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p-adic families of automorphic forms over

some unitary Shimura varieties

XU SHEN

We construct some n-dimensional eigenvarieties for finite slope
overconvergent eigenforms over some unitary Shimura varieties with
signature (1,n —1) x (0,n) X --- x (0,n) by adapting Andreatta-
Tovita-Pilloni’s method. We also show that there are some Galois
pseudo-characters over our eigenvarieties by studying analytic con-
tinuation of finite slope eigenforms over these Shimura varieties.
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The theory of p-adic families of automorphic forms started from the various
works of Hida and Coleman. For the related history one can see the intro-
duction of [11]. In loc. cit. Coleman and Mazur constructed the eigencurve
for finite slope elliptic modular forms, which parameterizes the systems of
eigenvalues for Hecke eigenforms. Since then, there have been many authors
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working on this field to develop a general theory of p-adic automorphic forms
on higher rank groups. For example, there is the work of Urban [27] based
on studying overconvergent cohomology. In particular, Urban constructed
eigenvarieties for any reductive groups G over Q such that G(R) admits
discrete series. There is also an approach of Emerton [13] by studying the
completed cohomology of arithmetic quotients. For definite unitary groups,
Chenevier has constructed some eigenvarieties in [9] which have quite useful
applications to Galois representations, see for example [10]. Finally, there
is a geometric approach of Andreatta, Iovita and Pilloni [1] for finite slope
Siegel modular cuspforms. Their method is based on the theory of canonical
subgroups, and is quite promising to be generalized to general PEL type
Shimura varieties, see for example [2] and [6].

In this paper, we work out the construction of some n-dimensional
eigenvarieties for finite slope eigenforms over some unitary Shimura vari-
eties with signature (1,n — 1) x (0,n) x --- x (0,n) by adapting Andreatta-
Iovita-Pilloni’s method in [1]. These Shimura varieties are restricted to the
class studied by Harris-Taylor in [17] for proving the local Langlands cor-
respondence for GL,. However, see Remark 6.5 for a discussion for more
general Shimura varieties.

There were some related works in our setup. In [19] Kassaei studied
p-adic modular forms of integral weights over the Shimura curves, that is
the case n = 2. In [5] Brasca studied non integral weight forms over these
Shimura curves and constructed an eigencurve. However, the definitions of
modular forms in both [19] and [5] can not be compared with the classical
theory of automorphic forms, since their modular forms are sections of some
line bundles which are not automorphic vector bundles over the Shimura
curves. In [12] Ding studied also non integral weight forms, whose defini-
tion is compatible with classical modular forms. He constructed in fact an
eigenvariety of dimension two, and used it to study the local-global compat-
ibility of Langlands correspondence in this setting. This paper deals with
the higher dimension Shimura varieties.

As in [12], we study automorphic forms with fixed weights outside a
fixed archimedean place 7y (of the total real field F'*, see Subsection 2.1).
Let the weight x at 79 vary in the n-dimensional p-adic weight space W
(see Subsection 2.2 for the definition), we construct some overconvergent
automorphic vector bundles w;rf (w € Q¢ is some rational number which
depends on k, see Subsection 3.2) over (some admissible open subspaces
inside the p-adic rigid analytification of ) our Shimura varieties X by applying
the method in [1]. These sheaves can be put in families when « varies in W.
In particular, we can construct n-dimensional eigenvarieties for the finite
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slope eigenforms over our Shimura varieties. An evident characteristic of
the construction is that our eigenvarieties are partial, in the sense that we
only let the weight at a fixed archimedean place vary. This is similar to the
construction in [10], but contrary to the total eigenvarieties as in [6].

An important assumption which we made in this paper is that the local
reflex field is Q,. This is for having the density of the usual ordinary locus,
cf. 28] 1.6.3, so that we can apply the results on canonical subgroups of [15]
Théoreme 6 as in the way of Andreatta-lovita-Pilloni. See Remark 6.5 for
more explanation about the generalization.

We also study the analytic continuation of finite slope overconvergent
eigenforms to prove that the classical points in our eigenvarieties are dense.
As a consequence, there are some Galois pseudo-characters over the eigen-
varieties. Let L be a large extension of Q, for the Shimura data, see page
4 of Subsection 2.1 for more precise specification. The main theorem of the
paper is the following.

Theorem 1.1. There is a rigid analytic variety £ over L and a locally
finite map to the weight space w : £ — W, such that

1) & is equidimensional of dimension n.

2) We have a character © : TE" @ T, — O(E). For any k € W, w™ (k)
is in bijection with the eigensystems of TK" @ T, acting on the space of
finite slope locally analytic overconvergent automorphic forms of weight
K.

3) For any k = (k1,...,kn—1,kn) € Z’}r_l XxZ CW, if v € w (k) satis-
fiesv(O4(U;)) < kp—i —kp—iv1 +1 for2 <i<n—1andv(0.,(U;)) <
kn 4+ kn—1 —n+ 1, then the character ©, comes from a weight k au-

tomorphic eigenform on X. Here O, is the composition of © with the
evaluation map evy : O(E) — k(x) (k(x) is the residue field of x).

4) There is a Galois pseudo-character T : Gal(Q/F) — O(&)"4 (F s
some CM field, see Subsection 2.1), such that for any point x € £, there
is a continuous semi-simple representation py: Gal(Q/F) — G Ly (k(x))
and the trace of this Galois representation is Ty. Here O(E)™*? is the
reduced algebra associated to O(E), and T, is the composition of T
with the evaluation map ev, : O(E)"4 — k(x).

For the definition of the Hecke algebra TX" ® T, and the operators U;
for 1 <1i <n —1 see Section 4. We hope that these eigenvarieties will have
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useful applications to Galois representations, as what those constructed by
Chenevier for definite unitary groups have done.

This paper is organized as follows. In Section 2, we introduce the re-
lated Shimura varieties and review automorphic vector bundles on them. In
Section 3, we first review the theory of canonical subgroups and the Hodge-
Tate maps for them as in [1] Section 4, then we construct the overconvergent
sheaves wi” by proceeding in the same way as in loc. cit.. In Section 4, we
define the Hecke operators which act on the spaces of overconvergent auto-
morphic forms. Then in Section 5, we study analytic continuation of finite
slope overconvergent eigenforms and prove the classicality theorem. In the
last section we construct the n-dimensional eigenvarieties and prove the main
theorem.
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2. Shimura varieties and automorphic vector bundles
2.1. Some unitary Shimura varieties

In this section we introduce the Shimura varieties which will be the main
object of study in this paper. These were studied by Harris-Taylor in [17]
for proving the local Langlands correspondence for GL,. For more details,
see loc. cit. 1.7, I11.1, I1L.4.

Let p be a prime number. Fix an imaginary quadratic field E in which
p splits. The two primes of E above p will be denoted by » and u€, and
the complex conjugation of Gal(E/Q) will be denoted by c. Let F*|Q be a
totally real field of degree N. Set F' = FTE, so that F' is a CM-field with
maximal totally real subfield F'*. Let @ = @y, ws, . .., @, denote the primes
of F above u, and let v = v1, v9, ..., v, denote their restrictions to F'T. We
will denote the degrees of Fi, ~ FJ by d; fori =1,2,...,r. Let B/F denote
a central division algebra of dimension n? over F such that
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e the opposite algebra B is isomorphic to B @ g . F;

e B is split at w;

e at any place x of F which is not split over F'*, B, is split (here and
in the following B, = B ® F);

e at any place x of I which is split at F'T, either B, is split or B, is a
division algebra;

e if n is even then 1+ Nn/2 is congruent modulo 2 to the number of

places of F'T above which B is ramified.

As in [17] p.51, we can choose an involution of second kind * on B.
Moreover, we can choose some alternating pairing (,) on V x V — Q for
the B ®p B°? module V := B, which corresponds to another involution of
second kind f on B. The associated reductive group G/Q is defined by

G(R) = {(g.\) € (B ®g R)* x R*| g = A},

for any Q-algebra R. Let G be the kernel of the map G — Gy, (g, A) — A,
which can be viewed as a group over F'". Choose a distinguished embedding
70 : FT < R. As in Lemma 1.7.1 of loc. cit. we can make the choice of the
alternating pairing on V' x V' — Q such that

e if x is a rational prime which is not split in E, then G is quasisplit at
x?

o if 0 : '™ < R is an embedding, then G X g+ R is isomorphic to the
unitary group U(1,n — 1) if 0 = 79 and U(n) otherwise.

We can say more about the group G. First, we have an isomorphism
Resp)oGr =~ (Bg)* x ResgigGm,

which is an inner form of the quasi-split group RespgGLy X ResgigGm.
So the theory of automorphic representations for G can be understood by
those for GL,,/F via the stable base change theorem of Clozel and Labesse,
see 1.2.6 in [16]. Second, the local reductive group at p has the form

Go, ~ [[(BZ)* x G
=1

Fix a maximal order A; = Op_ in By, for each ¢ =1,2,...,r. Our pair-
ing on V' = B induces perfect duality between Vg, and V. Let AV C Veoe
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be the dual of A; C V,. Then

A= @ A; @ @ AY
=1 =1

is a Zp-lattice in V ®q Q, and we have a perfect pairing A x A — Q.
Let Op C B be the unique maximal Z(p)—order such that O% = Op and
OB .w; = OB fori=1,2,...,r. Fix an isomorphism Op_ ~ M, (OF_). Let
e = (e4) € (OFW) be the 1demp0tent with €11 = 1 and all the other ¢;; =
0. Then A1 == A ~ (O%w)v, and

A~ ((OF @ An) @ (0F @ An)Y) @ @A & A).

Let K C G(Ay) be a sufficiently small open compact subgroup. Then
we have a projective Shimura variety Shi over F', which is a moduli space

of abelian varieties with additional structures. More precisely, for any con-
nected locally noetherian F-scheme S, Shi(S) = {(A, \,¢,7)}/ ~ where

e A/S is an abelian scheme of dimension Nn?;
e \: A— AV is a polarization;

t: B — End(A) ®Q is an action such that A o ¢(b) = ¢(b*)¥ o A for all
b€ B and (A,¢) is compatible (cf. [17] Lemma II1.1.2);

e 7 is a level structure n: V@ Ay — V¢(A) (mod K).

Let L|Q, be a finite extension which is large enough so that it contains all
the embeddings of F' into @p and it splits all By, for 2 < <r. We fix an
embedding F, C L and still denote Shx the above variety base changed
to L via the fixed embedding by abuse of notation. Assume K has the
form K = KPK, C G(A%) x G(Qp). If K, = [}, Ogop x Z), then one can
define a proper smooth mtergral model Sk of Shg over Op, by considering a
similar integral modular problem. In fact, let m = (m,...,m,) € Z%,, and
KP(m) be the product -

.
K? x [[ ker(Op — (Ope, /o)) x L,
i=1 '

then by introducing the notion of Drinfeld level structures at p, one can
define a proper flat regular model Sgs () of Shgr () over Or. For K? and
m varying, the group G(Ay) acts as Hecke correspondences on the tower
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(Skr(m))Kem- Over C, Shi c is a disjoint union of ker'(Q, G) copies of the
PEL unitary Shimura variety Shy (G, X) associated to the corresponding
Shimura data. By abuse of terminology, we will call these moduli spaces for
K varying Shimura varieties.

2.2. Automorphic vector bundles

Let (ma, ..., m;) € Z5," and KP be fixed. We will be interested in the levels
Ko = K?(0,ma,...,m,) and

,
K = KP x Tw x Hk:er(OE;p_ = (Oper [w{")") x Ly C KP(1,ma,...,m;),
i=2 '

where Iw C GL,(Of_) denotes the Iwahori subgroup. To simplify notations,
let X := Shg,Y := Shg, and X (resp. Y) be the special and generic fibers
of Sk (resp. Sk,). We know that Sk, is smooth ([17] Lemma II1.4.1), and
Sk has strictly semi-stable reduction ([26], Proposition 3.4). We will study
automorphic vector bundles on X and the related theory of automorphic
forms. For this we will need some preparation.

Let X = Hom(F™, L). Then it is bijective to Hom(F ', R), after fixing an
embedding L — @p and an isomorphism @p ~ C. Let 7 € 3 be the element
which corresponds to 79 under this bijection for the fixed 79 : F* < R in
the last subsection. We can and we do take the embedding and isomorphism
above such that 7 comes from an element in Hom(Fy, L). Consider the Levi
subgroup M of

Gro=Cnx [ GLox [[B)
=2

o Fo—L

defined by

T
M =Gy X GLy_1 x GL1 X H GL, x H(ng);w.
0#T: Fo—L 1=2

Then over L, we have the isomorphisms

G~ G,, X H GL,
ocEY
My =~ Gy X GLp_1 x GL; X H GL,.
o#T:F+t—L



1476 Xu Shen

Take a maximal torus T' C My, C G, and choose a Borel subgroup T' C B C
Gr. Then we have an isomorphism of dominant weight (of B N Mp,)

XY~z x2 xZx [[ 2}
oFET

Here and in the following, for any positive integer k, Zﬁ ={(ay,...,ax) €
ZFlay > - > akh Therefore, each irreiucible representation p of My, _cor-
responds to (bo, br,br, (bo)asr), With by = (bir,... by 1),) € ZL7Y, by =
(bigs-- - bne) € Z7, and this gives arise to an automorphic vector bundle V,
on X.

Let A/Sk be the universal abelian scheme with unit section e : Sg — A.
Recall Sk is the integral Shimura varieties over O, with generic fiber X. Let
w:=e(e* Q) g ), wheree = (] @ ¢;), foreachi =1,...,r both ¢/ and &
are the idempotent matrices with all (k, j) # (1, 1)-elements 0 and 1 for the
(1,1) element. We have the decomposition

Ap™] = A=’ & - @ AlwX] @ Alwy™] & - - & Alwp™],

with A[ew?®] ind-étale for 2 < i < 7, and A[w®]P ~ Ajw™]forall1 <i <r.
This induces a decomposition

W=w @ - Duw Owid - ®uwy,

with w; comes from the sheaf of invariant differentials of A[w{®] and w
comes from the sheaf of invariant differentials of A[ww;"*"]. This is also the
decomposition of w under the action of O ® Z,. Thus wy = -+ = w, = 0,
rankw{ = d;n, 1 > 2, rankw{ = din — 1, rankw; = 1. For 1 <i <r, let }; =
Hom(Fg,,L). From the next subsection we will assume Fg, = Q,. Then
¥ ={r},and ¥ =%, U---UX,. If we consider the action of Op ® O, on
w, we have further decompositions

w=(w dw])Bws® - Dwy

= (}9 wJ<9 6}9 wagg...ég 6}9 Wo

o€, oEYs oeyl,
=wr D @ Wo
oEX,0FT

where w, = w! ® w2, w! = w; is of rank one, and rankw? = n — 1. For later

use, we make the following definition.
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Definition 2.1. Let H = & A[w™], which is a p-divisible group of dimen-
sion one and height n over Sk . For any scheme S over Oy, if z : S — Sk is
an S-valued point of S, we denote H, the corresponding base change of H
to S.

We have similar objects over X, Sk, and Y. In the following, we will
also use H to denote a p-divisible group of dimension one and height n over
a suitable base. The precise meaning of the group H will be clear in the
context. By abuse of notation we also denote the restriction of w over X by
w, which can be defined directly in the same way.

Consider the subgroup M’ = GL,,_1 x GLy x H(#T GL, C My, then ev-
ery irreducible representation of M’ can be viewed as an irreducible repre-
sentation of My via the natural projection My — M’'. In the following we
will concentrate on these representations and the associated automorphic
vector bundles. Let

T:Isom(w,@}l@ox@ EB (9&),

ocEX,0FT

which is a M’-torsor oyer X. Denote by m the projection 7 — X. For k =
(kr, .- ,kw_l, kry (ko)opr) € 25 X 2 x [] sy 2% Net ) = (=kirm1, - -,
—kr1,kr, (ko )orr). We define a coherent sheaf

W = m.O7[K],
which as an automorphic vector bundle corresponds to the irreducible rep-
resentation V (k) of M’ of highest weight x. Conversely, any automorphic
vector bundle corresponding to an irreducible representation V (k) of M’ of

highest weight x comes in this way. We note that V (k) = V. by the notation
of [1] 2.1:

Vi i={f : M" = A'[ f(gb) = '(b) f(9), V(g,b) € M" x (BN M')}.
In the above we have denoted w® = V,.

Definition 2.2. We call the elements of H°(X,w") automorphic forms of
weight k over X.

By definition, an element f € H°(X,w") is a functorially defined func-
tion T(R) — R for any L-algebra R, such that for all b€ By :== BN M’
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we have

f(Aa >‘7 Laﬁ? ((Ujﬂ};% (00)07’57) ° b) = "i/(b)f(A? )‘7 L,ﬁ, (('U‘IJ'rv U;)v (UU)OFAT))?

where (A, A, 0,7, (vf,v7), (Vo)ozr)) is a Spec(R)- valued point of T.
The sheaf w” has a decomposition as tensor product

K _ K K
o = © @)k

oFT

which corresponds to the factors of k= (kr,(ke)oxs). Let T/ =T, x
[, ex 0%r T be the maximal torus of M'. Let (ko) gzr (= (Ko )ozr) € [y, 27
be fixed. Under the assumption Fi; = Q,, T’ is defined over Q,,. Let WV be the
rigid analytic space over L associated to the Iwasawa algebra Op[[T-(Z,)]],
then it is defined over Q. Its points have the following explanation: for any
affinoid algebra A over L, W(A) is the set of continuous hommorphisms
Hom(T>(Zyp), A*). We have an embedding:

WI(C,) = Hom(T+(Z,),C ) < Hom | [] TU,C;>
oEX

%
Ky > (K;T’ (kO')O';ﬁT)'

We will identify W(C,) with its image under the above embedding, and
call it the Weight space. In particular, it contains the set of integral weights
Z’f;l X 7 % (kg)gr. The goal of this paper is to put the automorphic bun-
dles associated to integral weights into a family. More precisely, we will define
a sheaf w"~ for any x, € W over the rigid analytic Shimura variety X" as-
sociated to X over L, which after tensor product with ®,.,;w} interpolates
the classical automorphic bundles in some suitable sense. In fact, we can only
define these sheaves over some admissible opens of X", So we need better
understanding of the geometry of X"%, which is closely related to the geome-
try of the special fiber X. Recall that by GAGA, HO(X,w") = HY (X", w")
for the integral weight k.

2.3. The geometry of special fibers and rigid generic fibers

Before going further into the theory of automorphic forms, we shall review
some basic geometric facts on the special fibers and rigid generic fibers of
Sk, and Sk.

0
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The Newton stratification of Y was studied in detail in the Section I11.4
of [17]. Recall this stratification

where a point z € Y" if and only if ht HE® = h. Here HE' is the étale part
of one dimensional p-divisible group H, associated to z. Here and in the
following, for a p-divisible group H over some suitable base, we denote by
htH the height of H. We have dimY" = h. Tn particular Y s the -
ordinary locus, which is open and dense in Y. The usual ordinary locus of
Y is non empty if and only if Fr, = Q, ([28], 1.6.3), in which case it is also
open and dense.

Assumption 2.3. In the following of this paper, we will assume Fy = Q)
to use the theory of canonical subgroups.

See Remark 6.5 in the final section for some general cases. Consider the
rigid analytic space Y7 associated to Y.

Definition 2.4. We have the stratification of rigid analytic spaces over L

n—1

v = [

h=0

here ]?h[c Y9 is the tube over Y.

For a point x E}Yh[, we have the associated one dimensional p-divisible
group Hy /Oy y) with htH, = n. Here and in the following k() is the residue
field of z and Oy, is the integer ring. We have the local-étale exact sequence
of p-divisible groups over Oy(,:

0— H? - H, - HS -0,

with htHY) =n — h, htHS = h.

Recall that Sk parameterizes the set of total flags of H[p], where H/Sk,
is the universal one dimensional p-divisible group over Sk, see [26] Section 3.
As in the last subsection, let X"% be the rigid analytic space associated to X
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over L. Now for the varieties X, X" we have also the Newton stratification

n—1 n—1
X=][x" xmo=1]x".
h=0 h=0

In our special unitary case of signature (1,n — 1) x (0,n) x --- x (0,n), the
Newton stratification and the p-rank stratification coincide. As in [26] Propo-
sition 3.4 (3), we know that the irreducible components of X are

X; = {z € X|Fil;, is connected }

for the filtration 0 C Fily, C --- C Fil,_1), & Hz[p]. For any non empty
subset S C {1,...,n}, let X = ;s Xi, X¢ = X5 — Usesjeqr,.n—s(Xi N

X;), then by loc. cit.
xX'= [ x%

gS=n—h
In particular, ]Yn_l[: [T ,1X?[. The locus

—n—l[

JXPCIX

is sometimes called “multiplicative-ordinary” locus in our case F; = Q.
3. Overconvergent automorphic forms
3.1. Canonical subgroups and applications

Let the notation and assumption be as before. Let H/Y be the universal
p-divisible group of dimension one over the special fiber Y. Then we have the
Frobenius and Verschiebung morphisms F : H — H® V : H®) — H. Let

V*iwg — w?}p

be the induced morphism on cotangent bundles. Then the determinant of
V* defines a section Ha € HO(Y, w}e}(p _1)). We know that the non-vanishing
locus of Ha is the ordinary locus vy

Let K be a complete valued extension of @, for a valuation v: K —
R U {oo} such that v(p) =1 (Here and in the following, since the level is
fixed, by abuse of notation K will denote a complete extension of Q,. In
any case, the precise meaning should be clear from the context.). We de-
note by O the ring of integers of K and let v : Ox/pOx — [0, 1] be the
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truncated valuation. For any w € v(Og) we set m(w) = {z € K|v(z) > w}
and Ok, = Ox/m(w). Let H/Ok be a p-divisible of dimension one, and
G = H|p| be the truncated p-divisible group of level one. Consider the group

G0, /pox- Then we have an element Ha(H) € wg(p_l) in the Og 1-module

g(p Y. Let Hdg(H) :=v(Ha(H)) € [0,1]. Recall that we have the follow-
ing theorem.

Theorem 3.1 ([15], Théoréme 6). Letm > 1 be an integer. Assume that
Hdg(H) < 2/}f%(resp. 3)17% ifp=3). Then the first step of the Harder-
Narasimhan filtration of H[p™], denoted by C,,, is called the canonical sub-
group of level m of H. It has the following properties.

m(K) ~Z/p™Z.
degC _lHdg(H).

1
2

) C

)

3) For any 1 <k <m, Cy,[p"] is the canonical subgroup of level k of H.

4) In Hoy,_yaoy we have that Croy ., 5 the kernel of Frobenius.
)

5) For any 1<k<m, Hdg(H/Cy)=p"Hdg(H) and C,/C}, is the canon-
ical subgroup of level m — k of H/C}.

6) Let HP be the Cartier-Serre dual of H. Denote by C;- the annihila-
tor of Cy, under the natural pairing H[p™] x HP[p™] — pym. Then
Hdg(HP) = Hdg(H) and Ci; is the canonical subgroup of level m
of HP.

Let Y/SpfOr be the formal completion of Sk, along the special fiber
Y. Since the variety Y is proper, we have Y = Y7, Then by [15] 2.2.2
there is a continuous function

Hdg : Y™ — [0,1]

such that for any point x € Y, Hdg(x) = Hdg(H,). Here H, is the p-
divisible group over Oy, associated to z. By our construction, we have

Y= Hdg(0),
and for any ¢ € [0,1] N (L"),
Y (e) := Hdg (]0,¢])

is an admissible open subset of Y% which is a strict neighborhood of ]?n_
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As in [1] 4.1, we let Adm be the category of admissible Op-algebras,
i.e. flat Op-algebras which are quotients of rings of restricted power series
Op(Xy,...,X,) for some r > 0. Let NAdm be the category of normal ad-
missible Op-algebras. For any object R of Adm, we let R-Adm be the
category of R-algebras which are admissible as Op-algebras. We define sim-
ilarly R-NAdm.

Fix an object R of NAdm. Let S = SpecR and 57 be the rigid analytic
space associated to the formal scheme S := SpfR. Let H/S be a p-divisible
group of dimension one and constant height n. Assume that there is a v <
QP"% (resp. v < 31?% if p = 3) such that for any x € S, Hdg(z) < v. Then
for any point =z € ™, H, has a canonical subgroup of level m. By the
properties of the Harder-Narasimhan filtration, there is a finite flat subgroup
Cm,1. C Hgris interpolating the canonical subgroups of level m for all the
points x € S™9. If w € v(Oy), we set Ry, = R ® Or,» and for any R-module
M, set My, =M ® Ry.

Proposition 3.2 ([1], Props. 4.1.3, 4.2.1, 4.2.2).

1) The subgroup Cy, 1 extends to a finite flat subgroup scheme C,, C
H[p™] over S.

WHpm] = W, induces an iSomorphism wpjym) w — Wo,, w-

3) Assume CE(R) ~ Z/p™Z. Then the cokernel of the linearized Hodge-
Tate map

2) Let wev(0r) withw<m — vp;—_ll. The morphism of coherent sheaves

HTep ®1:CR(R)® R — we,,

is killed by pr—.

Similarly, we have a finite flat subgroup scheme C;: ¢ H”[p™] over S
with the same properties as in the above (2) and (3), whose generic fiber
interpolates the canonical subgroups of level m in H, ID for all points « € S™9.

We fix a rational number v such that v < 2;;77% (resp. v < 3})7,% ifp=23)
with the property that for any point z € S™9, Hdg(z) < v. Let C), denote
the canonical subgroup of H of level m over S. Consider the dual, we have the
canonical subgroup C;- of HP of level m over S. In the following, we will
assume that CD(R) ~ Z/p™Z, (C;5)P(R) ~ (Z/p™Z)"~!, and the sheaves
wy and wyo are free over S. Then Prop. 4.3.1 of [1] gives us the following
sheaves.
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e There is a free sub-sheaf of R-modules F of wy of rank 1 containing

pﬁwH which is equipped, for all w €]0,m — vlffml], with a map

HTf : Cr(R[1/p)) = F* ©p Ry
deduced from HTgp which induces an isomorphism
HT} ®1:CE(R[1/p]) ®z Ry — F© @R Ry.
e There is a free sub-sheaf of R-modules F~ of wgp of rank n — 1 con-

taining pr—iwgp which is equipped, for all w €]0,m — ’U;;Tml], with a
map

HT; : (CH)P(R[L/p) > F~ @ R
deduced from HT{c1yp which induces an isomorphism
HT, ®1: (Cr)P(R[1/p]) ®z Ry — F~ @R Ru.
Then we have the sum maps

HT, = HT} & HT, : C})(R[1/p]) & (Cy)" (R[1/p))
— FT®@r Ry ®F ®g Ru,

HT, ®1: CR(R[1/p]) ©z Ry ® (Cpr)P (R[1/p]) ©2z Ry
— FT®r Ry ®F ®g Ruy.

We keep the above notations and assumptions. Let GR — S be the flag
variety parameterizing all (total) flags

Filp#/~ =0C FihF~ C--- C Fil,_«F =F~
of the free module F~. We can view it parameterizes flags of
F=F aoF"
of the form Fil;(F) =Fil,F~ for i =0,1,...,n—1 and Fil,F = F. Note
that when n = 2, we have GR = S. Let GR™ be the T, = (G,,,)"-torsor over

GR which parameterizes flags File together with basis v; of the graded
pieces Gr; F~ for 1 < i <n — 1 and basis v,, of FT.
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We fix isomorphisms

vrozprz=cl (r[]). v @zt =chr (v 1),

Let 21,...,%n 1,2, be the Z/p™Z-basis of (C:)P (R[ e CP(R]
spondlng to the canonical basis of (Z/pmZ)" ' @ Z/me By ¢ =
we obtain a flag

|) corre-

¢ PT)

R[L
(

FilY = {0 C (x1) C (z1,22) C--- C (x1,..., T,

— et (r|;] ek (=[] )

Let 7; be the basis of the graded pieces. Let R’ be an object in R-Adm. We
say that an element Fil, 7 @ R’ € GR(R') is w-compatible if

Fil,F ® R, = HT,(Fil¥) ® R,
We say that an element (FiloF @ R', {v;}) € GRT(R') is w-compatible if
Fil,F ® R, = HT,(Fil¥) ® R,
and
v;modp”F @ R' + Fil; 1 F ® R = HT,(7;).
We define functors

3, : R— Adm — SET
R’ — {w — compatible Fil,F ® R’ € GR(R')},
JW,) : R— Adm — SET
"+ {w — compatible (FiloF ® R, {v;}) € GRT(R')}.

These two functors are representable by affine formal schemes, for more
detailed description see [1] 4.5. We only remark that 3207 is a torsor over
J20,, under ¥,,. Where T, is the formal torus defined by

Tw(R) = Ker(T-(R') = Tr(R' /J@"R'))

for any object R’ in Adm. All these constructions are functorial in R. They
do not depend on m but only on w.
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3.2. The overconvergent sheaves w;fu"””

Recall we have the Shimura variety Y. On the associated rigid space Y7,
we have a continuous function Hdg : Y% — [0, 1]. For v € [0, 1], we have the
open subset Y (v) = Hdg~1([0,v]). There is a formal model 2)(v) of Y (v) by
some suitable blow-up and normalization, see [1] 5.2.

Let m > 1 be an integer and v € v(Og) such that v < %Tl/_l
32'7"% if p = 3). We have canonical subgroups C,,, C;- of level m over Y (v).
Let

(resp. v <

X1 (p™)(v) = Isomy () (Z/p™ L, Cp) x Isomy () (Z/p"Z)" ", (Cp) 7).

It is a finite étale cover of Y (v). Let X1(p™)(v) be the normalization of
Y (v) in Xq1(p™)(v). Let B C GL,—1 X GLy be the Borel subgroup which
contains T, with unipotent radical U, (when n = 2, B, = T, U, is trivial).
Set X(p™)(v) = X1(p™)(v)/B-(Z/p™7Z). We have the following modular in-
terpretations for the formal schemes X;(p")(v) and X(p™)(v).

Proposition 3.3. For any object R in NAdm,

1) X1(p™)(v)(R) is the set of isomorphic classes of (A,u, \, 7,9, ¢7),
where (A, 1, \,7) € Y(R), and for any rigid point x in R, Hdg(H,) <
v; W L pML ~ CR o (Z)pmZ) Y ~ (C5)P are trivialization of
canonical subgroups of level m over R[%].

2) X(p™)(v)(R) is the set of isomorphic classes (A,i, \, 7, Fils), where
(A, e, \,7) € Y(R), and for any rigid point x in R, Hdg(H,) < v; Fils
is a full flag Fily of H[p™] over R[%] such that Fily = Cy,.

Proof. (1) is clear from the construction. For (2), by definition X(p")(v)(R)
is the set of isomorphic classes (A,:, \,7, Fil], Fil,), where (4,:,\,7) €
Y(R), and for any rigid point = in R, Hdg(H,) < v; Fil] (resp. Fil,) is
a full flag of C,,, (resp. C;-). One can easily translate Fil§ and Fil, as a full
flag of H[p™| such that Fil; = C,,. O

We will identify the formal scheme X(p)(v) as a sub formal scheme of X,
and simply write it as X(v).

Let w € v(Op)Nm — 14 S5, m — v%]. Let H/X1(p™)(v) be the uni-
versal p-divisible group. Applying the construction in the last Subsection, we

have locally free sub-sheaves F* C WH X, (pm)(v)s F  C WHD %, (pm)(v)- Lhey
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are equipped with isomorphisms:

(HTyo ") ®@1: Z/p™Z @ Ox, () /P Ox,(p)(w) = F '+ @ O,
(HTyoy )®1: (Z/me)n_l & Oxl(pm)(v)/pw(l)xl(pm)(v) ~F R0 ..

We have a chain of formal schemes:
I0E B aw, B X (™) (v) B XM (v) B X(v).

Recall that JQILI is a torsor over J2U,, under the formal torus ¥,,. Let B,
be the formal group defined by

B (R) = Ker(Br(R) = B-(R/p“R))

for all R € Adm. Then there is a surjective map 8B,, — %, with kernel
. Then we have an action of B, (Z,)B,, on I, over X(p™)(v) (with £,
acting trivially).

Recall our weight space W with W(C,,) = Hom(T+(Z,), C)\). As in Def-
inition 2.2.1 of [1], for w € Qx¢, a character k € W(C,) is called w-analytic
if it extends to an analytic map & : T-(Zp)(1 + p*“Oc,)" — C,;. Moreover,
W has an increasing cover by affinoids W = J,,~, W(w), such that the re-
striction of the universal character *"* of W to W(w) is w-analytic. Let
k= ks € W(K) be a w-analytic character, where K|L is a finite exten-
sion. Then we have the total character kK = (k, (Ko )gr), With the characters
(Ko )or fixed as in the Subsection 2.2. The involution

R = (kT,la s kT,n—l: kT) — K = (_kr,n—la S _kT,la kT)

of X*(T;) extends to an involution of YW mapping w-analytic characters to w-
analytic characters. The character & : T;(Z,) — K* extends to a character
k' Br(Zp)Byw — K* with U;(Z,)ih, acting trivially. Recall that we have
the above chain of morphisms of formal schemes. Set m = w1 0 9 0 3 0 7y4.
Let w™ be the formal completion of the integral bundle Rgprwge over Sgk.
This is a sheaf over X. Since (ks )s7 is fixed, the weights of our automorphic
forms depend only on k = k.

Definition 3.4.

1) The formal Banach sheaf of w-analytic, v-overconvergent automorphic
forms of weight « is

mif = 1, Osqp+ [K] @ W7 | (0.
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2) The space of integral w-analytic, v-overconvergent automorphic forms
of weight x over X is

M (X(v)) = HO(X(v), my).

Let k,m,v,w satisfy all the compatible conditions for the existence of
mis. If v/ < v then k, m,v', w satisfy also the conditions and the sheaf m}* on
X (v') is the restriction of the sheaf on X(v). For any w’ > w, one can find m’
such that x,m/, v, w’ satisfy the conditions, and one has a map mif — mf:?

and thus a map M7 (X(v)) — quf”(%(v))

Definition 3.5. Let x € W. The space of integral locally analytic overcon-
vergent automorphic forms of weight x over X is

M™(X) = lim  M(X(0)).

v—0,w—00

Let ZW;, and ITW,, be the rigid spaces associated to J2U., and J20,,
respectively. They are admissible opens of the rigid spaces associated to
GR* and GR respectively. Let T}, be the rigid space associated to the formal
torus T,,. Then IW, is a Ty,-torsor over ZW,,. The rigid spaces associated
to X(p™)(v) (resp. X(v)) will be denoted by X (p™)(v) (resp. X (v)). Note
that X (v) is a strict neighborhood of the tube | X?[ over the multiplicative-
ordinary locus, see Subsection 2.3. Moreover, X (0) =] X?[. We have a chain
of rigid spaces:

IW, = IWy — X1(0™)(v) = X (™) (v) — X (v).

As in [1], let Xt (p™)(v) = X1(p™)(v)/U-(Z/p™Z), which is the rigid space
associated to XT(p™)(v) = X1(p™)(v)/U,(Z/p™Z), then IW] (resp.
IW,,) descends to a rigid space ZWUF (resp. ZWY) over XT(p™)(v)
(resp. X (p™)(v)). Moreover, ZWYF is a T,, torsor over ZWY . Recall the
M'=GL,_1 x GLy x HU?ET G L,-torsor T over X. We have the decompo-
sition 7 = T; x T7, where T; (resp. T7) is the GL,,_1 x GLq-torsor (resp.
[15r GLy-torsor) over X. Let T, T, T™" be the rigid analytic spaces
associated to T, 7, and T 7 respectively. For w > m — 1 + p%l, we have open
immersions ([1] Prop. 5.3.1)

IWy = (T U x ), TWay = (T Br ) x(0).
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Let wir be the generic fiber of the formal Banach sheaf mir. It can be
defined by using the morphism ZW?%" — X (v) in the same way as in the
definition of mi’.

Definition 3.6. Let x € W. The space of w-analytic, v-overconvergent au-
tomorphic forms of weight & is

M (X (v) = H(X (), wlr).

The space of locally analytic overconvergent automorphic forms of weight s
is
MI(X) =l MIF(X(0)).

v—0,w—00

Concretely, we can describe a w-analytic, v-overconvergent automorphic
form f of weight x as an element in HO(ZWOF x 7779, Oqpyo+  7r.ris ) in the
following way (here and in the following we write simply ZW%F x 7779 for
the space ZWO x T™"| x () over X (v)). For any finite extension K of L,
a K-valued point of ZWUF x 77" has the form

(Av Aa Lvﬁ’ Fll'H[p]aFﬂO]:7 (UT’ (,UU)O'#T))?

where (A, \,¢,7) € Y(v)(K), FileH[p] is a full flag of the p-torsion sub-
group of the associated one dimensional p-divisible group H over O such
that Fil; H[p] = C1, (File.F,v,) is a full flag in (77"?/B;)(K) with a basis
vr = (Viry .-+, V(n—1)r> vnr) for the graded pieces, such that there is a trivi-
alization ¢ = (v, ¢7) : CE(K) @ (CH)P(K) ~ Z/p™Z & (Z/p™Z)" 1 (for
some integer m > 1) which is compatible with File H [p], and (FileF, v;) is w-
compatible with t; finally (vs)s-, is an element in 77" (K) over X"9(K).
Then

f(Aa Aa [’7 ﬁ? Fll'H[pLFﬂOfv (UT7 (1)0')0'757')) € K
such that for all b € By we have

f(A’ )" L1, Fﬂ.H[p], Fﬂ.]:, (vTa (Ua)a;ér) © b)
= & (D) f(A, N, 0,77, File H[p], Filo F, (vr, (V) gtr )

The space M/ (X (v)) is a Banach space, with the unit ball M (X(v)).
Locally for the étale topology, the sheaf wif has fibres isomorphic to the
space Vi~ " @ @, Vi, (cf. [1] Proposition 5.3.4), where V.J™%" is the
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locally w-analytic representation of the Iwahori subgroup I of GL,,—1(Z,) x
GL1(Zy), which is defined as

Vo ={f 1= L|f(ib) =x'(b)f(i),
V(i,b) € I x Br(Zp), flno € FY7*(N°, L)}.

Here are some explanations. Recall that I has the Iwahori decomposition I =
B (Zp) x N°, where N is defined in the following way: let B2 C GL,_1 x
G'Ly be the opposite Borel subgroup of B, with unipotent radical U?, then
NV is the subgroup of UY(Z,) of matrices which reduce to the identity mod-
ulo p. F¥=9%(NV L) is the set of w-analytic functions, i.e. the functions from
NO to L which are the restrictions to N° of the unique analytic functions
on N :=J,cno B(z,p~"), where B(z,p~") is the closed ball with center

(n—1)(n—2) .
. . : (=D(n=2)
in the rigid analytic affine space A~ = " over Q,. Here

x radius p~

we identify N° with (pr)(n_l);n_Q) C A" In the case n = 2, we
have N° = {1},I = B,(Z,) = T-(Z,) = (Z;)Q, Vi~ is just the space of
w-analytic characters.

Recall that we have the total character k = (k, (ks)oxr). When & €
errfl x 7 we have the automorphic vector bundle w”* over X, which we will
denote simply as w" since (kq)qr is fixed. We denote also the corresponding
vector bundle over the rigid analytic space X" by w”. By construction we
have the following proposition and corollary.

w

Proposition 3.7. If k € Zi_l X Z, then there is a canonical restriction
map

W"| x () <> Wi

induced by the open immersion TWIT — (T:ig/UT)]X(v). Locally for the
étale topology, this map is isomorphic to the inclusion

Ve @VT = VIV’
of the algebraic induction into the analytic induction, where VT = ®U¢T Vi, -
Corollary 3.8. For any k € Zi_l X Z, we have an inclusion

HO(X, ") = M{F(X(0))

from the space of classical forms of weight k into the space of w-analytic,
v-overconvergent automorphic forms of weight k.
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4. Hecke operators
4.1. Hecke operators outside p

Consider the set of prime to p Hecke correspondences K \ G (A?) /KP. For
any KPgKP, there is an algebraic correspondence pq,ps : Cy — X over X. It
is defined as follows: recall K = K? K, with K, as in Subsection 2.2. We have
Cy = Shi,kx» where K! = KP N g~ 'KPg, with p; the natural projection and
p2 as the composition of the natural projection Shx gz — Shy, g-1xrg With
the isomorphism Shg ¢-1xry — Shi,x» = X induced by g. We consider the
rigid analytification of this correspondence, then we restrict it over X (v), so
we have the diagram

/Cg (U)\
P P2
v) X (v)

Over Cy there is a universal prime to p isogeny 7 : A — A’ defined by the
morphism Shy g-1xrg — Shk,k» = X, which induces amap 7 : w4 — wa,
hence a map pi(T7" /U, x TT"9) — pi(TF /U, x T™"9) which is an iso-
morphism. For w €jm — 1 + p%l, m — U;Tml], the map 7* induces an isomor-
phism (see [1] Lemma 6.1)

7 5 pIWS X TT9) = pl(IVAF x T779).
We define the Hecke operator T, as the composition:

T, : H(X (v),w )%HO( Cy(v), Phwir)
s HO(Cy(v), piwl®) "2 HO(X (v), wi).

Consider the prime to p Hecke algebra TP = ’H(G(A?)//Kp), which is
the restricted tensor product of all local Hecke algebras T; = H(G(Q;)//K;)
for primes [ # p. We know there are only finite primes [ such that K is
not hyperspecial maximal. Let TX” be the sub algebra of T? which is the
restricted tensor product of all T; such that KP? is hyperspecial maximal at

I. Then TX” is commutative. The above construction gives us an action of
TE” on MIF(X (v)).
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4.2. Hecke operators at p

We will define n — 1 Hecke operators at p as follows. Recall that in Section
2 the primes of the CM field F' over p are denoted by w = wy, ws,..., @,
w’, w§, ..., w;, and we have assumed F; = Q,. The p-divisible group asso-
ciated to the universal abelian scheme A over Sk has the decomposition

Ap™] = Alw{®] @ - © Alw] @ Alw(™] @ - - @ Alwp™],

with A[w®]P ~ A[@w{™] for all 1<i<r. The p-divisible group H =
ef A[w™] has dimension one, where £] is the idempotent introduced in
Subsection 2.2. For a finite locally free subgroup L C Hp|, we denote by
L C Alp|] the subgroup such that under the induced decomposition L =

L& DL &L;® - & LE, we have

I$=7r e (Hp)/L)P,I¢ =0, 2<i<nr

Here L; and f/f are the subgroups of A[w] and A[w’] respectively via the
Morita equivalence corresponding to L and (H|[p]/L)?. Note ] (A/L)[w™]
=H/L.

Now for¢ =1,...,n — 1, let C; be the moduli scheme over X parameter-
izing finite locally free subgroups L C H|[p] such that L @ Fil;H[p] = H|[p].
There are two projections py,ps : C; — X. The first projection is defined
by forgetting L. The second projection is defined by mapping (A, A, ¢,7,
Fil,H[p|,L) to ((A/L),N,/,n,Fils(H/L)[p]), where the filtration on
el (A/L)[w] = (H/L)[p] is defined as follows:

e For j=1,...,4, Filj(H/L)[p| is simply the image of Fil;H[p| in H/L,

e For j=i+1,...,n—1, Fil;(H/L)[p] is the image of Fil;H[p|+
p L(Fil;H[p|N L) in H/L.

We consider the analytifications p1, ps : C “ _y X9 For an admissible open
subset V' C X" we denote the image of V' under the correspondence C; by
U; (V) := pa(py 1(V)), which is also an admissible open subset of X"%.

Remark 4.1. In the definition of the correspondences C; fori =1,...,n —
1, we have taken them by parameterizing L with L & Fil; H[p] = H|p], Ej =
Alw;] and E; =0 for 2 <j <r. In fact, as in [23], it is more natural to
define the correspondences Cj o, for ¢ =1,...,n —1 by parameterizing L
with L @ Fil; H[p] = H|[p], Ej = E; =0 for 2 < j <r. At the places w; for
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2 <j <r, we define correspondences Cy, by parameterizing L with L =
Alwj], Ly=0forall 1 <k<rk#j. ThenCw —Xfor2<j<randthe
morphism py is by taking the quotient by L = Afw,]. For 2 < j <r, by
construction these quotients do not change the part ®,.-wg. Therefore when
passing to operators on the space of automorphic forms (see below), there is
no difference between U; = U, , o H;:2 Up, and Uj o, fori=1,...,n— 1.

We first consider the correspondence C. If v < zpp;_%, then by the theory
of canonical subgroups we know ([15] Prop. 17)

U1(X(v) € X <;> :

Let Ci(v) = C{Zg Xpy,xris X(v). We have the diagram

C1(v)
V) X(2)

Let 7 : A — A’ be the universal isogeny over C(v). Then as before it induces
an isomorphism

Ty (IWa X TT9) | x(2y = pIIWY x TT9).
We define the Hecke operator Uy as the composition:
1o (x (1) k) % (o0l
p

™ HO(Cy (v), plewln) T EP

H(X (v), wly).

By abuse of notation, we also denote by U; the endomorphism of
HO(X (v),w) obtained as the composition of the above operator we just
defined with the restriction map

HO(X (v),wir) — HO (X <Z> ,wj,f> .
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Next we consider the correspondences C; for 2 < i <n — 1. Let Cj(v) =
C" Xy xris X(v). If v < %, we have a diagram

C;(v)
v) X (v)

As in [1] 5.6, for v < 5= (resp. v < zm L ifp=3) and w = (wk j)1<j<k<n €
m o n(n+tl)
]p T, m sz 7] 2 satisfying wgy1,; > wyj, wej—1 > wy j, We can intro-

duce a space ZW9t over X (v) such that for w with all wy; = w, IWL" =
IWIF. Let m: A — A’ be the universal isogeny over C;(v). We have a map
*rwy — wa. It induces a map 7 : piT; Y — pf’f”g which sends a ba-

sis v],...,v), of wa; to p 17r*’u{,...,p Lol L omol l+1,...,7r*p;1. This
map is an isomorphism. It induces an isomorphism 77 : p’fTT”g JUr —

P57 JU,. We have the following proposition.

Proposition 4.2. Letv < 1nf{3pm I, 2p p} and w = (wk])1<]<k<n 1 with
wy,j €], m — 2—11;’ “]. Then the isogeny = induces 7* piIWS C

IWO, wherewk =wyj forj <k <i, wk =1+ wg; fory <z and k >
Z+1 andwkj—wk]for]>z+1

Proof. Identical to the proof of Proposition 6.2.2.2. in [1]. O

By the above proposition we have
TP E@WYT x TTT9) C ps(IWoF x TT9).

Let w and w' be as above, H be a inf{wj ;}-analytic character. Then we have
also the sheaves ww and ww on X (v). For 2 <i <n — 1 we define the Hecke
operator U; as the composition:

HO(X (v),wf%) B HO(C(0), piwl)

5 H(Ci(w), piwl) " "

H(X (v), wfy)-
By abuse of notation, we also denote by U; the endomorphism of
HO(X (v), ww ') obtained by composing the above operator with the restric-
tion map HO(X (v),wls’) — HO(X (v),wls).

Let m > 1 be some large integer. For v < inf{z—— 3p

an
p—1

m— 172p p}we]p 1,m_

n —vL—=] and k a w-analytic character, the product szl U, induces a map
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HO(X(%),wE) — HY(X (v),wi) for some suitable w’ with wy ;> w. Let U
be the composition of [/~ U; with the restriction map H(X (v),wjf) —
H°(X(%),wly). Then we have the following proposition.

Proposition 4.3. U is a compact endomorphism of M (X (v)) =
HO(X (v), wl).

Proof. The operator U; improves the radius of overconvergence, and for
2 < i <r the operators U; improve analyticity, therefore all of them are
compact. Moreover, the natural restriction map is compact. Hence their
composition U is compact. ]

Let T, be the algebra generated by Uy, ...,U,_1, and TE” be the com-
mutative Hecke algebra defined in the end of the last subsection. For the
above v, w, K, we have the morphism of algebras

TE" @ T, — End(M]*(X (v))).

As explained in Remark 4.1, although the different conventions on the cor-
respondences C1, . .., C),_1 may produce slightly different algebras T,,, when
passing to the image of the Hecke algebra TX" @ T, into End(MJ,”i(X (v))),
these differences disappear.

5. Analytic continuation and classicality

Recall that we have fixed the weights (ko)ozr = (Kio,---)Kkno)ortr €
HU#T 7. Let k = kr = (K1, ... kno1,kp) € Zi‘l x 7 be w-analytic for some
rational number 0 < w < 1. Then we have the inclusions

HO(X,w") — HO(X (v),w") = H(X(v),w]r).

We will establish a criterion for an element in H?(X (v),w") to be classical,
i.e. in the image of H°(X,w"). For a = (a1, ...,a,_1) € [0,+00]"" 1, we set

M:[,”(X (v))<2 for the union of the generalized eigenspaces where U; has finite
slope < a; for 1 <i<n—1.

Theorem 5.1. Let k= (ki,...,kn—1,kn) € Z’f;l X Z, be w-analytic for
some rational number 0 < w < 1. Let a = (a1,...,an—1) € RQBI with a; =
kn—i—kn—iv1+1when2 <i<n-—1anday =k, +kn—1 — n+ 1. Then we
have the inclusion

MJF(X (v))<¢ ¢ H(X,w").
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The proof of this theorem consists of the following two propositions.

Proposition 5.2. Let a/ = (+00,az,...,a,_1) € [0,+00]" "1 with a; the
same as in the above theorem for 2 <i <n —1. Then we have the inclu-
sion

MIF(X (v))<% € H(X (v),w").

Proof. We argue as [1] 7.2 and 7.3. First, there is a exact sequence of sheaves
over X (v)

0 — w20 wir Ay @ wiser,
a€cA
Here A is the set of simple roots of GL,_1 x GLq1, s, is the associated
element in the Weyl group to a € A, s, - k is the usual dot action, d; =
©Oq :wy, = PBoca wi* ™ is the sum of the maps O, which are defined as
in Subsection 7.2 of [1]. Next, for 2 <i < n — 1 we have the operators ¢; for

11,
V7" as defined in loc. cit. 2.5 for d; = <p 11 ) € GLp—1(Qp) x
i 1

GL1(Qp). ¢; extends naturally to an operator on V)" *" @ V7 (by acting
trivially on V7, where V7 is as in Prop. 3.7). Then one checks that locally
on the fibers, the operators U; and §; are compatible for 2 < i < n — 1. Using
this we get

UiOa(f) = ad;) <" > O,Ui(f)

from the corresponding equalities for the representation V)™ (Subsec-
tion 2.5 of [1]). One then uses the slope condition as the proof of loc. cit.
Prop. 7.3.1 to conclude. O

Proposition 5.3. Let HO(X (v),w®)<Fnthna=n+1 pe the eigenspace where
Uy has slope < ky, + k1 —n + 1. Then it is included in the space of classical
forms

HO(X(U), wrs)<k‘n+kn,1—n+1 C HO(X, wm).

We begin the preparation for the proof of the above proposition. It will
be finished in Prop. 5.7. The method which we use here is by studying
the analytic continuation of finite slope overconvergent eigenforms as in
[23]. There is a related work [4] of Bijakowski, where classicality results for
modular forms over some general PEL type Shimura (with unramified local
reductive groups) are proved. Although Bijakowski also used the method
of analytic continuation to prove classicality results, there are still many
differences between our approach below and that in [4]. Namely, Bijakowski
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studied intensively the geometry near the region with integer degrees in the
rigid analytic Shimura varieties, while we are mainly based on the geometry
of the special fiber, which is simpler in our special case. In this sense our
method is more close to that of [23]. We remark that there is a related result
of Johansson in [18] by studying the rigid cohomology for a more restricted
sub class of our Shimura varieties.

We define a function of deg over X" as follows

deg : X" — [0, 1]
x — deg(Fil; Hy [p]).

Then it is continuous, and note that X(v)=deg ([l —v,1]),]X{[=
deg=1(1) = X(0). For any point y € Uy (z), we have deg(y) > deg(z). More-
over, the equality holds if and only if Fily H,[p] is a truncated p-divisible
group of level one, see [23] Propositions 3.1.1 and 3.1.2. Therefore any fi-
nite slope eigenform for Uy in H%(X (v),w") extends to the analytic domain
deg=1(]0,1]). We would like to extend them further to the whole space X",
Since in our special case

o - (0 [

it suffices to extend these forms to the tube ]Yn_l [H]YR_Q[ We know that
we can do this for the domain

deg=1(10,1]) N G X! []_[] X" D .

To extend to the remaining domain

w0 (7 ] 7).

we will use the condition that the slope for Uj satisfies v(a) < ky, + kp—1 —
n + 1 to define some Kassaei series and then glue.

Consider a strict neighborhood ]Yn_l [- of X" [ such that the canonical
subgroup C' C H[p| inside the universal p-divisible group H exists. Then the
correspondence C|" has the decomposition

~n—1

Crnp (X" ) = Cr ucey

when restricts to ]Yn_l[a, where C} parameterizes the subgroups L C H|p]
which has trivial intersection with C', and C’lZ parameterizes the subgroups
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L C H|p] which contains C. Then the degree of L is <1 over C} while
>1—nover C’lz, where 0 < n < 1 is some real number which depends on ¢.
Over the tube ]Yn_2[, we have also a decomposition

1) —1 N2
o np (X)) = Crucy,

where C} parameterizes the subgroups L C H|[p|] such that L® = H|[p|*
which have height n — 2, and C’l2 parameterizes the subgroups L C H|p)
such that L C H([p]® and thus the local parts L° = H[p]®. The degree of
L is < 1 over C; while =1 over Clz. Here we have used the fact that, over
the formal completion of Sk along X" there is an exact sequence of finite
locally free groups

0 — H[p]" — Hlp] — H[p]" — 0,
which induces an exact sequence for the subgroup L C H|[p]
0— L' — L — L% —0,

see [23] Lemme 5.1.2. Therefore, we obtain decompositions of the Hecke
operator U;

U, =USUUZ

over | X" '[. and ]YH_Q[. If we consider U, U7 as maps on the set of
admissible opens (defined by the correspondences C;~, C’l2 respectively), then
by construction

UF(X"]0) € deg™1(10,1]), UF (X)) € deg ™" (10, 1]).

Remark 5.4. Here we use our special signature condition (1,7 — 1) x
(0,m) x --- x (0,n) to have the decompositions of the correspondence C]"
over ]Yn_l[6 and ]Yn_2[. In general, one should work on the tube over each
Kottwitz-Rapoport strata to get the decompositions of the related Hecke
correspondence, see [23] Section 5.

Let f € HY(X(v),w") be an overconvergent eigenform for U with eigen-
value a #0. We know that f extends to a form over deg~!(]0,1]) N
(]YR_I[H]YH_2[), which we still denote by f. Assume that v(a) < ky +
kn—1—n+ 1. We claim that there exists an overconvergent form f over

X" MIIX" %[ which extends f.



1498 Xu Shen

Let € be a real number such that k, + k,—1 —n+1—v(a) >e > 0. We

choose an €y > 0 such that over any admissible open V' C]Y"i1 [,, the norm
of U has the estimate (cf. [23] Lemme. 5.4.6)

[UFlly < protrrtnmite,

where for an operator T': HY(T(V'), F) — H°(V, F) (F is alocally free sheaf
equipped with a norm |- |), its norm over V' is defined as

IT|lv = inf{8 € R*||T(f)lv < BIflrey, ¥ feH(T(V),F)}.

Let & = (L)Feq for all k> 1. Here N > 1 is such that UZ(JX" '[,) C
X" [ne, (loc. cit. Prop. 5.4.5). For k > 1, f as above, we define

k—1
fo=>Y_a T (UFY o US)(S),
7=0

~n—1

which is a well defined element in H°(] X [, ,w"). We have the following
proposition.

Proposition 5.5. For all k > 1, we have the estimate

forr = fulzrry, = O(p~Hknthnamnitmv(e)=e)),

1

Proof. By definition over }Yn_l[

frs1 = fo = o HUDF o US)().

Since the norm of U~ is always bounded, we can conclude by the estimate
for the norm of Ulz. O

Over the tube ]YniQ[ we have also the following definition. For k > 1, f
as above, we define

k—1
fo=>Y_a T (UFY o US)(S),
j=0

~n—2

which is a well defined element in HY(]X

[,w"). For any admissible open
Vv C]Yn_2[ we have the following norm estimate

[UFlly < b tortnt,
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Similar to the above, we have the proposition.

Proposition 5.6. For all k > 1, we have the estimate

[l = fil gz = O(pF b thnmsmntimele)),

Let f € HY(X(v),w") be as above. Now we can prove the proposition,
which will finish the analytic continuation of f to the whole space X" under
the slope condition. Thus it is classical.

Proposition 5.7. There exists a unique section of w" over

ERIES
which extends f.

Proof. We consider the larger domain

[ U

for all k > 1. By the above we can define f; and f;, over }mel[gk and ]Ynd[
respectively. Let V :]Yn_l[sk NJX" 7. We study the norm of fi — fJ, over
V. First we consider V as a sub domain of | X" " [.,. Then the operator U;

has a decomposition
U, =UZUUS

according to the decomposition of the correspondence CT" when restricting

to pl_l(V). Now we consider V as a sub domain of | X' [, the operator UlZ
has a further decomposition

Uz =U,uuy,

where the part U] corresponds to the sum over the subgroups L of H|[p]
such that L NFily H[p] = 0 and L¢ = H|[p|* (which have height n — 2), and
the part U{ corresponds to the sum over the rest subgroups L of H[p] such
that LNFiliH[p] =0 and L¢ C H|[p]® (which have degree 1). Therefore,
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the image of U] is included in deg=*(]0,1]). We have

k
fr— fr, = —aF (Z(U{/)k_j ° (U{)]) (f)-

j=1
By using similar estimate for the norms of the operators U{ and Uy, we have
|fx — frlv = O(p~Fknthamntl=v(a)=e)y

This will suffice to prove the proposition by using Kassaei’s gluing lemma
in [20]. 0

6. Families of overconvergent automorphic forms

Let U = Sp(A) C W be any affinoid open subset. Then there exists a wy; > 0
such that the universal character " : T-(Zy) x W — C restricted to U
extends to an analytic character £"":T-(Zy)(1+p*“Oc,) x U — CJ, cf.
[1] Prop. 2.2.2. Let m € Nyv < 2]?"’% (resp. 310*"% for p=3) and w €jm —
1+ pﬁl,m — v}%ml] satisfying w > wy. We have the following proposition
which says the construction in Section 3 works in families, see also loc. cit.

Prop. 8.1.1.1.

Proposition 6.1. There exists a sheaf wif™" on X(v}? X U such that for
any weight k € U, the fiber of Wi over X(v) X K is wiy.

Proof. Consider the projection 7 x 1: ZWUF x U — X (v) x U. Recall we
have the bundle w™ = ®q4-w}i over X (v) for the fixed weight (ks )s2r apart
from 7. We take wi' = ( x 1)«Oppor sy [(K) ] @ w7 O

Let M, ,, be the Banach A-module HO(X (v) x U, wi""). Then similar
to Section 4, there is an action of the Hecke algebra TX” @ T, on M, for
v small enough. For w' € Qs, as W(w') is affinoid, we can consider the
admissible open subspace Y C W in the form U = W(w') = Sp(A). In this
case, we can take w = w'.

Proposition 6.2. 1) The Banach A-module M, ,, is projective.

2) For any k € U, the specialization map
M, — HY(X (v),wl")

18 surjective.



p-adic families of automorphic forms 1501

Proof. The proof is similar to the proof of Prop. 8.2.3.3 in [1], except that our
Shimura varieties are proper, so the things here are simpler. First, note that
mi" over X(v) x 20(w) is a formal Banach sheaf, where 20(w) is a formal
model of W(w), and mi" is constructed in the same way as ml;’, which
is a formal model of the sheaf wlfun in the above proposition. Next, since
X (v) is affinoid, we can take a finite affine Covering U= (Tj)i<j<k of X(v).
Let ¢ = (i1,...,%;) be an index with 1 <4 <--- <i; <k, and U, be the
intersection of Q]Zl for 1 < l < j which is again an affine formal scheme. Let
M; = HO(; x W(w), mly""), then it is isomorphic to the p-adic completion
of a free B-module, Where W(w) = Spf(B) (so A= B[ 1). Let M = M, ,, =
HO(X(v) x 2(w), m )[p] Since the rigid analytic ﬁber of the covering
forms a covering of X (v) and X (v) x W(w) is affinoid, we get a resolution
of M by the projective modules M; [ ]. As a result M is projective. Finally,
the specialization map is surjective by considering the Koszul resolution of
A/m,; and the double complex obtained by taking the Cech complex of the
Koszul complex, see the proof of Corollary 8.2.3.2 of [1].

O

By the above proposition, one can apply Coleman’s spectral theory as in
[1] 8.1.2 or in [7] 5.7 to construct an equidimensional eigenvariety over W.
More precisely we have the following theorem. In the following we denote
O(&)" as the reduced algebra associated to O(E).

Theorem 6.3. There is a rigid analytic variety £ over L and a locally
finite map to the weight space w : € — W, such that

1) & is equidimensional of dimension n.

2) We have a character © : TK" @ T, — O(E). For any k € W, w™ (k)
is in bijection with the eigensystems of TK" ® T, acting on the space
of finite slope locally analytic overconvergent automorphic forms of
weight K.

3) For any k= (k1,...,kn_1,kn) EZ ' X Z CW, if v € w™l(k) satis-
fiesv(O4(Us)) < kp—i — kn—iv1 +1 for2 <i<n—1andv(0,(U;)) <
kn 4+ kn_1 —n+ 1, then the character ©, comes from a weight k au-
tomorphic eigenform on X. Here O, is the composition of © with the
evaluation map ev, : O(E) — k(x) (k(x) is the residue field of x).

4) There is a Galois pseudo-character T : Gal(Q/F) — O(&)"?, such that
for any point x € &, there is a continuous semi-simple representation
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pz : Gal(Q/F) — GLy,(k(x)) and the trace of this Galois representa-
tion is T,. Here T, is the composition of T with the evaluation map
evy 1 O(E)ed — k(x).

Proof. (1) and (2) come from the construction. (3) was proved in Section
5. For (4), we use the density of classical points as proved in (3) and the
results of Harris-Taylor in [17] to get the desired Galois pseudo-character, as
in [3] 7.5.2. We sketch the proof as follows. Let Z C &£ be the subset defined
by (3), then it is Zariski dense in £. For any point = € Z, by the main
result (Theorem C) of [17] we have a Galois representation p, : Gal(Q/F) —
C}Ln(@p)7 such that T'rp,(Frob;) = ©,(1;) for any [ # p and such that K is
hyperspecial. Here F'rob; is the geometric Frobenius at [. Consider the map

H Trp, : Gal(Q/F) — H Q.

zeZ reZ

Since Z is Zariski dense in &, the map f — (f(x))zez induces a closed
immersion
ey = I T,
T€Z

Here the upper subscript < 1 means that we consider the subset of functions
with norm <1. On [[,., @p we take the product topology for the p-adic
topology on Q. The statement that the image of (O(€)"?)<!in [],.,Q, is
closed, comes from the fact that (O(£)"*?)=! is compact, see Lemma 7.2.10
of [3]. Moreover, since the prime to p Hecke operators 7; have norm < 1,
we see that the elements ©(T;) (image of O(T}) in O(E)"?) are included
in (O(&)*?)<!. Therefore by Cebotarev’s theorem we can conclude that
[T,ez Trps factors through (O(€)7?)<!. Thus the desired Galois pseudo-
character T exists (for the fact that T, = T'rp, which takes values in k(z),
see p.172 of [3]). O

Remark 6.4. It will be interesting to study the properties of the Galois
representations p, for x € £. For example, when is it crystalline or poten-
tially semi-stable? By the main results of [17] and [25], it is true that the
crystalline points (that are the points 2 € £ such that p, are crystalline) are
dense in &, see [3] 7.6. Also it will be interesting to find applications of our
eigenvarieties to the construction of Galois representations as in [10].

Remark 6.5. In this paper we worked out the construction of some equidi-
mensional eigenvarieties for the Shimura varieties studied by Harris-Taylor
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with local reflex field @,. An immediate extension to the Shimura varieties
studied in [25] works. One may try to work in the general case that the local
reflex field is not necessary Q,. However, for this one will need a theory of
canonical subgroups for ww-divisible O-modules in the sense of Section II.1
of [17] (O is the integer ring of some finite extension of Q,, w is a fixed
uniformizer of O). Here one should consider the Faltings dual instead of the
usual Cartier-Serre dual, and the expected canonical subgroups should be
strict in the sense of [14]. This theory should be as good as the theory of
canonical subgroups for usual p-divisible groups as in [15] (the case for di-
mension one may be easier, see [19] and [5] for the case of height two). Since
the first version of this article appeared, recently in a joint work [24] with
Tian, we have developed a such theory and applied it to the construction
of eigenvarieties in some more general case along the same line as here. For
example, we can treat the case of unitary Shimura varieties with signature
(d,n—d) x (0,n) x --- x (0,n). For p-divisible groups with more general ad-
ditional structures induced from more general PEL type Shimrua varieties,
one will need a theory of more generalized canonical subgroups. Once such a
theory is available, combined with the theory of arithmetic compactification
of PEL type Shimura varieties (with good or bad reductions, see [21]), one
can deal with any PEL type Shimura varieties (compact or not) with the
usual ordinary loci empty or not to construct geometrically the associated
eigenvarieties.

In the future work we will compare the eigenvariety £ with those intro-
duced by Emerton in [13] and Chenevier in [9]. In particular we will study
the completed cohomology of these Shimura varieties, and the possible p-adic
Jacquet-Langlands correspondence for £ and the corresponding eigenvariety
constructed in [9] as in the case of curves studied in [8]. See [22] for some
results in this direction in the case of Shimura curves.
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