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On the (non)existence of symplectic

resolutions of linear quotients

Gwyn Bellamy and Travis Schedler

We study the existence of symplectic resolutions of quotient singu-
larities V/G, where V is a symplectic vector space and G acts sym-
plectically. Namely, we classify the symplectically irreducible and
imprimitive groups, excluding those of the formK � S2 whereK <
SL2(C), for which the corresponding quotient singularity admits a
projective symplectic resolution. As a consequence, for dimV �= 4,
we classify all symplectically irreducible quotient singularities V/G
admitting a projective symplectic resolution, except for at most
four explicit singularities, that occur in dimensions at most 10, for
which the question of existence remains open.

1. Introduction

Symplectic quotient singularities have been intensively studied over the past
decade, due to their rich geometric structures, as illustrated by the symplec-
tic McKay correspondence [5], and their key role in the geometric repre-
sentation theory of symplectic reflection algebras. One of the key questions
regarding the geometry of symplectic quotient singularities is whether there
exist symplectic resolutions of the singularity. In this paper, we classify all
irreducible quotient singularities of dimension not equal to four which ad-
mit a projective symplectic resolution, excluding four exceptional cases. The
main step is to prove that, in dimension four, a large class of singularities
do not admit a resolution.

More precisely, we classify all symplectically imprimitive and irreducible
symplectic reflection groups (excluding the groups K � S2 < Sp4(C) where
K < SL2(C)) whose corresponding quotient singularity admits a projective
symplectic resolution. This is an important step in an ongoing program to
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completely classify all finite subgroups G of Sp(V ) such that V/G admits a
symplectic resolution.

In order to state our main result we introduce some notation. Let (V, ω)
be a symplectic vector space and G ⊂ Sp(V ) a finite group. We are interested
in the singularities of the quotient V/G. In particular, the quotient V/G is
said to admit a (projective) symplectic resolution if there exists a (projec-
tive) resolution of singularities π : X → V/G such that X is a symplectic
manifold; see section 4.2 for the precise definition.

The number of known examples of such symplectic quotient singularities
admitting symplectic resolutions is remarkably small: they are only products
of the following singularities:

• The infinite series C2n/(K � Sn), where K is a finite subgroup of
SL2(C) (here and below, K � Sn := Kn � Sn), and

• Two exceptional quotients C4/G: the exceptional complex reflection
group G4 < GL2(C) < Sp4(C) [2, 15], and the group Q8 ×Z/2 D8 <
Sp4(C) [3].

We will assume throughout that V is a symplectically irreducible represen-
tation of G, i.e., that V does not admit a proper nonzero symplectic vector
subspace invariant under G. As we will recall, all quotients that admit a
symplectic resolution are products of singularities V/G of this form.

As a consequence of our main result we prove:

Theorem 1.1. Let (V,G) be symplectically irreducible. If V/G admits a
projective symplectic resolution and dimV �= 4 then (V,G) � (C2n,K � Sn)
for K < SL2(C), unless possibly (V,G) is one of four examples.

The four examples referred to above, whose corresponding reflection rep-
resentation V has dimension at most 10, will be clarified below, and in these
cases we do not resolve the question of whether V/G admits a projective
symplectic resolution.

To state our main theorem, we introduce some more definitions. Recall
that an element g ∈ G is said to be a symplectic reflection if rk(1− g) = 2.
The group G (or rather the triple (V, ω,G)) is said to be a symplectic reflec-
tion group if G is generated by the symplectic reflections that it contains. By
[18], if V/G admits a projective symplectic resolution, then G is a symplectic
reflection group.

If V were not symplectically irreducible, then V would decompose as
V = V1 ⊕ V2 where Vi are symplectic representations of G. When G is a sym-
plectic reflection group as above, then G must decompose as G = G1 ×G2
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where Gi < Sp(Vi) is generated by symplectic reflections in Sp(Vi); hence
V/G = V1/G1 × V2/G2. Therefore the classification of quotients V/G ad-
mitting symplectic resolutions reduces to the case where V is symplectically
irreducible.

A symplectic representation V of G is said to be symplectically imprim-
itive if there exists a nontrivial decomposition V = V1 ⊕ · · · ⊕ Vk into sym-
plectic subspaces such that, for all i and all g ∈ G, there exists j such that
g(Vi) = Vj . We call a group G < Sp(V ) symplectically irreducible, resp. sym-
plectically imprimitive, if V is such as a representation of G.

As above, let K be a finite subgroup of SL2(C) (the classification of
such groups is well known; see §3 below). The wreath product K � Sn acts
as a symplectic reflection group on C2n. By [7, Theorem 2.2 and 2.9], the
symplectically imprimitive and irreducible symplectic reflection groups are
all realized as subgroups (normal when n > 2) of K � Sn, for suitable K
and n.

When n = 2, we will exclude the subgroups K � S2 < (K ×K)� S2,
where K ↪→ (K ×K) is given by k 	→ (k, α(k)) for some involution α : K →
K. Our main result reads:

Theorem 1.2. Let G < Sp2n(C) be symplectically imprimitive and irre-
ducible. Assume that either n > 2 or that G is not of the form K � S2 as
above with K < SL2(C). Then the symplectic quotient C2n/G admits a pro-
jective symplectic resolution if and only if G is isomorphic to either K � Sn

or Q8 ×Z/2 D8, which is the group from [3] (for which n = 2).

In more detail, by [7, Theorem 2.2 and 2.9], the symplectically imprim-
itive and irreducible symplectic reflection groups G < Sp2n(C) are, up to
conjugation, all of the form:

• For n = 2, the group G = G(K,H,α), where H < K is a normal sub-
group, α is an involution of K/H, and G(K,H,α) < K � S2 is the sub-
group generated by S2, H

2, and the cosets (kH, α(kH)) < K2/H2 for
all k ∈ K;

• For n ≥ 3, the group G = Gn(K,H), where H < K is a subgroup con-
taining the commutator subgroup [K,K], and Gn(K,H) < K � Sn is
generated by Sn, H

n, and the cosets (k1H, . . . , knH) < Kn/Hn for all
k1, . . . , kn ∈ K such that k1 · · · kn ∈ H.

Using results of Kaledin, we will reduce the theorem to the case n = 2,
together with the single case G3(D2,C2). The condition that G(K,H,α) is
not the group K � S2 is precisely saying that H is nontrivial. Therefore the
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main step of the proof is to show that the groups G := G(K,H,α) do not
admit projective symplectic resolutions when H �= {1}. Let YH denote the
minimal resolution of C2/H. The key to proving Theorem 1.2 is to study
the action of the quotient G/H2 on YH × YH . In particular, we show that
the symplectic variety (YH × YH)/(G/H2) does not, in general, admit a
projective symplectic resolution.

1.1.

The existence of projective symplectic resolutions of the quotient singularity
V/G is known to be equivalent to the existence of a smooth Poisson deforma-
tion of V/G; that is, a flat, affine Poisson deformation of V/G whose generic
fibre is a smooth Poisson variety. Let Hc(G) be the symplectic reflection al-
gebra at t = 0 associated to G as defined in [9]. The centre of this algebra is
denoted Zc(G). When the parameter c is zero, Zc(G) is the coordinate ring
of V/G. It is known, by [11], that Zc(G) defines a flat Poisson deformation
of V/G. As noted in [3, Theorem 1.2.1], results of Ginzburg-Kaledin and
Namikawa imply that:

Corollary 1.3. Let G be a symplectically imprimitive symplectic reflection
group obeying the assumption of Theorem 1.2. Then the variety Spec Zc(G)
is singular for all parameters c unless G is isomorphic to K � Sn or Q8 ×Z/2

D8.

Usually one uses the representation theory of symplectic reflection alge-
bras to show that the variety Spec Zc(G) is singular for all parameters and
hence deduce that the corresponding symplectic quotient singularity does
not admit a projective symplectic resolution. We have taken the opposite
approach in this paper.

1.2.

The paper is structured as follows. In section two we recall the definition
of symplectic variety and symplectic resolutions. Using work of Namikawa
and Kaledin we give two general criteria for the non-existence of projective
symplectic resolutions of V/G. In section three, in order to fix notation,
we recall the Kleinian groups. Cohen’s classification of symplectic reflection
groups is recalled in section four.

In section five we consider more specific criteria that can be used to
prove the non-existence of projective symplectic resolutions of V/G when
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G is symplectically imprimitive and V = C4. Then, in section six, we work
through the list of such groups, showing case-by-case that they do not posses
projective symplectic resolutions. In section seven, we deduce the main result
for dimV ≥ 6 from these cases and one additional case, in Lemma 7.1. In
section eight, we summarize the resulting proof of Theorem 1.2, and deduce
Theorem 1.1 from this. Finally, in section nine, we list some open questions
(“exercises for the interested reader”).

2. Symplectic varieties and symplectic resolutions

2.1.

In this section we recall the definition of a symplectic variety and of symplec-
tic resolutions. We give some criteria for the (non-)existence of projective
symplectic resolutions. The definition of symplectic variety was introduced
by Beauville in the seminal paper [1].

Definition 2.1. Let X be an affine variety. Then X is said to be a sym-
plectic variety if

1) X is normal.

2) There exists a symplectic form ω on the smooth locus Xsm of X.

3) There exists a resolution of singularities π : Y → X such that π∗ω
extends to a regular 2-form on Y .

One says that X admits a symplectic resolution if there is a resolution of
singularities π : Y → X such that π∗ω extends to a non-degenerate 2-form
on Y .

2.2. Conic symplectic varieties

Let X be an affine symplectic variety. Then X is said to be equipped with
a good C×-action if there is an algebraic action of C× on X such that

1) The weights of C× on X are positive and there exists a unique fixed
point 0 ∈ X.

2) The symplectic form ω has positive weight l > 0.

Let X and Y be normal, quasi-projective varieties over C and ΩX , resp.
ΩY the corresponding canonical sheaves. A morphism π : Y → X is said to
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be crepant if π∗ΩX � ΩY . If X is a symplectic variety, Y a smooth variety
and π : Y → X a crepant, proper birational morphism, then π is a symplectic
resolution. The composition of two crepant morphisms is again crepant. The
following is a direct consequence of the results of [17].

Theorem 2.2. Let X be an affine symplectic variety equipped with a good
C×-action. Let π : Y → X be a crepant, projective, birational morphism and
let U ⊂ Y be an affine open subset. If X admits a projective symplectic
resolution then U admits a projective symplectic resolution.

Proof. Assume that X admits a projective symplectic resolution. Since X is
equipped with a good C×-action, the proof of [17, Theorem 5.5] shows that
every crepant, projective, birational morphism π0 : Z0 → X from a space Z0

having at worst Q-factorial terminal singularities is necessarily a symplectic
resolution. By [6], the minimal model program implies that there exists
some crepant, projective, birational morphism ρ : Z → Y such that Z has
only Q-factorial terminal singularities. Therefore π ◦ ρ : Z → X must be a
projective symplectic resolution, by the first observation. In particular, Z is
a symplectic manifold. The restriction ρ|ρ−1(U) : ρ

−1(U) → U is a resolution
of singularities. Since ρ−1(U) is a symplectic manifold, [10, Proposition 1.6]
implies that ρ|ρ−1(U) is a projective symplectic resolution of U . �

2.3.

The case that will be of interest to us is the following. Let (V, ω,G) be
a symplectic reflection group acting on a symplectic vector space V and
assume that we are given a normal subgroup H of G such that

• H acts on V as a symplectic reflection group.

• There exists a projective symplectic resolution π : X → V/H.

• The action of Q := G/H lifts to an action on X making π a G/H-
equivariant morphism.

To each x ∈ X, we associate the pair (Qx, TxX), where Qx is the stabilizer
of x in Q and TxX is the tangent space of X at x. Note that TxX is a
symplectic representation of Qx. This representation is faithful. To see this
we note that the fact that π is equivariant implies that Q acts freely on
some dense open subset of X. On the other hand, if there is some g ∈ Qx

acting trivially on TxX, then this implies that dimFixX(g) = dimX and
hence g = 1.
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Proposition 2.3. If the quotient V/G admits a projective symplectic reso-
lution then TxX/Qx admits a projective symplectic resolution for all x ∈ X.

Proof. Let C× act on V with weight one. This action commutes with the
action of G and the symplectic form ω has weight 2 with respect to this
action. Therefore, it descends to a good C×-action on V/G. Hence, as in
Theorem 2.2, we may choose some crepant projective morphism ρ : Y →
X/Q such that Y has at worst Q-factorial, terminal singularities. As shown
there, the fact that there exists some projective symplectic resolution of V/G
implies that Y is smooth. Choose x ∈ X and let x̄ denote its image in X/Q.
Write Ŷx for the completion of Y along the closed sub-scheme ρ−1(x̄). The

completion of X/Q at x̄ is isomorphic to the quotient of the completion T̂xX

by Qx. Then ρ induces a projective morphism ρ̂ : Ŷx → T̂xX/Qx. Since Ŷx is
smooth with trivial canonical bundle, ρ̂ is a projective smooth formal crepant
resolution in the sense of [14, §1]. Therefore [14, Theorem 1.4] implies that
TxX/Qx admits a projective symplectic resolution. �

3. The Kleinian groups

3.1.

Let H = R⊕Ri⊕Rj⊕Rk be the skew-field of quaternions. In order to fix
notation, we remark that the finite subgroups of GL(H1) up to isomorphism
are the cyclic group Cm = 〈ζ | ζm = 1〉, of order m, the binary dihedral
group Dm = 〈C2m,k〉, of order 4m and the three exceptional groups T =
〈D2,ω〉 of order 24, where ω = 1

2(1− i+ j+ k), O = 〈T, 1√
2
(1 + i)〉 of order

48 and

I = 〈D2,
1

2
(ρ+ σi− j)〉, of order 120,

where ρ = 2 cos
(π
5

)
and σ = 2 cos

(
3π

5

)
.

3.2. Complexification

We consider C ⊆ H to be the subfield C = R⊕R · i. Given a finite sub-
group G of GL(Hn), a choice of complex structure on H realizes G as a
subgroup of GL(C2n) (we consider matrices acting on the right of Hn).
The standard choice of complex structure, as used in [7] is H = C⊕Cj.
However, in order to use the results of [13], we choose the complexification
H = C⊕Ck. The procedure G ⊂ GL(Hn) goes to G∨ ⊂ GL(C2n) is called
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complexification. Noting that ε := e
2πi

8 = 1+i√
2
, complexification is uniquely

defined by

i =

(
i 0
0 −i

)
, j =

(
0 −i
−i 0

)
, k =

(
0 1
−1 0

)
.

The complexification map defines an embedding GL(Hn) ↪→ Sp(C2n), where
H is viewed as a two-dimensional symplectic complex vector space with
the form 〈1,k〉 = 1. As explained in [7, §1], this induces an equivalence
between finite subgroups of GL(Hn), up to conjugation, and finite subgroups
of Sp(C2n), up to conjugation.

This explicitly realizes all the finite subgroups of GL(H) above as sub-
groups of Sp2(C) = SL2(C). Moreover, this explicitly realizes the subgroups
of [7] as subgroups of Sp2n(C), since they are described there in terms finite
subgroups of GL(Hn).

4. Cohen’s classification of symplectic reflection groups

4.1.

The irreducible symplectic reflection groups were first classified by A. Co-
hen in [7]. We recall here the the outline of his classification. His results
are stated in terms of quaternionic reflection groups, but, as explained in
section 3, the results of [7, §1] show that there is a bijective correspondence
between quaternionic and symplectic reflection groups preserving symplectic
imprimitivity and symplectic irreducibility.

A symplectic reflection group G < Sp(V ) is said to be improper if it
preserves a Lagrangian subspace L ⊆ V , so that G < GL(L) is a complex
reflection group and V � L⊕ L∗ as a G-module (otherwise, we say that G
is proper). Complex reflection groups were classified by Chevalley, Shephard,
and Todd, and for these groups our main results are immediate consequences
of [2]. Thus from now on we assume G is proper.

We further say that a symplectic reflection group is complex imprimitive
if it is imprimitive considered as a subgroup of GL(C2n), i.e., if there exists a
decomposition C2n = V1 ⊕ · · · ⊕ Vk into complex subspaces such that, for all
g ∈ G and all i, there exists j such that g(Vi) = Vj . There exist symplecti-
cally primitive symplectic reflection groups which are, nonetheless, complex
imprimitive. Therefore there are three natural classes to consider (assuming,
without loss of generality that G is symplectically irreducible and proper):
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1) The symplectically imprimitive symplectic reflection groups. These are
the groups that we will consider in this paper. By [7, Theorem 2.2],
such subgroups of Sp4(C) are of the form G(K,H,α) as defined in the
introduction, and by [7, Theorem 2.6], they must be listed in Tables 1
and 2. By [7, Theorem 2.9], such subgroups of Sp2n(C) for n > 2 are
of the form Gn(K,H), as defined in the introduction. Conversely, all
of these groups are symplectically imprimitive (and irreducible) sym-
plectic reflection groups.

2) The symplectically primitive symplectic reflection groups which are
complex imprimitive. These all lie in Sp4(C) and are classified in [7,
Lemma 3.3]. The fact that those listed are all such groups follows from
[7, Theorem 3.6].

3) The complex primitive symplectic reflection groups. In this case, [7,
Theorem 4.2] say that the groups in this case are precisely those listed
in [7, Table III]. Thus there are only thirteen such groups and they
occur in dimension at most ten.

It is interesting to note that the three exceptional groups P1, P2, and P3

that occur in (3) above are all extensions of some group by the symplectic
reflection group Q8 ×Z/2 D8 studied in [3].

4.2. Symplectically imprimitive groups

We denote by K a finite subgroup of SL2(C) and H a normal subgroup
of K. The Kleinian singularity C2/H is denoted XH and the corresponding
minimal resolution is π : YH → XH .

We let α be an involution of Γ := K/H. We choose coordinates on C2

so that the ring of polynomial functions on C2 is C[x, y]. We also endow C2

with the standard symplectic form so that {x, y} = 1, where {−,−} is the
corresponding Poisson bracket. Associated to H,K,α is the symplectically
imprimitive and irreducible group G := G(K,H,α), acting on C4 = C2 ×
C2. The explicit description of G as a subgroup of K � S2 was given in the
introduction. In §4 below, we recall the action of G and K � S2 on C4.

Recall also that the pair (id, α) defines an embedding of K into K2.
This induces an embedding K/H into (K/H)2. Since α has order at most
2, S2 preserves the image of this map and we may form a twisted semi-
direct product (K/H)�α S2. Then G/H2 � (K/H)�α S2. The involutions
in (K/H)�α S2 are all given by {(x, α(x)) | x2 = 1} ∪ {(x, α(x)) · s12 |
xα(x) = 1}. The group G/H2 is denoted Q.



1546 G. Bellamy and T. Schedler

If T is a group, ρ a representation of T and g an automorphism of T then
the twist of ρ by g is denoted gρ. As a vector space, gρ = ρ and t ·m := g(t)m
for t ∈ T and m ∈ gρ.

4.3.

We continue to take G = G(K,H,α). Let s12 ∈ S2 < G < K � S2 be the
transposition. Following [7, §2], let Lα := {x ∈ K | xα(x) ∈ H}. As observed
in [7], the symplectic reflections in G are the elements of H × {1}, {1} ×H,
and {(x, x−1)s12 | x ∈ Lα}.

Lemma 4.1. The subgroup H � S2 is normal in G if and only if α = 1, and
the subgroup H2 is always normal in G.

Proof. By considering k = (x, y) · s12 acting by conjugation on H2 · s12,
where (x, y) ∈ K2 satisfies y ∈ α(xH), we see that H � S2 is normal in G
if and only if xHy−1 = H for all x ∈ K and y ∈ α(xH). But this is the same
as saying that α = 1 on the quotient. The second statement is clear. �

4.4.

A complete list of groups G(K,H,α) (up to isomorphism) is given in Ta-
ble 1. In Table 1 the automorphism αr ∈ Aut(Dm) is defined by αr(u) =
ur;αr(v) = v, where Dm = 〈u, v | um = v2 = (uv)2 = 1〉 and the automor-
phism βr ∈ Aut(Dm) is defined by βr(ζm) = ζrm and βr(k) = −k.

5. Singular subgroups of G

This section is rather technical, therefore we provide an outline. We wish to
show that the groups G(K,H,α), with H �= {1}, do not admit symplectic
resolutions. The purpose of this section is to provide two general criteria,
Theorem 5.4 and Proposition 5.6, for the non-existence of projective sym-
plectic reflections for these groups. This is done by analyzing the set of points
on YH × YH that have non-trivial stabilizer under the action of the group
Q and showing that this set has components of dimension zero.

5.1.

A subgroup P of Γ is said to be a parabolic subgroup if there exists some
x ∈ YH such that StabΓ(x) = P . The set of all points x in YH such that
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Table 1: Nonconjugate Symplectically Imprimitive, Symplectically Irre-
ducible Proper Four-Dimensional Reflection Groups G(K,H,α)

K
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Table 2: Nonconjugate Symplectically Imprimitive, Symplectically Irre-
ducible Proper Four-Dimensional Reflection Groups G(K,H,α) (cont.)

K H K/H α |G(K,H,α) |Lα|
(I) T D2 C3 Inversion 384 24
(J) T C2 Alt(4) Conjugation by (12) 96 12
(K) T 1 T Conjugation by (i− j) 48 12
(L) O O 1 1 4608 48
(M) O T C2 1 2304 48
(N) O D2 D3 1 768 32
(O) O C2 Sym(4) 1 192 14
(P) O 1 O Conjugation by k 96 18
(Q) O 1 O 1 �= α ∈ Ker : Aut(O) → Aut(Sym(4)) 96 14
(R) I I 1 1 14400 120
(S) I C2 Alt(5) 1 480 32
(T) I C2 Alt(5) Conjugation by (12) 480 20
(U) I 1 I Conjugation by j 240 30
(V) I 1 I Preimage of conjugation by (12) 240 20

under Aut(I) → Aut(Alt(5))

StabΓ(x) = P is denoted YH(P ). Since YH is smooth, YH(P ) is a smooth,
though not generally connected, locally closed subset of YH . We denote by
YH(P )0, resp. YH(P )>0, the union of all components of dimension zero,
resp. greater than zero, in YH(P ). Key to our classification theorem is the
following technical definition.

Definition 5.1. Let P be a parabolic subgroup of Γ.

1) A point x ∈ YH(P )0 is isolated if there exists no parabolic subgroup
{1} �= T � P such that x ∈ YH(T ).

2) The group P is said to be singular if there exist isolated points x ∈
YH(P )0 and y ∈ YH(α(P ))0 such that y /∈ Γ · x.

Note that a singular subgroup of Γ is actually the data of a four-tuple
(P, x;α(P ), y).

Lemma 5.2. If P is a singular subgroup of Γ then there exists an affine
open, Q-stable subset U ⊂ YH × YH and closed point p ∈ U such that
StabQ(p) = P and Q acts freely on U �Q · p, where P is realized as a sub-
group of Q via (id, α).

Proof. Let P = P1, P2 = α(P ), . . . , Pk be all the conjugates of either P or
α(P ) in Γ. The dense open subset of YH × YH consisting of all points with
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trivial stabilizer is denoted (YH × YH)reg and we write YH(Pi)iso for the set
of all isolated points in YH(Pi)0. Set

U0 = (YH × YH)reg ∪
[

k⋃
i=1

YH(Pi)iso × YH(α(Pi))iso

]
.

It is a Q-stable, dense subset of YH × YH . Let

Δ =
⋃
h∈Γ

{(h · x, x) ∈ YH × YH | x ∈ YH}.

It is a proper, closed, Q-stable subvariety of YH × YH . We set U1 = U0 �Δ.

Claim 5.3. U1 is a Q-stable, dense open subset of YH × YH .

Proof. That U1 is Q-stable and dense is straight-forward. To see that it is
open, we note firstly that the stabilizer of any x ∈ U1 is either trivial or
(id× α)(Pi). This follows from the fact that if s12 · (h, α(h)) stabilizes x for
some h ∈ Γ, then x ∈ Δ. Now decompose

(YH × YH)� U1 =
⊔
β

Cβ

into the connected components of the stabilizer stratification of (YH × YH)�
U1. To show that U1 is open, it suffices to show that Cβ ∩ U1 = ∅: clearly
Cβ ∩ (YH × YH)reg = ∅, therefore if Cβ ∩ U1 �= ∅, then there exists some
point x ∈ Cβ � Cβ ∩ U1 whose stabilizer is (id× α)(Pi). If y ∈ Cβ then
StabQ(y) ⊆ (id× α)(Pi), which implies that y = (y1, y2) with StabΓ(y1) ⊆
Pi. In this case there exists some connected componentsD1 of YH(StabΓ(y1))
and D2 of YH(α(StabΓ(y1))) such that Cβ ⊂ D1 ×D2 is a dense subset. This
implies that x ∈ D1 ×D2, contradicting the fact that x = (x0, x1) with each
xi isolated. This completes the proof of the claim. �

By assumption, there exists some x ∈ YH(P )0 and y ∈ YH(α(P ))0 such
that y /∈ Γ · x. Set p = (x, y). The condition y /∈ Γ · x implies that p /∈ Δ.
Therefore it belongs to U1. We may choose an open subset U2 of p in U1

such that the stabilizer of every point in U2 (except p itself) has trivial
stabilizer. Then the set U we require is

⋃
g∈Q g · U2, except that U may not

be affine. However, [4, Lemma 1.3] shows that we can replace U by a smaller,
affine open and Q-stable neighborhood of p. �

Theorem 5.4. If there exists a singular subgroup P of Γ then V/G does
not admit a projective symplectic resolution.
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Proof. Let

F =
⋃

1 �=h∈Q
Fix(h)

be the closed subset of YH × YH consisting of all points with non-trivial
stabilizer. If U is the open subset of YH × YH whose existence is guaranteed
by Lemma 5.2, then U ∩ F = Q · p is a finite union of points. Let x ∈ U ∩ F
and Qx the stabilizer of x. By assumption Qx �= 1. By assumption, Qx acts
freely on TxU � {0}, therefore TxU/Qx is an isolated symplectic singular-
ity. Hence Qx contains no symplectic reflections. Therefore (TxU,Qx) does
not admit any symplectic resolution by Verbitsky’s Theorem, [18]. Then
Proposition 2.3 implies that V/G does not admit a projective symplectic
resolution. �

5.2.

The case where H = C2 occurs several times in Tables 1 and 2. In this
case YH = T ∗P1 and the action of Γ on T ∗P1 comes from the embedding
Γ ↪→ PSL2(C) = Aut(P1). Let V = C2 with basis v1, v2 and x1, x2 the dual
basis of V ∗ so that C[V ] = C[x1, x2],C[V ∗] = C[v1, v2]. Then

T ∗P1 = {(v, w) ∈ (V � {0})× V ∗ | w(v) = 0}/C×.

The charts U1 = (x2 �= 0), U2 = (x1 �= 0) cover T ∗P1 and

C[π−1(U1)] = C

[
x1
x2

, v1x2

]
, C[π−1(U2)] = C

[
x2
x1

, v2x1

]
,

where π : T ∗P1 → P1. We say that T ⊂ Γ is a maximal cyclic subgroup of
Γ if it is a cyclic subgroup of Γ and there is no other cyclic subgroup of Γ
that properly contains T .

Lemma 5.5. Let p ∈ P1 and T = StabΓ(p). Then T is a maximal cyclic
subgroup of Γ.

Proof. Assume that 1 �= g ∈ Γ fixes p. Diagonalizing g, we may assume that
p = [1 : 0] or [0 : 1]. This implies that every non-zero g fixes exactly two
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points in P1. If h is another non-zero element of Γ that fixes [1 : 0], then

g =

(
η 0
0 η−1

)
, h =

(
ζ b
0 ζ−1

)
,

where η, ζ are some roots of unity. The matrix h above has infinite order if
b �= 0. Therefore the fact that Γ is finite implies that g and h are contained
in some common cyclic subgroup of Γ and fix the same points of P1. Hence
the stabilizer of [1 : 0] in P1 is some maximal cyclic subgroup of Γ. �

Proposition 5.6. If there exists a point p ∈ P1 such that | StabΓ(p)| > 2,
then there exists a point x ∈ T ∗P1 × T ∗P1 such that (Qx, Tx(T

∗P1 × T ∗P1))
does not admit a symplectic resolution.

Proof. By Lemma 5.5, the stabilizer of p is a maximal cyclic subgroup of Γ.
Therefore we may assume that

StabΓ(p) = 〈s〉 � Cm

for some m > 2. Let r = α(s). Thinking of s and r as elements of order 2m
in K, we may assume that s is a diagonal matrix with respect to the basis
v1, v2 of V . We choose another basis w1, w2 of V and dual basis y1, y2 of
V ∗ such that r is diagonal with respect to these basis. Then there exists a
primitive 2mth root of unity ζ such that

s · v1 = ζv1, s · v2 = ζ−1v2, r · w1 = ζaw1, r · w2 = ζ−aw2,

for some integer a coprime to 2m. Let p1 = [1 : 0], p2 = [0 : 1], resp. q1 = [1 :
0], q2 = [0 : 1], with respect to the coordinates [x1 : x2], resp. [y1 : y2] of P

1.
Then s · pi = pi and r · qi = qi for i = 1, 2. Let x = (p1, q1) ∈ T ∗P1 × T ∗P1.
Recall that Q = (K/H)�α S2. It is a subgroup of (K/H) � S2 = (K/H)2 ∪
(K/H)2 · s12. We decompose T = StabQ(x) as

T0 = T ∩ (K/H)2, T1 = (K/H)2 · s12.

There are two cases to consider: case a) T1 = ∅, and case b) T1 �= ∅.
We begin by considering case a). In this case we have T = T0 = 〈s(1)r(2)〉.

Let e1, e2, f1, f2 = (x1

x2
)∗, (v1x2)∗, (y1

y2
)∗, (w1y2)

∗ so that

Tx(T
∗P1 × T ∗P1)) = C · {e1, e2, f1, f2}.
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With respect to this chosen basis of Tx(T
∗P1 × T ∗P1), we have

s(1)r(2) =

⎛⎜⎜⎝
ζ2 0 0 0
0 ζ−2 0 0
0 0 ζ2a 0
0 0 0 ζ−2a

⎞⎟⎟⎠ .

This is not a symplectic reflection. Therefore (Qx, Tx(T
∗P1 × T ∗P1)) does

not admit a symplectic resolution by Verbitsky’s Theorem, [18].
In the second case, there exists some h ∈ Γ such that t = s12h(1)α(h)(2) ∈

T1 (in fact, T1 = T0 · t). Hence h · p1 = q1 and α(h) · q1 = p1. This implies
that

α(h)h = sλ, hα(h) = rμ,

for some λ and μ. Applying α to the above equations shows that in fact
λ = μ. Moreover

h−1 StabΓ(q1)h = α(h) StabΓ(q1)h = StabΓ(p1).

Therefore, h · p2 = q2 and α(h) · q2 = p2. If StabQ(x) is generated by sym-
plectic reflections then we may assume that t is a symplectic reflection. We
have

t2 = α(h)(1)h(1)h(2)α(h)(2) = (s(1)r(2))
λ.

This cannot be a symplectic reflection. Therefore it must be the identity,
λ = 0, and t2 = ±id in G. Possibly after rescaling, we have h · x1 = y1 and
h · x2 = y2. Thus, with respect to the basis e1, e2, f1, f2 above, t is given by

t =

⎛⎜⎜⎝
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞⎟⎟⎠ .

Then StabQ(x) = Cm ∪ Cm · t. The characteristic polynomial of (s(1)r(2))
i · t

is u4 − (ζ2i(a+1) + ζ−2i(a+1))u2 + 1. Therefore it is a symplectic reflection if
and only if ζ2i(a+1) + ζ−2i(a+1) = 2 i.e. i(a+ 1) = 0 modulo m. If a+ 1 is not
zero modulo m then the solutions to this equation form a proper subgroup
Cd of Cm. Then the subgroup of Q generated by all symplectic reflections is
the proper subgroup G(d, d, 2) of Q. Thus, for StabQ(x) to be a symplectic
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reflection group we must have a = −1. In this case,

(StabQ(x), Tx(T
∗P1 × T ∗P1)) � (G(m,m, 2), h⊕ h∗),

where h is the reflection representation for G(m,m, 2). By [2], such a pair
admits a symplectic resolution only if m = 1, 2. �

Remark 5.7. Note that there will exist a point p ∈ P1 such that | StabΓ(p)|
> 2 if and only if there is an element in K of order at least 6.

6. The action of Γ on HilbH(C2)

In this section we show case-by-case, based on Tables 1 and 2, that the
symplectically imprimitive and irreducible symplectic reflection groups
G(K,H,α), with H �= {1}, satisfy at least one of the criteria required to
apply either Theorem 5.4 or Proposition 5.6. Our results are summarized in
Theorem 6.4.

6.1.

The minimal resolution of XH = C2/H is denoted YH . We denote by HilbnC2

the Hilbert scheme of n points in the plane. This is a smooth, symplectic
manifold of dimension 2n, see [16].

Proposition 6.1. The action of G/H2 on XH × XH lifts to an action of
G/H2 on YH × YH .

Proof. Let n = |H|. The action of K on C2 induces an action of K on
HilbnC2. One can realize YH as the component HilbH C2 of (HilbnC2)H

whose generic point I is a radical ideal (or in other words V (I) is a free
H-orbit). This is a K-stable subvariety of (HilbnC2)H and YH × YH is a
G-stable subvariety of HilbnC2 ×HilbnC2. By definition, the action of G
on YH × YH factors through G/H2. �

6.2.

We will identify YH with HilbH C2 throughout this section. By the classical
McKay correspondence, the vertices {ρi}i∈I of the Dynkin diagram can be
put in bijection with the irreducible components of the exceptional fiber of
the minimal resolution of C2/H in such a way that the edges between two
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vertices are in bijection with the number of points (which is always 0 or 1)
of intersection of the two irreducible components. The component labeled
by the vertex ρi is denoted Pi. On the other hand, the vertices of the affine
Dynkin diagram can be naturally labeled by the isomorphism classes Irr(H)
of simple H-modules such that dimHomH(C2 ⊗ ρi, ρj) is twice the num-
ber of edges between the vertices ρi and ρj (note that the representation
C2 is self-dual so that dimHomH(C2 ⊗ ρi, ρj) = dimHomH(C2 ⊗ ρj , ρi)).
The trivial representation ρ0 labels an extending vertex of the affine dia-
gram. Therefore Irr∗(H) = Irr(H)� {triv} labels the vertices of the non-
affine Dynkin diagram. This allows us to define two actions of Γ on the
Dynkin diagram of H by graph automorphisms. The geometric action is
defined by g · ρi = ρj if g(Pi) = Pj and the edge labeled by p ∈ Pi1 ∩Pi2

is sent to the edge labeled by g · p ∈ g(Pi1) ∩ g(Pi2). The representation ac-
tion is defined by g · ρi = ρj if gρi � ρj and if g · ρik = ρjk , for k = 1, 2 with
dimHomH(C2 ⊗ ρi1 , ρi2) = 2 then the fact that g ∈ SL2(C) normalizes H
implies that gC2 � C2, hence

dimHomH(C2 ⊗ ρi1 , ρi2) = dimHomH(C2 ⊗ ρj1 , ρj2)

and so g take the edge between ρi1 and ρi2 to the edge between ρj1 and ρj2 .
Using HilbH C2, Ito and Nakumura, [13], constructed a natural bijection
between the irreducible components of the exceptional fiber and Irr∗(H) in
such a way that the geometric action and the representation action become
equal (a beautiful case free proof was later given by Crawley-Boevey [8]). We
recall their bijection. They showed that for I ∈ π−1(0), the socle of C[x, y]/I
is either irreducible as a H-module or consists of a pair of non-isomorphic
simple H-modules. Moreover, if I ∈ Pi does not belong to any other com-
ponent then the socle of C[x, y]/I is irreducible and the isomorphism class
of this simple module depends only on Pi (and not on the specific choice of
I). Hence we may label the Dynkin diagram so that the socle of C[x, y]/I,
with I ∈ Pi generic, is ρi. If I ∈ Pi ∩Pj then they showed that

soc(C[x, y]/I) � ρi ⊕ ρj , and dimHomH(C2 ⊗ ρi, ρj) = 2.

If the socle of C[x, y]/I is isomorphic to λ say as a H-module then

Lemma 6.2. The bijection ρi ↔ Pi intertwines the geometric action and
the representation action of Γ on the Dynkin diagram of H.

Proof. It is straight-forward, but we include a brief explanation for the
reader’s convenience. Let g ∈ K. Applying g to the short exact sequence
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0 → I → C[x, y] → C[x, y]/I → 0 and using the fact that gC[x, y] � C[x, y]
as a H-module implies that g(C[x, y]/I) � C[x, y]/g(I). The identification
restricts to gsoc(C[x, y]/I) � soc(C[x, y]/g(I)). �

The above lemma gives us an easy, representation theoretic way to de-
scribe the action of Γ on the irreducible components of the exceptional fiber.

Remark 6.3. The action of Γ on YH preserves the symplectic form. There-
fore, each component of the closed subvariety (YH)Γ is either two-dimensional
or zero-dimensional. Since YH is irreducible and the action of Γ is effective,
we see that (YH)Γ is actually a finite collection of points.

6.3. (A)

In this case we have K = C2m, H = Dm and Γ = C2, which is generated by
the image g of k. The irreducible representations of C2m are labeled ρi, 0 ≤
i ≤ 2m− 1 and gρi = ρ2m−i. Therefore the only irreducible representations
fixed by C2 are ρ0 and ρm. As described above, the irreducible component
of the exceptional locus corresponding to ρi is denoted Pi so that Pm is the
only component that is mapped to itself by g. There are exactly two points
p, q in Pm that are fixed g. Obviously, q /∈ Γ · p. Since α = 1, (C2, p;C2, q) is
a singular subgroup of C2.

6.4. (B)

In this case we have H = C2m, K = D2ml and Γ = D2l = 〈u, v〉, where u
is the image of ζ and v is the image of k. The element u acts trivially on
Irr(C2m) and the action of v is given by vρi = ρ2m−i. Therefore StabD2l

(ρi) =
C2l if 1≤ i �=m≤2m− 1 and StabD2l

(ρm)=D2l. Provided m �= 1, we choose
some 1 ≤ i �= m ≤ 2m− 1 and let p, q ∈ Pi be the two points whose stabi-
lizer is C2l = 〈u〉. Since v maps Pi to P2m−i, we have q /∈ Γ · p. Noting that
αr(C2l) = C2l, (C2l, p;C2l, q) is a singular subgroup.

Assume now that m = 1. Then we are in the situation described in (5.2).
When l = 1, the group G is the subject of the paper [3], where it is shown
that the corresponding quotient singularity admits a projective symplectic
resolution. The group D2l contains a cyclic subgroup of order 4l. Therefore,
when l ≥ 2, there is an element in K of order ≥ 8. Therefore we may apply
Proposition 5.6.
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6.5. (C)

In this case we have H = C2m+1, K = D(2m+1)l and Γ = Dl = 〈g, t〉, where
g is the image of ζ and t is the image of k. The element g acts trivially on
Irr(C2m+1) and

tρi = ρ2m+1−i. Therefore StabDl
(ρi) = C2l for all 1 ≤ i ≤ 2m.

Choose some 1 ≤ i ≤ 2m and let p, q ∈ Pi be the two points whose stabilizer
is C2l. Then (C2l, p;C2l, q) is a singular subgroup for all 1 ≤ i ≤ 2m.

6.6. (D)

In this case we have H = Dm, K = D2m and Γ = C2 = 〈g〉, where g is the
image of ζ. Note that g(ζ2) = ζ2 and g(k) = ζ2k. The element g acts triv-
ially on all irreducible representations of H except for two of the non-trivial
one-dimensional representations, which are swapped. Take any P1 that is
fixed by Γ and let p, q ∈ P1 be the two points whose stabilizer is Γ. Then
(C2, p;C2, q) is a singular subgroup of Γ.

6.7. (I)

In this case we have H = D2, K = T and Γ = C3 = 〈g〉, where g is the im-
age of ω. Then g permutes cyclically the three non-trivial one dimensional
representations of H and fixes the unique irreducible two dimensional rep-
resentation, in addition to fixing the trivial representation. Let P2 be the
projective line labeled by the two-dimensional irreducible representation of
H and p, q ∈ P2 the two points whose stabilizer is Γ. Then (C3, p;C3, q) is a
singular subgroup of Γ.

6.8. (M)

In this case we have H = T, K = O and Γ = C2 = 〈g〉, where g is the im-
age of 1√

2
(1 + i). The element g swaps the two non-trivial one dimensional

irreducible representations, swaps the two irreducible two dimensional repre-
sentation that are not isomorphic to the realization of T in SL2(C) and fixes
all other irreducible representations (i.e. it is the obvious symmetry of the
Dynkin diagram coming from taking duals of representations). Therefore if
P is one of the two exceptional components that is labeled by a non-trivial,
self-dual irreducible representation of T then there are exactly two points
p, q in P whose stabilizer is C2. Then (C2, p;C2, q) is a singular subgroup
of Γ.
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6.9. (N)

In this case we have H = D2, K = O and Γ = D3 = 〈u, v〉, where u is the
image of ω and v the image of 1√

2
(1 + i) in Γ. Hence u3 = v2 = 1. We label

the irreducible representations of D2 so that ρ0 is the trivial representation,
ρ2 is the two dimensional representation and ρ1, ρ3 and ρ4 are the three
non-trivial one-dimensional representations. Then

u · ρ1 = ρ4, u · ρ4 = ρ3, u · ρ3 = ρ1,

and u fixes all other representations. Similarly, v swaps ρ3 and ρ4 and fixes
all other representations. Thus, StabΓ(ρ1) = C2. The stabilizer of P1 is C2 =
〈v〉. Let p1, q1 ∈ P1 be the two points whose stabilizer is C2. The group
α(C2) will also fix one of the extremal vertices ρ1, ρ3 or ρ4, without loss of
generality we assume that it is ρ3. The points in P3 whose stabilizer is α(C2)
are p3, q3 say. Since both C2 and α(C2) fix the central vertex ρ2, one of the
two points pi or qi must be the intersection point P2 ∩Pi. Let’s say its pi in
both cases. Then there can be no element of D3 that maps p1 to q3. Thus,
(C2, p1;α(C2), q3) is a singular subgroup of Γ.

6.10. The cases where H = C2

In the cases (F),(J),(O), (S), and (T) we have H = C2. Therefore we are in
the situation described in (5.2). In all these cases the group K contains at
least one element of order ≥ 6. Therefore we may apply Proposition 5.6 to
conclude that (V, ω,G) does not admit a projective symplectic resolution.

6.11.

Now, let G = G(K,H,α) < Sp4(C) be symplectically irreducible. In order
for V/G to admit a symplectic resolution, by Verbitsky’s theorem, G must
be a symplectic reflection group. If G is improper (cf. §4.1), then G is a
complex reflection group, and in this case by [2], V/G can admit a symplectic
resolution only if G = K � S2 for K a cyclic Kleinian group, or else G = G4.
The latter possibility is excluded, however, since as a subgroup of GL2(C) it
is primitive, and hence as a subgroup of Sp4(C) it is symplectically primitive.
Therefore, by [7, Theorem 2.6], (K,H,α) must be on the list in Tables 1
and 2.

Summarizing the above calculations and applying Theorem 5.4 therefore
implies the following result.
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Theorem 6.4. If G = G(K,H,α) is such that H �= {1} and H �= K, then
(V, ω,G) admits a projective symplectic resolution if and only if G =
G(D2,C2, Id).

Note that G(D2,C2, Id) is the symplectic reflection group Q8 ×Z2
D8

studied in [3].

7. The imprimitive groups in dimension ≥ 6

7.1.

As noted in the introduction, by [7, Theorem 2.9], the symplectically im-
primitive and irreducible symplectic reflection groups in dimensions greater
than four are, up to conjugation, of the form Gn(K,H) where K < SL2(C)
is a Kleinian group and H ≤ K contains the commutator subgroup [K,K].

Lemma 7.1. The symplectic reflection group G3(C2,D2) does not admit a
projective symplectic resolution.

Proof. The group G3(C2,D2)/C
3
2 � G3({1},D2) acts on Y × Y × Y where

Y = T ∗P1 is the minimal resolution of C2/C2. We prove that C6/G3(C2,D2)
does not admit a projective symplectic resolution by showing that there ex-
ists an isolated point p ∈ Y3 whose stabilizer with respect to G3({1},D2) is
non-trivial i.e. there is an affine open subset U of p such that G3({1},D2)
acts freely on U � {p}. Repeating the argument given in the proof of Theo-
rem 5.4 then implies the claim of the lemma.

In order to simplify things, we consider the action of the larger group
G′ := D2 � S2 on Y3. As in the proof of Lemma 5.2, let

Δ1,2 =
⋃

h∈D2

{(h · x, x, y) ∈ Y3 | (x, y) ∈ Y2}

and Δ = Δ1,2 ∪Δ1,3 ∪Δ2,3 (where Δi,j is defined in the obvious manner).
This is a proper closed subset of Y3. If there exists some p ∈ Y3 and g ∈
G′ �D3

2 such that g · p = p then p ∈ Δ. To get an isolated point we need
to consider points in P1 ×P1 ×P1 not contained in Δ. The group D2 �
C2 × C2 acts on P1 by the image of its reflection representation in PSL2(C).
Thus, the three non-trivial elements of D2 are

g =

(
i 0
0 −i

)
, h =

(
0 1
−1 0

)
, gh =

(
0 i
i 0

)
∈ PSL2(C).
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The fixed points of g are Fg = {[1 : 0], [0 : 1]}, of h are Fh = {[1 : i], [1 : −i]}
and of gh are Fgh = {[1 : 1], [1 : −1]}. Each set Fw is stable under the action
of D2 with both the non-trivial elements of D2 not equal to w swapping the
two points in Fw. If we take

p = ([1 : 0], [1 : i], [1 : 1]) ∈ Y3 �Δ

then, noting that g · h · gh = 1 in PSL2(C), the stabilizer of p in G′ is
{1, g} × {1, h} × {1, gh} � C3

2 and hence the stabilizer of p in G3({1},D2)
is {(1, 1, 1), (g, h, gh)} � C2 and p is isolated. �

Therefore we may conclude:

Theorem 7.2. Let n > 2. Then the symplectic quotient C2n/Gn(K,H) ad-
mits a projective symplectic resolution if and only if K = H.

Proof. If Gn(K,H) �= Gn(C2,D2) and K �= H, then we choose n− 2 dis-
tinct points p3, . . . , pn in C2 � {0} and consider the point (0, 0, p3, . . . , pn)
in C2n. The stabilizer of this point is G2(K,H) = G(K,H, Id). We have
shown in Theorem 6.4 that all those groups G(K,H,α) such that Γ is
abelian (except for G(D2l,C2, Id)) do not admit projective symplectic reso-
lutions. Now the result follows from [14, Theorem 1.6]. On the other hand, if
Gn(K,H) = Gn(C2,D2) with n = 3, then we have shown in Lemma 7.1 that
the corresponding symplectic quotient does not admit a projective symplec-
tic resolution. If n > 3 then one can realize G3(C2,D2) as a parabolic sub-
group of Gn(C2,D2) as above and the same argument shows that Gn(C2,D2)
does not admit a projective symplectic resolution. �

8. Proof of the main theorems

8.1. Proof of Theorem 1.2

Assume G < Sp2n(C) is symplectically imprimitive and irreducible. As a
consequence of Theorems 6.4 and 7.2, C2n/G cannot admit a projective
symplectic resolution if G = G(K,H,α) (for n = 2) or if G = Gn(K,H) (for
n > 2), unless G = K � Sn or G = G(D2,C2, Id) � Q8 ×Z/2 D8. By [7, The-
orems 2.2 and 2.9], this includes all cases where G is proper. If G were not
proper, then it would be a complex reflection group, and then by [2], C2n/G
could only admit a projective symplectic resolution if G were a wreath prod-
uct (Z/m) � Sn or G = G4 < Sp4(C), although the latter is excluded since it
would be symplectically primitive (as G4 < GL2(C) is a primitive complex
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reflection group). Therefore, C2n/G can only admit a projective symplectic
resolution if it is one of the listed cases. On the other hand, we know that a
projective symplectic resolution exists in each of these cases. This completes
the proof.

8.2. Proof of Theorem 1.1

As before, by [18] we can assume G is a symplectic reflection group, and
by [2], we can assume that G is proper. If G < Sp2(C) = SL2(C), then we
know that a projective symplectic resolution exists. So assume G < Sp2n(C)
for n ≥ 3. As explained in §4.1, G must be either of the form Gn(K,H) or
are one of the groups listed in [7, Table III], where n ≤ 5. In the former
case, the result follows from Theorem 1.2. In the latter case, there are seven
groups listed, of types Q,R, S1, S2, S3, T , and U . The table there also lists
the stabilizers in each of these groups of roots of the associated quaternionic
root system. For each group G and each symplectic reflection g ∈ G, this
stabilizer subgroup, call it H, is the stabilizer of generic vectors in the image
of g − Id. The action of H on the kernel of g − Id identifies H as a subgroup
of Sp2n−2(C). By [14, Theorem 1.6], if C2n/G admits a projective symplectic
resolution, so does C2n−2/H.

In type Q, we have H = G(C4,C2, 1) < Sp4(C), and we showed that
C4/H does not admit a projective symplectic resolution in Theorem 1.2.
Similarly, in type S3, we have H = G3(D2,C2), and we showed C6/H does
not admit a resolution in the same theorem (or in Lemma 7.1). In type T ,
the group H becomes a complex reflection group, associated to the Coxeter
group of type H3; in this case C6/H does not admit a projective symplectic
resolution by [11, 12] (which is also a special case of the main result of [2]
referred to before).

This reduces us to the cases R,S1, S2, and U , which are the four cases
remaining, in dimensions six, eight, eight, and ten respectively.

Remark 8.1. If one could show that type S1 does not admit a projective
symplectic resolution, then the same would follow for type U , since the
stabilizer group H mentioned above has type S1. Thus, if the four remaining
cases (as one might suspect) do not admit projective symplectic resolutions,
it suffices only to show it for the three types R,S1, and S2.
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9. Questions

9.1.

By definition, symplectic reflection groups are the symplectic analogue of
complex reflection groups. Therefore it is natural to ask which properties of
complex reflection groups have natural analogues for symplectic reflection
groups. In particular, one can ask if the analogue of Steinberg’s Theorem
holds:

Question 9.1. Let (V, ω,G) be a symplectic reflection group, v ∈ V and
Gv = StabG(v). Let U be the symplectic complement to V Gv in V . Is
(U, ω|U , Gv) a symplectic reflection group?

Remark 9.2. Steinberg’s Theorem for complex reflection groups, together
with other elementary considerations, show that it suffices to consider the
case where V is irreducible as a G-module. Furthermore, one can explicitly
check for every complex imprimitive group that (U, ω|U , Gv) is indeed a
symplectic reflection group. Thus, it actually suffices to resolve the question
for the complex primitive, symplectically irreducible symplectic reflection
groups; and of these we can further restrict to the case of dimension at least
six, since all finite subgroups of Sp2(C) are symplectic reflection groups.
This narrows us down to checking Steinberg’s theorem for the seven groups
discussed in the previous section. However, if it is indeed the case that the
analogue of Steinberg’s Theorem holds for symplectic reflection groups, it
would be interesting to have a conceptual proof that does not rely on Cohen’s
classification.

9.2.

To complete the classification of symplectic reflection groups admitting pro-
jective symplectic resolutions one needs to answer the following three ques-
tions.

Question 9.3. Let G := G(K, 1, α) ∼= K � S2 be a symplectically irreducible
proper symplectic reflection group (so that G belongs to one of the families
(G),(K),(P),(Q),(U),(V) of Tables 1 and 2). Does the quotient singularity
C4/G admit a projective symplectic resolution?
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Question 9.4. Let G be symplectically primitive and irreducible, but com-
plex imprimitive, i.e., G < Sp4(C) is one of the groups classified in [7,
Lemma 3.3]. Does C4/G admit a projective symplectic resolution?

Question 9.5. Let G be one of the finitely many primitive exceptional
symplectic reflection groups, as listed in [7, Table III]. Does the quotient
singularity V/G admit a projective symplectic resolution?

It seems likely that many of these exceptional groups G will contain
parabolic subgroups Gv such that (U, ω|U , Gv) is known not to admit pro-
jective symplectic resolutions. In these cases (V, ω,G) will also not admit
a projective symplectic resolution. In particular, using the stabilizer groups
discussed in §8.2, as we mentioned, this already allows us to eliminate types
Q,S3, and T . Thus there remain at most ten groups in [7, Table III] to
check.
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dral group, Séminaires et Congres 25 (2010), 427–433.

[16] H. Nakajima, Lectures on Hilbert Schemes of Points on Surfaces, vol-
ume 18 of University Lecture Series. American Mathematical Society,
Providence, RI, 1999.

[17] Y. Namikawa, Poisson deformations of affine symplectic varieties, Duke
Math. J. 156 (2011), no. 1, 51–85.

[18] M. Verbitsky, Holomorphic symplectic geometry and orbifold singular-
ities, Asian J. Math. 4 (2000), no. 3, 553–563.



1564 G. Bellamy and T. Schedler

School of Mathematics and Statistics, University Gardens

University of Glasgow, Glasgow, G12 8QW, UK

E-mail address: gwyn.bellamy@glasgow.ac.uk

Department of Mathematics

South Kensington Campus, Imperial College

London, London SW7 2AZ, UK

E-mail address: trasched@gmail.com

Received April 14, 2014



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.7
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Same as "Press Quality" except that Compatibility is set to Acrobat 8.0 \(PDF 1.7\))
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


