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Commutators of singular integrals, the

Bergman projection, and boundary

regularity of elliptic equations

in the plane

Alexander Tumanov

We obtain estimates of commutators of singular integral operators
in Lipschitz spaces and apply the results to boundary regularity of
elliptic equations in the plane. We obtain an explicit asymptotic
formula for the Bergman projection.

1. Introduction

In this paper we are concerned with sharp boundary regularity in Lipschitz
spaces Ck,α of first order elliptic equations of the form

(1) fz = a(z)fz + b(z)fz + c(z)

in a smooth bounded domain Ω in complex plane C. Here fz = ∂f/∂z and
fz = ∂f/∂z. We impose the ellipticity condition

(2) |a(z)|+ |b(z)| ≤ a0 < 1

for some constant a0. We first consider the scalar equation (1) with the
Dirichlet type boundary condition Re f |bΩ = f0 for given function f0 on the
boundary. Suppose a, b, c are in Ck,α(Ω), k ≥ 0, 0 < α < 1. Suppose f0 is
in Ck+1,α(bΩ). We would like to conclude that every generalized solution
of (1) with Re f |bΩ = f0 is automatically in Ck+1,α(Ω). Apparently, this
classical question is not covered in the extensive literature on the subject.
In particular, the case of first order equations does not follow from the
classical results on boundary regularity of elliptic equations [1, 11]. If in the
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scalar equation (1), the coefficient b = 0, then the conclusion is rather simple
(see [12], Proposition 2.1). Tadeusz Iwaniec explained to the author that for
k ≥ 1 the Equation (1) can be reduced to a second order equation, and then
the conclusion follows from Schauder’s theory [11]. In this paper we give a
proof for all k ≥ 0. We also consider the vector version of (1) and give a
proof of the regularity of the Dirichlet problem for a = 0.

Another common boundary condition for Equation (1) isKΩf = f0. Here
KΩ is the Cauchy type integral (15) and f0 is a given holomorphic function
in Ω. In particular, the homogeneous condition KΩf = 0 means that f holo-
morphically extends to C \ Ω and vanishes at infinity. Solving (1) with this
boundary condition is equivalent to the problem of inverting the operator
f �→ f − TΩ(afz + bfz), here TΩ is the Cauchy–Green operator (14). The
vector version of this problem with a = 0 and small b arises in constructing
small pseudoholomorphic curves (see [4, 7, 9]). We prove the boundary reg-
ularity of this problem in the scalar case for general a and b satisfying (2)
and in the vector case for a = 0 and ‖b‖∞ < 1, answering a question raised
in [4].

A classical approach [2, 13] to Equation (1), in particular, the Beltrami
equation consists of reducing (1) to an integral equation with the operator
SΩ given by (3) or its modifications. The solution operator of the integral
equation is bounded in Lp(Ω) for p close to 2. In this approach, it is essential
that ‖SΩ‖2 ≤ 1. However, there is more precise information about the oper-
ator SΩ, in particular, SC is an isometry of L2(C), that is, SCSC = I. There
is a related property of SΩSΩ that we derive in Section 4. An iteration of the
integral equation corresponding to (1) with b �= 0 involves the term SΩbSΩb,
here b denotes the operator of multiplication by b. Since SΩ and SΩ do not
stand next to each other, in order to make use of SΩSΩ we need information
about the commutators of SΩ with multiplication operators, namely, their
smoothing properties.

There are well known Lp estimates of commutators of singular integral
operators with multiplication operators (see, e. g., [5, 6]). However, appar-
ently, Ck,α estimates of the commutators are covered in the literature only
for the case of Cauchy type integrals and similar operators (see [10], Sec-
tion 3.4.1). We present results on the matter for the operator SΩ. Although
we use complex variable notations, the results are real in nature and could
be established for more general Calderón–Zigmund operators.

As we mentioned above, the scalar equation (1) with b = 0 is rather
simple. If b = 0, then the Equation (1) can be reduced to the case a = b = 0
by changing the independent variable. Our method involving SΩSΩ and the
commutators now lets us deal with the case a = 0, b �= 0. In the scalar case,
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it suffices for treating the general equation (1) because we can reduce it
to a = 0. However, in the vector case, obviously, the reduction to a = 0 by
changing the independent variable is not possible in general, thus we only
handle the vector equation (1) for a = 0.

In Sections 2 and 3 we include results on Ck,α regularity of commuta-
tors of SΩ with multiplication operators. In Section 4 we study properties
of SΩSΩ. In Section 5 we give an asymptotic formula of the Bergman pro-
jection for Ω in terms of SΩSΩ. In Section 6 we treat integral equations
corresponding to the vector version of the Equation (1) with a = 0. Finally,
in Sections 7 and 8 we study the boundary regularity of the Equation (1).

2. Commutators of singular integrals

For a domain Ω ⊂ C, we consider the Calderón–Zigmund operator (see [2,
13])

(3) SΩu(z) = p.v.

∫
Ω

u(t) d2t

(t− z)2
.

Here for brevity d2t = (2πi)−1dt ∧ dt, and the integral is understood as
Cauchy principal value. Let a(z) be a function in Ω. We use the same no-
tation a for the operator of multiplication by a. We are concerned with
smoothing properties of the commutator

(4) [SΩ, a]u(z) =

∫
Ω

a(t)− a(z)

(t− z)2
u(t) d2t

in Lipschitz spaces. As usual Ck,α(Ω) denotes the space of functions whose
derivatives to order k ≥ 0 satisfy a Lipschitz condition with exponent 0 <
α < 1. We also sometimes write Cα(Ω) = C0,α(Ω) and Ck+α(Ω) = Ck,α(Ω).
We do not make a difference between Ck,α(Ω) and Ck,α(Ω). If k is integer,
then we use Ck(Ω) for the usual Ck-smooth functions. We use Ck,α(Ω,R)
for the set of real valued functions in Ck,α(Ω). We denote by Lp

R and Ck,α
R

the spaces of functions respectively in Lp(C) and Ck,α(C) with support in
the disc |z| ≤ R.

Theorem 2.1. Let 0 < α < 1, 0 < β < α, R > 0. Let S = SC.

(i) If a ∈ Cα(C), then the commutator [S, a] is a bounded operator L∞
R →

Cβ(C) and Cβ
R → Cα(C).



1224 Alexander Tumanov

(ii) If a ∈ Ck+1,α(C), k ≥ 0, then [S, a] is a bounded operator Ck,α
R →

Ck+1,α(C).

We begin the proof with a simple formula. We introduce the difference
and shift operators

Δhf(z) = f(z + h)− f(z), δhf(z) = f(z + h).

Lemma 2.2. For the operator S = SC, the following formula holds.

(5) Δh[S, a]u = [S,Δha] δhu+ [S, a] Δhu.

Proof. Clearly [Δh, S] = 0, [δh, S] = 0, and [Δh, a] = (Δha)δh. Then

Δh[S, a] = ΔhSa−ΔhaS = SΔha−ΔhaS

= S([Δh, a] + aΔh)− ([Δh, a] + aΔh)S

= S((Δha)δh + aΔh)− ((Δha)δh + aΔh)S

= [S(Δha)δh − (Δha)Sδh] + [SaΔh − aSΔh]

= [S,Δha] δh + [S, a] Δh.
�

Proof of Theorem 2.1. (i) Without loss of generality we can assume a(z)
has compact support because if a(z) = 0, say for |z| ≤ 2R, then the result
is obvious.

Let f = [S, a]u. We will write C1, C2, ... for constants that may depend
on α, β, and R. First of all

|f(z)| ≤ ‖a‖Cα‖u‖∞
∫
|t|<R

|t− z|α−2|d2t|.

Hence ‖f‖∞ ≤ C1‖a‖Cα‖u‖∞. Define

K(z, t) = K(z)(t) =
a(t)− a(z)

(t− z)2
.

In estimating Δhf(z) for simplicity put z = 0. Introduce

F (t) = ΔhK(0)(t) =
a(t)− a(h)

(t− h)2
− a(t)− a(0)

t2
.

For |t| < 2|h| we use the estimate

|F (t)| ≤ ‖a‖Cα(|t− h|α−2 + |t|α−2).
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For |t| > 2|h| we rewrite F (t) in the form

F (t) =
h(2t− h)(a(t)− a(h))

t2(t− h)2
− a(h)− a(0)

t2
,

in which the first term does not exceed C2‖a‖Cα |t|α−3|h|.
We have Δhf(0) =

∫
C
F (t)u(t)d2t = J1 + J2 − (a(h)− a(0))J3. Here

(6)

J1 =

∫
|t|<2|h|

F (t)u(t) d2t,

J2 =

∫
|t|>2|h|

h(2t− h)(a(t)− a(h))

t2(t− h)2
u(t) d2t,

J3 =

∫
|t|>2|h|

u(t)

t2
d2t.

Then J1 and J2 admit the following similar estimates

|J1| ≤ ‖a‖Cα

∣∣∣∣∣
∫
|t|<2|h|

(|t− h|α−2 + |t|α−2)u(t) d2t

∣∣∣∣∣ ≤ C3‖a‖Cα‖u‖∞|h|α,

|J2| ≤ C4‖a‖Cα |h|
∣∣∣∣∣
∫
|t|>2|h|

|t|α−3u(t) d2t

∣∣∣∣∣ ≤ C5‖a‖Cα‖u‖∞|h|α.

Let u ∈ L∞
R . Then J3 has the obvious estimate

|J3| ≤ ‖u‖∞
∫
2|h|<|t|<R

|t|−2|d2t| ≤ C6 log |h|−1 ‖u‖∞.

Hence ‖Δhf‖∞ ≤ C7‖a‖Cα‖u‖∞|h|β and f ∈ Cβ(C), which completes the
proof of the first assertion in part (i).

Let u ∈ Cβ
R. Since S is bounded in Cβ ,

|J3| =
∣∣∣∣∣Su(0)−

∫
|t|<2|h|

u(t)− u(0)

t2
d2t

∣∣∣∣∣
≤ |Su(0)|+ C6‖u‖Cβ |h|β ≤ C7||u||Cβ .

Hence f ∈ Cα(C), which completes the proof of (i).
(ii) Let k = 0, a ∈ C1,α(C), u ∈ Cα

R, and f = [S, a]u. We estimate the
second difference Δ2

hf . It suffices to show |Δ2
hf | ≤ C8‖a‖C1,α ‖u‖Cα |h|1+α.
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By Lemma 2.2

Δ2
hf = Δh[S,Δha] δhu+Δh[S, a] Δhu.

Consider the first term A1 = Δh[S, b] v, here b = Δha, v = δhu. Then by
the same method we obtain |A1(0)| ≤ C8‖b‖Cα‖v‖Cα |h|α. Clearly ‖b‖Cα ≤
C9‖a‖C1,α |h| and ‖v‖Cα = ‖u‖Cα . Hence ‖A1‖∞ ≤ C10‖a‖C1,α ‖u‖Cα |h|1+α.

The second term A2=Δh[S, a] v is more involved. Here v=Δhu, ‖v‖∞≤
‖u‖Cα |h|α. Using the same notation as above, we write |A2(0)| ≤ |J1|+
|J2|+ ‖a‖C1,α |hJ3|. The terms J1 and J3 are handled in the same manner
as above; they admit the desired estimate. In particular,

|J3| =
∣∣∣∣∣
∫
|t|>2|h|

Δhu(t)

t2
d2t

∣∣∣∣∣
=

∣∣∣∣∣ΔhSu(0)−
∫
|t|<2|h|

Δhu(t)−Δhu(0)

t2
d2t

∣∣∣∣∣ ≤ C11‖u‖Cα |h|α.

We rewrite the remaining term J2 = J4 + J5 as a result of splitting the factor
(2t− h) in (6) into the sum 2t− h = h+ 2(t− h). Then

J4 = h2
∫
|t|>2|h|

a(t)− a(h)

t2(t− h)2
v(t) d2t, J5 = 2h

∫
|t|>2|h|

a(t)− a(h)

t2(t− h)
v(t) d2t.

Since ‖v‖∞ ≤ ‖u‖Cα |h|α, the integral J4 admits a simple estimate

|J4| ≤ ‖a‖C1,α‖u‖Cα |h|2+α

∫
|t|>2|h|

|t|−3 |d2t| ≤ C12‖a‖C1,α‖u‖Cα |h|1+α.

For the remaining term J5, we use Taylor’s formula

(7) a(t)− a(z) = az(z)(t− z) + az(z)(t− z) +O(|t− z|1+α).

Then J5 = 2h(az(h)J6 + az(h)J7 + J8), here

J6 =

∫
|t|>2|h|

Δhu(t) d
2t

t2
, J7 =

∫
|t|>2|h|

t− h

t− h

Δhu(t) d
2t

t2
,

and J8 comes from the remainder in (7). The term J8 has the order |h|2α,
which is even better that we need. The term J6 is the same as J3 above.
Hence the desired result for the commutator [S, a]u is equivalent to the
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estimate

(8) |J7| ≤ C13‖u‖Cα |h|α,

which is independent of a. Instead of dealing with J7 directly, we observe
that (8) is equivalent to the desired result for [S, a]u with a(z) = z. In this
case the commutator turns into an integral similar to the well known Cauchy-
Green operator (14), for which the needed result is well known (see [2, 13]).
This remark completes the proof of (ii) for k = 0.

We now consider k > 0. By induction we assume that the result is al-
ready known for lower values of k. Let Dhu(z) =

d
dt

∣∣
t=0

u(z + th) denote the

directional derivative of u in the direction h. Let a ∈ Ck+1,α and u ∈ Ck,α
R .

Then the result obtained for k = 0 lets us pass to the limit in (5) to obtain

Dh[S, a]u = [S,Dha]u+ [S, a]Dhu.

Now by induction the result holds for all k ≥ 0. The proof of Theorem 2.1
is complete. �

Remark 2.3. The commutator [S, a] in Theorem 2.1(i) is in fact a bounded
operator Lp

R → Cβ(C) for p = 2
α−β . Indeed, along the lines of the above proof

one can show that ‖K(z)‖q ≤ C‖a‖Cα and ‖ΔhK(z)‖q ≤ C‖a‖Cα |h|β , here
1
p + 1

q = 1. Then the conclusion follows by Hölder inequality.

3. Commutators in a bounded domain

We extend the result of the previous section to a bounded domain.

Theorem 3.1. Let Ω ⊂ C be a bounded domain of class C1,α, 0 < α < 1.

(i) If a ∈ Cα(Ω), then for every 0 < β < α, the commutator [SΩ, a] is a
bounded operator L∞(Ω) → Cβ(Ω) and Cβ(Ω) → Cα(Ω).

(ii) If Ω and a(z) are smooth of class Ck+1,α, k ≥ 0, then the commutator
[SΩ, a] is a bounded operator Ck,α(Ω) → Ck+1,α(Ω).

Taking into account Remark 2.3, the commutator [SΩ, a] in (i) is in fact
a bounded operator Lp(Ω) → Cβ(Ω) for p = 2

α−β .
We first recall some simple estimates. Denote by s = dist(z, bΩ) the dis-

tance from z to bΩ. Let r, n ≥ 0 be integers. Introduce

Qr
nu(z) =

∫
C\Ω

(t− z)ru(t) dt ∧ dt

(t− z)n
.
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Lemma 3.2. Let Ω ⊂ C be a bounded domain of class Ck+1,α, k ≥ 0, 0 <
α < 1. Let u ∈ Ck,α(C). Then there is a constant C > 0 depending on Ω, k,
and α so that for z ∈ Ω

(9) |Qr
nu(z)| ≤

{
C‖u‖Ck,α if 3 ≤ n− r < k + 3,

C‖u‖Ck,αsα−1 if n− r = k + 3.

Proof. Using induction on k, let k = 0, n− r = 3. Then

Qr
nu(z) =

∫
C\Ω

(t− z)r(u(t)− u(z)) dt ∧ dt

(t− z)n
+ u(z)Qr

n(1)(z),

in which the first term clearly admits the estimateO(sα−1) by integrating the
modulus of the integrand. The second term will be automatically considered
simultaneously with the general case.

Now let k ≥ 1 and assume the estimate (9) for lower values of k. We
also allow k = 0, u ≡ 1. Let bΩ be a level set of a function of class Ck+1,α.
Then on bΩ we have dt = φ(t)dt, here φ ∈ Ck,α. We assume φ extends to
the whole plane and has compact support. Introduce

(10) Kr
mu(z) =

∫
bΩ

(t− z)ru(t) dt

(t− z)m
.

By Stokes’ formula

Kr
n−1(uφ) = (n− 1)Qr

nu+Qr
n−1uz.

The term Qr
n−1uz satisfies (9) by induction. Hence it suffices to show that

Kr
n−1(u) satisfies (9) for u ∈ Ck,α(C), k ≥ 0.
Integrating by parts for m > 1 yields

(1−m)Kr
mu = rKr−1

m−1(uφ) +Kr
m−1(uz + uzφ).

Starting with m = n− 1, we successively integrate by parts all resulting
terms while still possible. If n− r < k + 3, then all final terms will have the
form Kp

m(ψ) with m < p+ 2, ψ ∈ Cα. They are clearly bounded. If n− r =
k + 3, then all final terms will have the form Kp

p+2(ψ) with ψ ∈ Cα. We have

Kp
p+2(ψ)(z) =

∫
bΩ

(t− z)p(ψ(t)− ψ(z)) dt ∧ dt

(t− z)p+2
+ ψ(z)Kp

p+2(1)(z),
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The first term clearly has the estimate O(sα−1). For the second one, we
again reduce the exponent p by integration by parts and eventually obtain
the same estimate O(sα−1). �

Proof of Theorem 3.1. (i) The assertion about the map L∞(Ω) → Cβ(Ω)
follows immediately from the corresponding assertion of Theorem 2.1 be-
cause a ∈ Cα(Ω) can be extended to a function of Cα(C), and for R large
enough, L∞(Ω) ⊂ L∞

R by trivial extension. So we focus on [SΩ, a] on the
space Cβ(Ω).

We again consider the extension of a ∈ Cα(Ω) to the whole plane (which
we still denote by the same letter a) that has compact support, smooth in
C \ Ω, and whose first derivatives admit the estimate O(sα−1). Similarly, we
extend the restriction a|bΩ inside Ω so that the extension ã is smooth in Ω
with first derivatives of the magnitude O(sα−1). Finally, we extend the given
function u ∈ Cβ(Ω) to the whole plane so that the extension has compact
support and belongs to Cβ(C). Then for z ∈ Ω,

[SΩ, a]u(z) = [SC, a]u(z)− v1(z)− v2(z),

v1(z) =

∫
C\Ω

a(t)− ã(z)

(t− z)2
u(t) d2t, v2(z) =

∫
C\Ω

ã(z)− a(z)

(t− z)2
u(t) d2t.

By Theorem 2.1, the first term [SC, a]u has the desired properties. Differen-
tiating v1 yields

(11) (v1)z(z) = −ãz(z)

∫
C\Ω

u(t) d2t

(t− z)2
+ 2

∫
C\Ω

a(t)− ã(z)

(t− z)3
u(t) d2t.

For u ∈ Cβ the first integral in (11) is bounded. Since ãz = O(sα−1), the
first term in (11) is O(sα−1).

The second integral in (11) has the estimate O(
∫
|t|>s |t|α−3|d2t|) =

O(sα−1). The z-derivative of v1 is estimated similarly but slightly simpler.
Then by Hardy-Littlewood lemma, v1 ∈ Cα(Ω).

We now consider v = v2 = bw. Here b = ã− a ∈ Cα(Ω), b|bΩ = 0, b =
O(sα); w = SC\Ωu. Let z, z′ ∈ Ω; without loss of generality z is closer to bΩ
than z′. We estimate Δv = v(z)− v(z′) in terms of h = |z − z′|. We have

(12) Δv = Δbw(z) + b(z′)Δw.

Since u ∈ Cβ(C), we have w(z) = O(1), wz(z) = O(s−1), Δw = O(hs−1).
Let h ≤ s. Then Δb = O(hα), b(z′) = O(sα). Plugging these estimates in (12)
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yields

Δv = O(hα + sαhs−1) = O(hα).

If h ≥ s, then v(z) = O(sα), v(z′) = O(hα), and again Δv = O(hα). Hence
[SΩ, a]u ∈ Cα(Ω) as desired.

(ii) Let a ∈ Ck+1,α(Ω). We again assume that a(z) and u(z) are extended
to the whole plane. (We do not need the other extension ã.) We represent

[SΩ, a]u = [SC, a]u− v, v = [SC\Ω, a]u,

v(z) =

∫
C\Ω

a(t)− a(z)

(t− z)2
u(t) d2t.

By Theorem 2.1, [SC, a]u ∈ Ck+1,α(Ω). To see that v ∈ Ck+1,α(Ω), we first
differentiate it (k + 1) times. One term will have the form

−Dk+1aSC\Ωu,

here Dk+1a denotes any derivative of order (k + 1). This term is clearly
in Cα(Ω). To show that the other terms are in Cα(Ω), we show that the
first derivatives of these terms have the estimate O(sα−1). Then by Hardy-
Littlewood lemma we will obtain v ∈ Ck+1,α(Ω). By differentiating one more
time, we obtain the following terms. There will be one term of the form

J1(z) =

∫
C\Ω

a(t)− a(z)

(t− z)k+4
u(t) d2t,

while all other terms will be constant multiples of integrals of the form

J2(z) = Dpa(z)

∫
C\Ω

u(t) d2t

(t− z)q+2
.

Here p+ q = k + 2, p ≥ 1, hence q + 2 ≤ k + 3. Then the terms of the form
J2 are all bounded by Lemma 3.2. For the term J1, we use Taylor’s formula

(13) a(t)− a(z) =
∑

1≤p+q≤k+1

apq(z)(t− z)p(t− z)q +O(|t− z|k+1+α).

The term corresponding to the remainder in (13) is estimated directly; it
has the order O(sα−1). Now by Lemma 3.2 the estimate J1(z) = O(sα−1)
follows. Theorem is proved. �

Finally we include a simple result that applies to [SΩ, a] above.
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Proposition 3.3. Let Ω ⊂ C be a bounded domain. Let k : Ω× Ω → C

satisfy |k(z, t)| ≤ |z − t|α−2, 0 < α < 1. Let Ru(z) =
∫
Ω k(z, t)u(t) d2t. Let

p ≥ 1. Let p ≤ r < 2p
2−αp (if 2− αp < 0, then p ≤ r ≤ ∞). Then R : Lp(Ω) →

Lr(Ω) is a bounded operator, which in particular holds if r = p+ α
2 .

Proof. For completeness we include a proof. Since Ω is bounded, for λ > −2
there is a constant C(λ) > 0 such that

∫
Ω |z − t|λ|d2t| ≤ C(λ).

Let 0 ≤ c ≤ 1, 1
p + 1

q = 1, 1
r +

1
s +

1
q = 1, hence s = rp

r−p . By Hölder in-
equality,

|Ru(z)| =
∣∣∣∣
∫
Ω
k(z, t)u(t) d2t

∣∣∣∣ ≤
∫
Ω
|u| pr |k|c|u|1− p

r |k|1−c |d2t|

≤
(∫

Ω
|u|p|k|cr |d2t|

)1/r (∫
Ω
|u|p |d2t|

)1/s(∫
Ω
|k|(1−c)q |d2t|

)1/q

,

‖Ru‖rr =
∫
Ω
|Ru(z)|r |d2z| ≤ C((α− 2)cr)C((α− 2)(1− c)q)r/q‖u‖rp,

provided that (α− 2)cr > −2 and (α− 2)(1− c)q > −2. These conditions
yield the desired bounds for r. �

4. The operator SΩSΩ

The standard approach to the Beltrami type equations (see [2, 13]) involves
the Cauchy-Green operator

(14) TΩu(z) =

∫
Ω

u(t) d2t

t− z

for a domain Ω ⊂ C. We also consider its modification suitable for solving
the Dirichlet problem in the unit disc D = {z ∈ C : |z| < 1}.

T1u(z) = TDu(z)− TDu(z−1) =

∫
D

u(t) d2t

t− z
+

∫
D

zu(t) d2t

1− zt
.

Both operators TΩ and T1 solve the ∂-problem, and T1 in addition satisfies
the boundary condition ReT1u|bD = 0. Consider the operators SΩ and S1,
the ∂-derivatives of TΩ and T1. Then

S1u(z) = p.v.

∫
D

u(t) d2t

(t− z)2
+

∫
D

u(t) d2t

(1− zt)2
.
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In other words

S1u = SDu−Bu, Bv(z) = −
∫
D

v(t) d2t

(1− zt)2
.

Here B is the Bergmann projection in D (in this notation d2t < 0). It is
well known (see [2, 13]) that SC and S1 are isometries of L2(C) and L2(D)
respectively, that is, SCSC = I and S1S1 = I, here I = id is the identity
operator. (Note S∗

C
= SC and S∗

1 = S1.) We make the following observation.

Lemma 4.1. SDSD = I −B and BSD + SDB = 0.

Proof. Introduce the conjugation operator ιu = u. Then ι2 = I. For every
operator P we have by definition P = ιP ι or ιP = Pι, in particular ι = ι.
For simplicity put S = SD. Then we write S1 = S −Bι, S1 = S −Bι. Using
B2 = B we obtain

id = S1S1 = (S −Bι)(S −Bι)

= SS −BιS − SBι+BιBι = (SS +B)− (BS + SB)ι.

Now by separating linear and anti-linear terms, we obtain the desired rela-
tions. �

We now consider the operator BΩ = I − SΩSΩ for an arbitrary smooth
domain Ω ⊂ C. We will see in the next section that BΩ is related to the
Bergmann projection for Ω. Here we only care to what extent B2 = B holds
for BΩ. Invoke the Cauchy type integral

(15) KΩu(z) =
1

2πi

∫
bΩ

u(t) dt

t− z
, z ∈ Ω.

For z ∈ bΩ we interpret KΩu(z) as a boundary value of the function KΩu
in Ω. With some abuse of notation we write ∂u(z) = ∂zu(z) and ∂u(z) =
∂zu(z). We recall the Cauchy-Green-Pompeiu formula

KΩ + TΩ∂ = I.

The following result is similar to one by Kerzman and Stein [8] who discov-
ered that KΩ −K∗

Ω is a smoothing operator.

Theorem 4.2. Let Ω ⊂ C be a bounded domain of class Ck, here k ≥ 1
may be fractional. Then P = KΩ +KΩ − I is a bounded operator L1(bΩ) →
Ck−2(bΩ) (if k ≥ 2) and C1(bΩ) → Ck−1(bΩ).
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Proof. Observe for z ∈ Ω, t ∈ bΩ

dt

t− z
− dt

t− z
=

t− z

t− z
dt

(
t− z

t− z

)
= dt log

(
t− z

t− z

)
= 2i dt arg(t− z).

Then for z ∈ Ω

(KΩ +KΩ)u(z) =
1

2πi

∫
bΩ

u(t)

(
dt

t− z
− dt

t− z

)
=

1

π

∫
bΩ

u(t) dt arg(t− z).

If z ∈ bΩ, then passing to the limit yields

(KΩ +KΩ)u(z) = u(z) +
1

π
p.v.

∫
bΩ

u(t) dt arg(t− z).

The only reason for principal value in this integral is the jump of −π of
arg(t− z) at t = z. Otherwise the integral has a smooth kernel. Indeed,
suppose an arc of bΩ has a parametric equation γ(τ) = τ + iφ(τ) with φ ∈
Ck. Then for t = γ(τ), z = γ(τ0), we have

dt arg(t− z) = d arctan

(
φ(τ)− φ(τ0)

τ − τ0

)
∈ Ck−2.

Hence if u ∈ L1(bΩ), then Pu ∈ Ck−2(bΩ). If u ∈ C1(bΩ), then by integrat-
ing by parts Pu ∈ Ck−1(bΩ). �

Corollary 4.3. Let Ω ⊂ C be a bounded domain of class Ck, here k > 2
is fractional. Then B2

Ω −BΩ is a bounded operator Lp(Ω) → Ck−3(Ω) (if
p > 1, k > 3) and Cα(Ω) → Ck−2(Ω) (if 0 < α < 1, k > 2).

Proof. For simplicity of notation we omit the subscripts Ω. We have

KP = K(K +K − I) = K +KK −K = KK,

B = I − SS = I − ∂(T∂)T = I − ∂(I −K)T = ∂KT ,(16)

B2 = ∂K(T∂)KT = ∂K(I −K)KT = B − ∂KPKT.

Let u ∈ Lp(Ω), p > 1. Then Tu ∈ W 1,p(Ω), the trace Tu|bΩ ∈ Lp(bΩ), and
KTu ∈ Lp(bΩ). By Theorem 4.2, PKTu ∈ Ck−2(bΩ). Since k is fractional,
we have KPKTu ∈ Ck−2(Ω), and (B2 −B)u = −∂KPKTu ∈ Ck−3(Ω), as
desired.

Let u ∈ Cα(Ω). Then Tu ∈ C1+α(Ω) and KTu ∈ C1+α(Ω). By Theo-
rem 4.2, PKTu ∈ Ck−1(bΩ). Since k is fractional, we have KPKTu ∈
Ck−1(Ω), and (B2 −B)u ∈ Ck−2(Ω), as desired. �



1234 Alexander Tumanov

5. The Bergman projection

The main result of this section is an asymptotic formula for the Bergman
projection B = BΩ for a smooth bounded simply connected domain Ω ⊂ C.
We will not need it in the rest of the paper.

Let H = H(Ω) be the Bergman space of all holomorphic functions of
class L2(Ω). The Bergman projection B : L2(Ω) → H is the orthogonal pro-
jection onto the subspace H ⊂ L2(Ω).

Theorem 5.1. Let Ω ⊂ C be a bounded domain of class Ck, here k > 3 is
fractional. Let Bn = I − (SS)n, S = SΩ, n ≥ 1. Then

(i) For all n ≥ 1, the difference B −Bn is a bounded operator L2(Ω) →
Ck−3(Ω).

(ii) If Ω is simply connected, then B = limn→∞Bn.

We can compare this result to the one by Kerzman and Stein [8]. Let
S : L2(bΩ) → H2(bΩ) be the Szegö orthogonal projection, and let K = KΩ

be the Cauchy transform. Kerzman and Stein [8] proved that S −K is a
compact smoothing operator and S = K(I −A)−1, here A = K −K∗ is a
compact smoothing operator. If Ω is sufficiently close to the disc D, then
‖A‖ < 1, and the inverse has an explicit formula (I −A)−1 =

∑∞
n=0A

n.
In contrast, our formula B = limn→∞Bn holds for every simply connected
smooth domain.

We also compare Theorem 5.1(i) with the formula B = ∂ET (Bell [3],
page 70). Here E denotes the harmonic extension from bΩ to Ω. For a general
domain, E is not explicit. If we replace E by K, then by (16) we obtain
the explicit operator B = B1, which by Theorem 5.1(i) approximates the
Bergman projection B.

Lemma 5.2. The subspace H ⊂ L2(Ω) is invariant for SS, and SS|H :
H → Ck−3(Ω) is bounded.

Proof. By (16), the subspace H ⊂ L2(Ω) is invariant for B = I − SS, hence
for SS. Let H0 ⊂ H consist of such u ∈ H that for every closed path γ ⊂ Ω,
we have

∫
γ u(z) dz = 0. For u ∈ H0 define Ju(z) =

∫ z
z0
u(t) dt along a path

in Ω. Then for u ∈ H0

SSu = ∂(T∂)(T∂)Ju = ∂(I −K)(I −K)Ju

= ∂(I −K −K +KK)Ju = ∂KKJu = ∂KPJu.
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Since u ∈ L2(Ω), we have Ju ∈ W 1,2(Ω). Then the trace Ju|bΩ ∈ L2(bΩ).
Then by Theorem 4.2, we have PJu ∈ Ck−2(bΩ), KPJu ∈ Ck−2(Ω), and
finally SSu = ∂KPJu ∈ Ck−3(Ω).

If Ω is simply connected, then H0 = H, and the proof is complete. Oth-
erwise, H0 has a finite dimensional (not necessarily orthogonal) complement
H1 in H of the form, say

H1 =
{∑

cj(z − zj)
−1 : cj ∈ C

}
.

Here the points zj ∈ C \ Ω are fixed — one in each bounded component of
C \ Ω. Since H1 consists of smooth functions, the operator SS|H1

: H1 →
Ck−3(Ω) is bounded, hence the desired conclusion. �

Lemma 5.3. If Ω is simply connected, then ‖SS‖H < 1.

Proof. Note S = S∗. Since SS|H is self-adjoint, compact, and SS ≥ 0, it
suffices to show that SS|H does not have the eigenvalue 1.

Suppose there is u ∈ H such that SSu = u. Since ‖S‖2 ≤ 1, we have
‖SSu‖2 ≤ ‖Su‖2 ≤ ‖u‖2. Since SSu = u, we have in particular, ‖Su‖2 =
‖u‖2. On the other hand, SC is an isometry of L2(C). Hence Su(z) = 0 for
z /∈ Ω, that is, ∂Tu = 0 in C \ Ω.

Since Tu is antiholomorphic on a connected set C \ Ω and ∂Tu = 0,
the function Tu = const in C \ Ω. In fact Tu|C\Ω = 0 because it vanishes at

infinity. By Lemma 5.2, u ∈ Ck−3(Ω), hence Tu is continuous on C.
Since u is holomorphic, ∂∂Tu = ∂u = 0, that is, Tu is harmonic in Ω.

Since Tu|bΩ = 0, we have Tu = 0 in Ω. Hence u = ∂Tu = 0, and the proof
is complete. �

Proof of Theorem 5.1. By (16), we have B(L2(Ω)) ⊂ H. Since B is
self-adjoint, B(H⊥) = 0. Indeed, for every u ∈ H⊥ and v ∈ L2(Ω), we have
(Bu, v) = (u,Bv) = 0. Hence, SSH ⊂ H and SS|H⊥ = I.

We now compare Bn with B on H and H⊥. On H⊥ we have B(H⊥) =
Bn(H

⊥) = 0. On H we have (B −Bn)|H = (SS)n|H : H → Ck−3(Ω), which
proves (i).

By Lemma 5.3, (SS)n|H → 0 as n → ∞, hence the conclusion (ii). �
We realize that if Ω is not simply connected, then Lemma 5.3 and The-

orem 5.1(ii) fail as the following simple example shows.

Example 5.4. Let 0 < r < 1 and let Ω = {z : r < |z| < 1}. Let u(z) =
1/z. Then one can find Tu(z) = 2 log |z|. (It is independent of r.) Then
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SSu(z) = ∂T∂Tu(z) = ∂T∂(2 log |z|) = ∂T (1/z) = ∂(2 log |z|)=1/z = u(z).
Then Bnu = 0, but Bu = u, so Lemma 5.3 and Theorem 5.1(ii) fail.

6. Integral equations with operator S

We now consider the integral equation

(17) u = S(Au) + b.

Here u and b are m-vector functions and A is a m×m matrix function in a
smooth bounded domain Ω ⊂ C; m ≥ 1, S = SΩ. In the future, with some
abuse of notation, we omit the parentheses in (17) and similar equations,
interpreting A as the operator of multiplication by A. We impose the condi-
tion ‖A‖∞ < 1. Here ‖A‖∞ denotes the maximum of the Euclidean operator
norm of A(z) over all z ∈ Ω.

Proposition 6.1. Let Ω ⊂ C be a bounded domain of class C∞. Let A, b ∈
Ck,α(Ω), 0 < α < 1, k ≥ 0, ‖A‖∞ < 1. Then the Equation (17) has a unique
solution u ∈ L2(Ω). This solution u ∈ Ck,α(Ω), and for fixed A the operator
b �→ u is bounded in Ck,α(Ω)

The proof below goes through if Ω has finite smoothness of class C3,β

(0 < β < 1) if k = 0 and Ck+2,α if k ≥ 1.

Proof. The existence of a unique solution u ∈ L2(Ω) is standard (see [2, 13]).
It follows because ‖S ◦A‖2 < 1 as an operator in L2(Ω).

Iterating (17) yields

u = SASAu+ b1, b1 = SAb+ b ∈ Ck,α(Ω).

Interchanging S and A yields

u = SSAAu+ b2, b2 = S[A,S]Au+ b1.

We include the term S[A,S]Au in b2 because by the results of Section 3
the commutator is “better” than u. Recall SS = I −B, B = BΩ. Since
[PQ,R] = [P,R]Q+ P [Q,R], both Theorem 3.1 and Proposition 3.3 apply
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to B. We put v = AAu. Then

v = AA(v −Bv) + b3, b3 = AAb2.

Since |A| < 1, we have (I −AA)−1 ∈ Ck,α, and

v = −A0Bv + b4, A0 = (I −AA)−1AA, b4 = (I −AA)−1b3.

Applying B and interchanging B and A0 yields

Bv = −BA0Bv +Bb4 = −([B,A0] +A0B)Bv +Bb4 = −A0Bv + b5,

b5 = −[B,A0]Bv +A0(B −B2)v +Bb4.

Note that by Corollary 4.3 the term (B −B2)v is C∞. Also note (I +
A0)

−1 = I −AA and A0(I −AA) = AA. Then

Bv = (I −AA)b5, v = −AAb5 + b4, u = SSv + b2.

As a result, the initial equation implies

(18) u = Mu+Nb,

where M is a smoothing operator with properties described in Theorem 3.1
and Proposition 3.3, and N is a bounded operator in Ck,α.

We now use (18) for bootstrapping, successively improving the regularity
of the solution. Since u ∈ Lp, starting from p = 2, by Proposition 3.3, Mu ∈
Lp+α

2 , hence by (18) u ∈ Lp+α

2 . We repeat this argument finitely many times
till we get u ∈ Lr, r > 2

α . Repeating it one more time, by Proposition 3.3 we
get u ∈ L∞. We now repeat it again finitely many times using Theorem 3.1
and get u ∈ Ck,α as desired. Note that the number of times we iterate (18)
depends only on k and α. �

We now consider a similar integral equation in the unit disc, namely

(19) u = S1(Au) + b.

Proposition 6.2. For the Equation (19), Proposition 6.1 holds.

Proof. The argument of the proof is similar to that for Proposition 6.1. The
difference is that the results of Section 3 do not directly apply to [S1, A]
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because S1 is not complex linear. Nevertheless we reduce the result to (the
proof of) Proposition 6.1. By the definition of S1

u = SAu−BAu+ b,

here S = SD, B = BD. By Lemma 4.1

Bu = −SBAu−BAu+Bb.

Multiplying by A and interchanging A and B yields

BAu = −ASBAu−ABAu+ b1, b1 = −[A,B]u+ABb.

Then v = BAu satisfies the equation v = −ASv −Av + b1, which in turn
simplifies to

(20) v = A1Sv + b2, A1 = −(I +A)−1A, b2 = (I +A)−1b1.

This equation looks similar to (17), however ‖A1‖∞ < 1 need not hold, so
the equation requires a little more care. Following the beginning of the proof
of Proposition 6.1, iterating (20) yields

v = A1SA1Sv + b3, b3 = A1Sb2 + b2.

Interchanging S and A1 yields

v = A1A1SSv + b4, b4 = A1[S,A1]Sv + b3.

Since v = BAu and B2 = B, we have SSv = v −Bv = 0. Hence v = b4, and
the original equation takes the form

u = SAu+ b5, b5 = −b4 + b,

which is the subject of Proposition 6.1. By bootstrapping we obtain u ∈
Ck,α(D). �

7. Dirichlet problem

We consider the Dirichlet problem for an elliptic equation

(21) fz = a(z)fz + b(z)fz + c(z).
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In the scalar case the ellipticity means that either |a|+ |b| < 1 or ||a| − |b|| >
1; the two cases are related by the interchange f ↔ f . We restrict to the
former case. Our main result is the following.

Theorem 7.1. Let Ω ⊂ C be a simply connected domain of class Ck+1,α,
k ≥ 0, 0 < α < 1. Let a, b, c ∈ Ck,α(Ω), f0 ∈ Ck+1,α(bΩ,R), |a|+ |b| ≤ a0 <
1, for some constant a0. Then the scalar equation (21) with boundary condi-
tion Re f |bΩ = f0 has a unique solution in the Sobolev class W 1,2(Ω). This
solution f ∈ Ck+1,α(Ω), and for fixed a and b the map (c, f0) �→ f is a
bounded operator Ck,α(Ω)× Ck+1,α(bΩ,R) → Ck+1,α(Ω).

For simplicity we assume that Ω is simply connected because our method
involves reduction to the unit disc. Thus we begin the proof with several
reductions.

Lemma 7.2. It suffices to prove Theorem 7.1 for f0 = 0 and Ω = D, the
unit disc.

Proof. To reduce to f0 = 0, we fix f1 ∈ Ck+1,α(Ω) satisfying Re f1|bΩ = f0.
Then for the new unknown f̃ = f − f1, the equation will have a form similar
to the original one, and the boundary condition will turn into Re f̃ |bΩ = 0.

To reduce to Ω = D we can introduce a new independent variable ζ =
ψ(z), so that ψ : Ω → D is a Ck+1,α diffeomorphism with positive Jacobian.
The equation will preserve its form and boundary conditions. Moreover, if
a = 0 or b = 0, then by choosing a conformal map ψ this condition can be
preserved also. �

Lemma 7.3. It suffices to prove Theorem 7.1 for a = 0.

Proof. We change the independent variable by a Beltrami homeomorphism
ψ : D → D of the equation

(22) ψz = μ(z)ψz.

The Beltrami coefficient μ will be determined later. The Equation (21) will
take the form

(23) gζ = ãgζ + b̃gζ + c̃,

here g = f ◦ ψ−1. We write ζ = ψ(z). By straightforward calculations we
now find the new coefficients. We have

gz = gζψz + gζψz = a(gζψz + gζψz) + b(gζψz + gζψz) + c.
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By (22) we obtain

(24) ψz(1− aμ)gζ − ψzbμgζ = ψz(a− μ)gζ + ψzbgζ + c.

We solve (24) together with its conjugate as a system of two equations with
the two unknowns gζ and gζ . By ellipticity it has a unique solution. In
particular,

(25) ã =
ψz

ψz

(a− μ)(1− aμ) + |b|2μ
|1− aμ|2 − |bμ|2 .

The equation ã = 0 turns into a quadratic equation on μ of the form

(26) aμ2 − (1 + |a|2 − |b|2)μ+ a = 0.

Due to |a|+ |b| < 1, the equation has two distinct solutions μ1, μ2, |μ1μ2| =
1. We chose μ = μ1, the one with smaller modulus. (If a(z) = 0 at some
z, then μ1(z) = 0, μ2(z) = ∞.) It is easy to see μ ∈ Ck,α and ‖μ‖∞ < 1.
Hence, the homeomorphism ψ ∈ Ck+1,α, the new coefficients in (23) are in
Ck,α, and ã = 0. �

Slightly changing notation, we now consider the equation

(27) fz = A(z)fz + b(z).

Here for the sake of generality, f and b are m-vectors and A is a m×m
matrix, m ≥ 1. To complete the proof of Theorem 7.1 we need the following
result only in the case Ω = D, f0 = 0.

Theorem 7.4. Let Ω ⊂ C be a simply connected domain of class Ck+1,α,
k ≥ 0, 0 < α < 1. Let A, b ∈ Ck,α(Ω), f0 ∈ Ck+1,α(bΩ), ‖A‖∞ < 1. Then the
Equation (27) with boundary condition Re f |bΩ = f0 has a unique solution in
the Sobolev class W 1,2(Ω). This solution f ∈ Ck+1,α(Ω), and for fixed A the
map (b, f0) �→ f is a bounded operator Ck,α(Ω)× Ck+1,α(bΩ) → Ck+1,α(Ω).

Proof. By Lemma 7.2 it suffices to prove the result for Ω = D and f0 = 0.
For f ∈ W 1,2(D), the Equation (27) with boundary conditions Re f |bΩ = 0
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is equivalent to

(28) f = T1(Afz + b).

If this equation has a solution in W 1,2(D), then u = fz satisfies the equation

u = S1(Au+ b).

The latter by Proposition 6.2 has a unique solution u ∈ L2(D). This solution
is in Ck,α(D). Then f := T1(Au+ b) ∈ Ck+1,α(D) satisfies (28) because fz =
S1(Au+ b) = u. �

8. Inverting f �→ f − T (afz + bfz) in Lipschitz spaces

Let Ω ⊂ C be a bounded domain. We consider the integral equation

f = T (afz + bfz) + c,

here a, b, and c are given functions in Ω, f is unknown, and T = TΩ. Solving
this equation may be regarded as inverting the operator f �→ f − T (afz +
bfz). Note that the solution satisfies the boundary condition Kf = Kc be-
cause KT = 0, here K = KΩ is the Cauchy type integral. To make the prob-
lem look similar to the one in the previous section, we again consider the
equation

(29) fz = a(z)fz + b(z)fz + c(z)

with boundary condition Kf = Kf0 for a given function f0 on bΩ. Our main
result in the scalar case is the following.

Theorem 8.1. Let Ω ⊂ C be a domain of class Ck+1,α, k ≥ 0, 0 < α < 1.
Let a, b, c ∈ Ck,α(Ω), f0 ∈ Ck+1,α(bΩ), |a|+ |b| ≤ a0 < 1, for some constant
a0. Then the scalar equation (29) with boundary condition Kf = Kf0 has a
unique solution in the Sobolev class W 1,2(Ω). This solution f ∈ Ck+1,α(Ω),
and for fixed a and b, the map (c, f0) �→ f is a bounded operator Ck,α(Ω)×
Ck+1,α(bΩ) → Ck+1,α(Ω).

We again begin with reductions. Note that Ω need not be simply con-
nected, so instead of the unit disc, we reduce to a domain of class C∞.

Lemma 8.2. It suffices to prove Theorem 8.1 for f0 = 0 and Ω of class C∞.
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Proof. To deduce to Kf = 0, we replace f by f −Kf0. To reduce to a
C∞-smooth domain Ω0 we again introduce a new independent variable ζ =
ψ(z) by a Ck+1,α diffeomorphism ψ : Ω → Ω0. To preserve the boundary
condition Kf = 0, we first choose a conformal map ψ : C \ Ω → C \ Ω0, and
then extend it Ck+1,α-smoothly to Ω. (This procedure, however, will not
preserve the conditions a = 0 or b = 0 if they take place.) �

In contrast to the proof of Theorem 7.1, the reduction to a = 0 is not
straightforward because a Beltrami homeomorphism (22) does not preserve
the boundary condition. Furthermore, the derivative of ψ enters the bound-
ary condition resulting in a loss of one derivative. We reduce to the case, in
which a is small.

Lemma 8.3. Under assumptions of Theorem 8.1, let f0 = 0 and let Ω be
C∞-smooth. Let ε > 0. There exists a C∞ diffeomorphism ψ : C → C that
transforms the Equation (29) in Ω into the Equation (23) in Ω0 = ψ(Ω),
in which ‖ã‖Ck,α < ε. The boundary condition KΩf = 0 transforms into
KΩ0

g = Jg, here g = f ◦ ψ−1 and J : L2(bΩ0) → C∞(bΩ0) is a smoothing
operator. Moreover, ‖ψ‖Ck+1,α is bounded by a constant independent of ε.

Proof. Let C∞-smooth functions a0 and b0 be close to a0 and b0 in Ck,α(Ω).
We find μ0 by solving (26) using a0 and b0 instead of a and b. We assume that
μ0 is extended to the whole plane. Following the proof of Lemma 7.3 we make
a substitution by a global Beltrami homeomorphism of the Equation (22)
with μ0 instead of μ. If a0 and b0 are sufficiently close to a and b, then
by (25) the coefficient ã in (23), satisfies ‖ã‖Ck,α < ε.

We now find out how the substitution affects the boundary condition
KΩf = 0. Let ρ be a defining function of bΩ0 with dρ �= 0 in a neighborhood
of bΩ0. Then on bΩ0 we have ρζdζ + ρζdζ = 0. Let ζ0 ∈ Ω0 be sufficiently

close to bΩ0. With some abuse of notation we write z(ζ) = ψ−1(ζ), z = z(ζ),
z0 = z(ζ0), etc. We have

0 = KΩf(z0) =
1

2πi

∫
bΩ

f(z) dz

z − z0
=

1

2πi

∫
bΩ0

g(ζ)(zζdζ + zζdζ)

z − z0

= KΩ0
g(ζ0)− Jg(ζ0),

Jg(ζ0) =
1

2πi

∫
bΩ0

(
1

ζ − ζ0
−

zζ − ρ−1
ζ

ρζzζ

z − z0

)
g(ζ) dζ.
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To understand the last integral we introduce

Φ(ζ, ζ0) = z(ζ)− z(ζ0)− zζ(ζ)(ζ − ζ0)− zζ(ζ)(ζ − ζ0),

φ(ζ, ζ0) = ρ(ζ)− ρ(ζ0)− ρζ(ζ)(ζ − ζ0)− ρζ(ζ)(ζ − ζ0).

We will use the last formula for ζ ∈ bΩ0, so we will have ρ(ζ) = 0. Then
J = J1 + J2, here

J1g(ζ0) =
1

2πi

∫
bΩ0

Φ(ζ, ζ0)− ρ−1
ζ

zζφ(ζ, ζ0)

(ζ − ζ0)(z − z0)
g(ζ) dζ

J2g(ζ0) =
−ρ(ζ0)

2πi

∫
bΩ0

ρ−1
ζ

zζg(ζ) dζ

(ζ − ζ0)(z − z0)
.

Since Φ(ζ, ζ0) = O(|ζ − ζ0|2) and φ(ζ, ζ0) = O(|ζ − ζ0|2), the kernel of the
integral J1 is C∞-smooth. Hence J1 is a smoothing operator. The integral
J2 reduces to the integral K0

2 introduced in the proof of Lemma 3.2 by (10).
Since g ∈ Ck,α(Ω0) ⊂ Cα(Ω0), the argument in the proof of that lemma im-
plies J2g(ζ0) = O(|ρ(ζ0)|α). This estimate means that J2g has zero boundary
values on bΩ0, and J reduces to the smoothing operator J1.

Finally, the Ck+1,α norm of ψ depends only on Ck,α norm of μ0 (see
[2, 13]), which in turn depends only on Ck,α norms of a and b, hence the last
assertion in the lemma will hold automatically. The lemma is proved. �

We again state a special case of Theorem 8.1 in a vector from. Slightly
changing notation, we now consider the equation

(30) fz = A1(z)fz +A2(z)fz + b(z).

Here f and b are m-vectors and A1 and A2 are m×m matrices, m ≥ 1. To
complete the proof of Theorem 8.1 it suffices to prove the following result.

Theorem 8.4. Let Ω ⊂ C be a C∞-smooth domain. Let A2, b ∈ Ck,α(Ω),
k ≥ 0, 0 < α < 1. Suppose ‖A2‖∞ < 1. Then there exists ε > 0 such that
if A1 ∈ Ck,α(Ω) and ‖A1‖Ck,α(Ω) < ε, then for every f0 ∈ Ck+1,α(bΩ), the
Equation (30) with boundary condition KΩf = KΩf0 has a unique solution
in the Sobolev class W 1,2(Ω). This solution f ∈ Ck+1,α(Ω), and for fixed A1

and A2, the map (b, f0) �→ f is a bounded operator Ck,α(Ω)× Ck+1,α(bΩ) →
Ck+1,α(Ω).

Proof. By Lemma 8.2 we assume f0 = 0. Let T = TΩ and S = SΩ. For f ∈
W 1,2(Ω), the Equation (30) with boundary conditions KΩf = 0 is equivalent
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to

(31) f = T (A1(z)fz +A2(z)fz + b).

If this equation has a solution in W 1,2(Ω), then u = fz satisfies the equation

(32) u = S(A1u+A2u+ b).

If A1 is small, then of course (32) has a unique solution u ∈ L2(Ω). By the
proof of Proposition 6.1 the Equation (32) implies

u = Mu+NS(A1u+ b).

Since the operatorNS is bounded in Ck,α(Ω), we choose 0<ε<‖NS‖−1
Ck,α(Ω).

Then if ‖A1‖Ck,α(Ω) < ε, then (I −NSA1)
−1 is bounded in Ck,α(Ω) and

L2(Ω), and

u = M1u+N1b, M1 = (I −NSA1)
−1M, N1 = (I −NSA1)

−1NS.

By bootstrapping u ∈ Ck,α(Ω). Then f := T (A1u+A2u+ b) ∈ Ck+1,α(Ω)
satisfies (30) because fz = S(A1u+A2u+ b) = u. �
Proof of Theorem 8.1. There is a unique solution f ∈ W 1,2(Ω) of (29)
with KΩf = 0. Indeed, as we argued before, since |a|+ |b| ≤ a0 < 1, there is
a unique u ∈ L2(Ω) satisfying u = S(au+ bu+ c). Then f = T (au+ bu+ c).
By Lemma 8.3, after the substitution ζ = ψ(z), the function g = f ◦ ψ−1

satisfies (23) with small ‖ã‖Ck+1,α and KΩ0
g = Jg. Since KΩf = 0, of course

Jg is holomorphic. Since Jg is C∞, by Theorem 8.4 we have g ∈ Ck+1,α(Ω0).
Hence f ∈ Ck+1,α(Ω). �

In conclusion we point out that Theorem 8.4 answers a question raised in
[4]. Let A be a m×m matrix function of class Ck,α(Ω), k ≥ 0, 0 < α < 1, in
a C∞-smooth bounded domain Ω ⊂ C, ‖A‖∞ < 1,m ≥ 2. The question from
[4] (Problem B) reduces to asking whether the operator f �→ f − TΩ(A∂f)
has a bounded inverse in Ck+1,α(Ω). The affirmative answer is given by
Theorem 8.4 with A1 = 0, A2 = A. The authors also raise a similar question
(Problem A) for the operator f �→ f − TΩ(A∂f). However, in this paper we
are able to treat this question only in the scalar case (Theorem 8.1).
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