the formation of adeles directly from the definition; but
recall that by the limits and colimits we really mean the respective diagrams
of n-Tate objects and do not refer to carrying out actual limits in the cate-
gories themselves, see [17, §7.2] for details on how this can be implemented
explicitly. We arrive at

A<A7OX) = H @A <7]0A I %)
My’

No€X io
1
- Mmoo (0, 250)

noeX 1o fog’ﬂu 770
O 71
= H HHCOIIQ} H ILI'HA (mnoA? <J:O > ® O)ilm>

0
mEX 4, foéno meX 4, "o Ox T

O -1 O —1
- I sty T st (. 280 o O

mEX 4, fogno meX figm "o G
—_——

Tate®!

=TI limcolimy [T limeoliny [T limeoliny (---)

moeX o fodno meX i figm meX iz fodne

Tate®! Tate®!
and so forth. ..,

where we only run through those nyg,...,n, such that ng >--- >n, € A.
The underbraces emphasize which parts of this expression are to be read as
limits or colimits respectively, and how to group them to form Tate diagrams.
We need to justify why the left-most limits, left of the initial underbrace,
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exist: Since our scheme is of finite type and 7 runs through the irreducible
components of X, the product over the 7 is finite. Similarly, the ideal sheaf
of each respective irreducible component is necessarily nilpotent so that for
each 7o the limit over iy is over an essentially finite diagram. Unwinding
this further presents the adele object as an elementary n-Tate object (in the
sketch above only the first two outer-most Tate category iterations is visible).
Our claim is proven if we can exhibit pairwise commuting idempotents Pj+,
j=1,...,n, projecting this object onto the respective lattice, indexed by
fj—1 = 1. This reduces to constructing sections

_ —1 _
Ol ®---O<Tf“>...® O (fatr)
o’ ;1 nr
Lot o Ox Ol
o 77?:11 -1

in the category of finite-dimensional k-vector spaces (since once these ex-
ist, they define straight morphisms between the respective Tate diagrams
and therefore the desired idempotents in the category of n-Tate objects).
However, the latter is obvious since the category of vector spaces is split
exact. U

Of course Theorem 22 provokes a question:
Egeil — Ezate ?

Beilinson had already shown, see Theorem 9, that for flags A = {(no > --- >
Nn)} in a scheme X a cubical algebra ER¢!l can be formed from his notion
of lattices. Its definition hinges crucially on geometric data of X simply
because the underlying notion of lattice depends on X. On the other hand,
we have just seen that Ezate is also a cubical algebra. It comes with its
own notion of lattices, which now only depends on the structure as a Tate
object. One can show that these two types of lattices are different, albeit
very closely related to each other. We refer to [16, §5] for an explicit example
illustrating this discrepancy.
However, the answer to our question is still affirmative:

Theorem 23. Let k be a field. Suppose X/k is a reduced scheme of pure
dimension n, and view the Beilinson-Parshin adéles A(A,Ox), for
A ={(no> -+ >ny)} with codimx {n;} =1, as an n-Tate object in finite-
dimensional k-vector spaces. Then there is a canonical isomorphism of
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Beilinson cubical algebras
Egeil ~ Ezate_

We shall split the proof into several lemmata. For notational clarity, let
us temporarily introduce the following distinction:

Definition 17. Suppose M is a finitely generated O,,-module and A =
{(no >+ >mn)} aflag, A== {(m > >na)}.

1) A Beilinson lattice is a lattice in the sense of Definition 5, i.e. a finitely
generated O, -module L C M such that O, - L = M.

2) A Tate lattice is a lattice in the sense of Tate objects, i.e. a sub-object
of the n-Tate object Ma := A(A, M) which is a Pro-object with an
Ind-quotient.

Lemma 24. For A ={(ng>--->mn,)} and M a finitely generated O,, -
module,

1) Mp is an elementary n-Tate object and

2) for every Beilinson lattice L C M we have that Lar — Ma is a Tate
lattice,

3) for every Tate lattice T' there exist Beilinson lattices Ly C Lo such that
Lip €T C Lop.
Proof. (1) The statement about Ma = A(ng > - -+ > 1y, M) is clear from the

discussion opening the section, i.e. essentially nothing but [17, §7.2].

(2) Unwinding Equation 10.4 for Lar = A(my > -+ > n,, L), we see that L
is one of the Tate lattices in the outer-most colimit so that we clearly have,
just by unwinding definitions, a canonical morphism

LA/ — MA
AN L) — AL, M)

: : . Ly o : o Ly
Lgncoh e cohgl&nL—, — cohmgncohm- o coth{inL—/7
Ly L, L, L, n Ly L, L L, L, n

J/

(n—1)-Tate object (n—1)-Tate object

where on the left-hand side we have replaced the colimit over L; by the
single value for Ly := L the lattice at hand. This is visibly a Pro-object with
an Ind-quotient, thus a Tate lattice.
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(3) Let T Ma be a Tate lattice. Since we may write Ma as Ma =
colimp La/ (by definition), i.e. as an Ind-diagram over Pro-objects, where L
runs through all Beilinson lattices, the Pro-subobject T' must factor through
one of these La:. If Ls denotes one such index, i.e. the underlying Beilin-
son lattice, this means that T" < Loa/. The other direction is a little more
complicated: Let L be any Beilinson lattice. Then the composition

LA/ — MA — MA/T

is a morphism from a Pro-object to an Ind-object. Thus, it must factor
through an (n — 1)-Tate object C, i.e.

(10.3) La — P < MA)T

(Proof: Since Pro-objects are left filtering in Tate objects by [17, Prop. 5.8],
the composed arrow La — Ma /T factors as Lnr — P < Ma /T, with P a
Pro-object. But Ma /T is an Ind-object, so P must be an Ind-object, too.
By [17, Prop. 5.9] it follows that P is an (n — 1)-Tate object). The object
L/ can be presented as the Pro-diagram

L— (L/LI)A/ = LA’/L/AH

where L’ C L runs through all Beilinson sub-lattices, partially ordered by
inclusion. The quotients (L/L'), are (n — 1)-Tate objects, and since these
are right filtering in Pro-objects over them, [17, Theorem 4.2 (2)], it follows
that the arrow LA, — P factors through the projection to an object in the
Pro-diagram

LA/ — (L/L/)Ax — P

for a suitable L’ C L. Thus, returning to Equation 10.3 the composition
L'ns = Lpar — MpJT
is zero. Thus, L'y, < T follows from the universal property of kernels. [

Remark 25. The apparent asymmetry in the complexity of proving the
existence of Ly resp. Lo in Lias CT C Loa: is caused by the fact that we
view Tate objects as a sub-category of Ind*Pro®(C). This is the place where
this kind of asymmetry is built in.

Next, we observe that one can present the limits and colimits underlying
the adeles in a particularly convenient format:
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Lemma 26. Suppose we are in the situation of the theorem.

e Then for any j = 1,...,n the following describes the same object:

L.
colimyer . .colim@A (773‘+1 > >y, Ij)

L, Ly L; L, J

where all the Lg TUN mcreasmgly through all ﬁmtely genemted Oy, -
submodules of Le o " C Ly run de-

creasingly through all ﬁmtely generated Onl-submodules of Ly having
full rank.

e This statement holds true irrespective of whether we carry out the lim-
its and colimits in the category of all k-vector spaces, or interpret it as
an elementary j-Tate object with values in an elementary (n — j)-Tate
object of finite-dimensional k-vector spaces.

Proof. The immediate evaluation of A(ng > --- > n,, Ox) straight from the
definition unravels easily to become the case j = 1 in the statement. Induc-
tively, one can transform the expression into its counterpart for 7 + 1. For
details, cf. [16, Lemma 4.8]. This procedure works with both interpretations,
verbatim. O

We may read this lemma as a kind of induction step. For its final step,
7 =n, we arrive at

(10.4) Ao > -+ >y, O0x) = olimlim - - cothL, ,
Ll L/1 n

presenting the adele object on the left-hand side entirely in terms of Beilin-
son lattices. This presentation bridges from the definition of the adeles in
Beilinson’s original paper [4] (or [36], [54], [37] for secondary sources) to the
ideals in Beilinson’s cubical algebra structure as given in Definition 1:

Lemma/21 We keep the assumptions as in the theorem. Below, the ‘roof
symbol’ (- -+ ) will denote omission:

1) Suppose My, My are finitely generated Oy, -modules. Then a k-linear
map [ € Homy(Myn, Maop) lies in Homa (My, Ms) if and only if it
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stems from a compatible system of k-linear morphisms

L, _N,
JE— _> —
L, Ny

with L), C Ly, (in My) and N}, C N,, (in Ms) suitable Beilinson lat-
tices, inducing a morphism in the limit/colimit

[ Mipn — Mo

L,
colig@n- . -colir%nhén o — cohrth oh #
L, L, L, N

Ll 1 n N

2) We remain in the situation of (1). We have f € I, (My, Ms) if and
only if f factors as

colimlim - - - th — colimlim - - (ﬁ?n coth
L, L} L,

N Ny N; N, N/

i.e. instead of the colimit over all N; we can take a fixed N; (depending
on Ni,Ni,...,Ni_1,N;_y). We have f € I, (M, My) if and only if f
factors as

coth L cohn_gL — C_I_HEL m%%xz ’

L;

i.e. instead of the limit over all L; we can take a fized L; (depending
onLl,L'l,... i— 1,L, 1)

Proof. This follows rather directly from the definition. Firstly, unravel
A(no > -+ > nn, Ox) in terms of iterated limits and colimits of lattices as
in Equation 10.4. But then ideal membership for IijE is exactly the property
to factor through a Beilinson lattice of the target, resp. a Beilinson lattice
of the source. g

Proof of Thm. 23. For the sake of clarity, we shall denote a Beilinson lattice
by the letter £ in this proof, and Tate lattices by the letter L. We know
that every Beilinson lattice gives rise to a Tate lattice, Lemma 24, and
conversely by the same Lemma every possible Tate lattice L is sandwiched
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as Lia € L C Loa between Beilinson lattices £1, £5. We now claim that
(10.5) ERel o pote

holds as sets. This is seen as follows: Given a k-linear map f € EX¢l the defi-
nition of the subgroup Homa (Oy,, Oy,) € End;(Oxa,Oxa) in Definition 6
guarantees that there exist factorizations

Fi(Lr/LY)nr — (Lo/La)n

over suitable Beilinson lattices L1, L], L), L2. By the exactness of the adele
functor (—)as, this is nothing but f: Lia//Linr — LA, /Lo Hence, we
get a (straight) morphism of the explicit Tate diagrams arising from the pre-
sentation of Equation 10.4. In particular, this datum induces a morphism
of n-Tate objects. Conversely, any morphism of n-Tate objects can be fac-
tored over lattice quotients in the desired shape by Lemma 15. This proves
Equation 10.5 as an equality of sets because both maps are inverse to each
other. However, it is easy to check that these maps are in fact group ho-
momorphisms and also respect composition, so we get an isomorphism of
associative algebras. Lemma 27 then establishes the equality of ideals Iii:
Just unravel the ideal membership conditions and use that all Beilinson
lattices give rise to Tate lattices, and conversely we have the sandwiching
property. O
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