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An integro-differential equation without

continuous solutions

Luis Silvestre and Stanley Snelson

We show an example of a non symmetric integro-differential equa-
tion of order α, for α ∈ (0, 1), for which Hölder estimates do not
hold even though the kernels are comparable to the fractional
Laplacian.

1. Introduction

We are concerned with an integro-differential equation of the usual form

(1)

∫
Rn

(u(x+ y)− u(x)− y · ∇u(x)χB1
(y))K(x, y) dy = f(x) in B1.

The purpose of this article is to show an example of a kernel K(x, y) satis-
fying, for some α ∈ (0, 1),

(2)
λ

|y|n+α
≤ K(x, y) ≤ Λ

|y|n+α
.

and a bounded function f , for which the solution u of (1) does not satisfy
any modulus of continuity a priori in terms of ‖u‖L∞ and ‖f‖L∞ .

The key of our example is that we do not make the symmetry assumption
K(x, y) = K(x,−y). The correction term −y · ∇u(x)χB1

(y) inside the inte-
grand effectively creates a drift term. Since we take α < 1, the regularization
effect of the symmetric part of the integral does not compensate the effect
of this implicit drift. Any modulus of continuity can thus be invalidated
following a mechanism similar to that in [11].

When the kernel K satisfies the symmetry assumption K(x, y) =
K(x,−y), then the solutions to (1) satisfy a regularity estimate in Hölder
spaces

‖u‖Cγ(B1/2) ≤ C
(‖u‖L∞(Rn) + ‖f‖L∞(B1)

)
,

for some γ > 0. This estimate was obtained first by R. Bass and D. Levin
[2]. Hölder estimates of this type have been a topic of high interest in recent
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years, with several results in this direction for different types of integral
equations including [12], [1], [9], [3], [5], [4], and also results for parabolic
integral equations like [6], [10] and [8].

In some cases, Hölder estimates hold for non symmetric kernels K(x, y).
That is the case of the results in [5], [4] and [8]. In those cases, for α < 1,
the equation has to be taken without the gradient correction term. That is,
the equation is

∫
Rn

(u(x+ y)− u(x))K(x, y) dy = f(x) in B1.

Note that for α ∈ (0, 1), the left hand side makes sense for every function
u ∈ C1. While Equation (1) is of the form that appears traditionally in the
probability literature, it is better not to include the gradient correction term
in this case. The result in this note shows that in fact, this correction term
ruins any continuity estimate. There have been attempts to obtain Hölder
continuity estimates for equations of this form, see for example [7].

Now we state our main result.

Theorem 1. For any α ∈ (0, 1) and 0 < λ < Λ, and any modulus of conti-
nuity η, there is a kernel K(x, y) satisfying (2), and a function u : Rn → R

such that

• u(x) ∈ [−1, 1] for all x ∈ R
n.

• u solves the Equation (1) with kernel K(x, y) and f(x) ≡ 0.

• The function u does not obey the modulus of continuity η at the origin.

Remark. The solution u constructed in the next section is continuous on
R
n, smooth on the set {x1 �= 0}, and solves (1) classically on B1 \ {x1 = 0}.

On the line {x1 = 0}, ∇u(x) does not exist, but the equation is satisfied in
the viscosity sense, as there are no C2 functions touching u from above or
below. More precisely, let M± be the extremal operators

M+u(x) = sup

{∫
Rn

(u(x+ y)− u(x)− y · ∇u(x)χB1
(y))K(y) dy :

λ

|y|n+α
≤ K(y) ≤ Λ

|y|n+α

}
,

M−u(x) = inf

{∫
Rn

(u(x+ y)− u(x)− y · ∇u(x)χB1
(y))K(y) dy :

λ

|y|n+α
≤ K(y) ≤ Λ

|y|n+α

}
.
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Then, the function u from Theorem 1 satisfies M+u ≥ 0 and M−u ≤ 0 in
the viscosity sense in B1.

See [7] for a more explicit expression of the operators M+ and M−.

2. The proof

We give the value of the kernel K(x, y) below. The function u will depend on
the variable x1 only. Thus, our example is essentially one-dimensional, and
we will use the notations u(x) and u(x1) interchangeably. The stategy of the
proof is as follows: first, construct a family of bounded, continuous functions
ur that approximate the discontinuous function u0(x1) = sgn(x1) as r →
0. If r > 0 is chosen small enough, ur will fail to admit a given modulus
of continuity. Next, we will add a continuous, increasing function v(x1) to
ur(x1), with v independent of r, to ensure that the quantity L(ur + v)(x),
with

(3) Lu(x) =

∫
Rn

(u(x+ y)− u(x)− y · ∇u(x)χB1
(y))K(x, y) dy,

satisfies −C0 ≤ L(ur + v)(x) ≤ C0 for x ∈ B1, with C0 independent of r.
(See Lemma 1.) Since v is increasing in x1, the function ur + v will still break
the given modulus of continuity. Finally, we will add another continuous,
increasing function w(x1) to our solution (see Lemma 2), such that the sum
ur(x1) + v(x1) + w(x1) satisfies L(ur + v + w)(x1) = 0 for x1 ∈ [−1.1], and
ur + v + w will also break the given modulus of continuity.

For 0 < α < 1 and 0 < λ < Λ, let us define the kernel K(x, y) as follows:
let

K1(x, y) =
(λ+ Λ)/2

|y|n+α
,

K2(x, y) = sgn(y1)
Λ− λ

2
χB1

(y),

K3(x, y) = sgn(y1)
Λ− λ

2

1

|y|n+α
χRn\B1

(y).

Note that K1(x, y) is even in y, and K2(x, y) and K3(x, y) are odd. Our
kernel is defined by

(4) K(x, y) := K1(x, y) + a(x)K2(x, y)− c(x)K3(x, y),

where a(x) is to be chosen later. The condition (2) implies that we need
|a(x)| ≤ 1 and |c(x)| ≤ 1 for all x. Let b(x) be the drift vector, which is
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given by

b(x) =

∫
B1

yK3(x, y) dy =
Λ− λ

2

∫
B1

y sgn(y1) dy =
Λ− λ

2

ωn

2
e1,

where ωn is a constant depending on the dimension n only.
We define

Liu(x) =

∫
Rn

(u(x+ y)− u(x))Ki(x, y) dy, i = 1, 2, 3,(5)

L4u(x) = b(x) · ∇u(x).

With this notation,

(6) Lu(x) = L1u(x) + a(x)(L2u(x)− L4u(x))− c(x)L3u(x).

Note that L1 is a multiple of the usual fractional Laplacian: L1u =
−cn,α(−Δ)α/2u for some constant cn,α > 0, and for u depending only on
x1, L4 = C1∂x1

, where C1 = ωn(Λ− λ)/4. It is well known that the gradient
and the fractional Laplacian have the following scaling: if ur(x) = u(x/r),
then

(7) L1ur(x) = r−α[L1u](x/r) and L4ur(x) = r−1[L4u](x/r),

and we will repeatedly make use of this. Furthermore, simple integral esti-
mates show that L2u(x) and L3u(x) are bounded in B1 for any function u
that is bounded in R

n.
The following lemma establishes a solution u to Equation (1) with

bounded right-hand side f , such that u breaks a given modulus of conti-
nuity.

Lemma 1. For any α ∈ (0, 1), 0 < λ < Λ, and modulus of continuity η at
the origin, there exist a bounded function u : Rn → R and a kernel of the
form (4), with c(x) = 0, such that

(8) − C0 ≤ Lu(x) ≤ C0, x ∈ B1,

with L as in (3), and u breaks η. The function u depends only on x1 and
is monotonically increasing. The constant C0 and supRn |u| depend on α, λ,
Λ, and n, but are independent of η.

Proof. Let u1(x1) be any smooth, nondecreasing function such that u1(x1) =
−1 for x1 ≤ −1 and u1(x1) = 1 for x1 ≥ 1, and define ur(x1) = u1(x1/r).
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Choose r > 0 small enough that η(r) < 1. Then the oscillation ωur
(Br) =

supBr
ur(x)− infBr

ur(x) = 1 ≥ η(r), so ur(x) breaks η.
The function u satisfying (8) will be of the form u(x) = ur(x1) + v(x1),

with v another function depending only on x1 and increasing in x1. To define
v, we pick a small ε > 0 (such that α+ ε < 1) and set

v(x1) =

⎧⎪⎨
⎪⎩
−21−α−ε, x1 < −2,
sgn(x1)|x1|1−α−ε, |x1| ≤ 2,

21−α−ε, x1 > 2.

Since v is nondecreasing in x1, the function u(x) = ur(x) + v(x) also breaks
the modulus of continuity η.

We claim there exists δ > 0, independent of r, such that L4u(x1) ≥
|L1u(x1)| for |x1| < δ. To establish this, we first estimate L1u1. By sym-
metry, we have

(9) L1u1(x1) = c0

∫
R

u1(x1 + y1)− u1(x1)

|y1|1+α
dy1,

where c0 depends on α, λ,Λ, and n. For x1 > 1, we have

(10) |L1u1(x1)| ≤ c0

∫ 1−x1

−∞

2 dy1
|y1|1+α

=
2c0
α
|x1 − 1|−α ≤ C|x1|−α,

for some constant C, and similarly, |L1u1(x1)| ≤ C|x1|−α for x1 < −1. For
|x1| ≤ 1, we have

|L1u1(x1)| ≤
∫ −1−x1

−∞

2 dy1
|y1|1+α

+

∫ 1−x1

−1−x1

u1(x1 + y1)− u(x1)

|y1|1+α
dy1

+

∫ ∞

1−x1

2 dy1
|y1|1+α

.

Similarly to (10), the first and third terms are bounded by C|x1|−α, and since
u1 is smooth, the middle term is bounded by some constant, uniformly in
|x1| ≤ 1. We conclude that |L1u1(x1)| ≤ C|x1|−α holds uniformly in x1 ∈ R,
for some C. Combined with the scaling (7), this implies that for ur,

|L1ur(x1)| = r−α|L1u1(x/r)| ≤ C|x1|−α,

for some constant C independent of r.
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Next, we estimate L1v. Letting ṽ(x1) = sgn(x1)|x1|1−α−ε, the scaling (7)
and the homogeneity ṽ(λx1) = λ1−α−εṽ(x1) imply that |L1ṽ(x1)| =
C|x1|1−2α−ε for some C. For |x1| ≤ 1, we have

|L1v(x1)| ≤ |L1ṽ(x1)|+ |L1(ṽ − v)(x1)|
≤ C|x1|1−2α−ε +

∫
R\[−2−x1,2−x1]

|x1 + y1|1−α−ε − 21−α−ε

|y1|1+α
dy1

≤ C|x1|1−2α−ε +
∫ −2−x1

−∞

C|y1|1−α−ε
|y1|1+α

dy1 +

∫ ∞

2−x1

C|y1|1−α−ε
|y1|1+α

dy1

≤ C|x1|1−2α−ε + C
(|x1 − 2|1−2α−ε + |x1 + 2|1−2α−ε)

≤ C|x1|1−2α−ε,

where C denotes a changing constant.
We have

L4ur(x1) =
C1

r
χ[−r,r](x1) and

L4v(x1) = (1− α− ε)|x1|−α−εχ[−2,2](x1).

Since L4u = L4ur + L4v grows faster than |L1u| = |L1ur + L1v| as x1 → 0,
there is a δ > 0 such that L4u(x1) ≥ |L1u(x1)| when |x1| < δ, as required.
This δ does not depend on r.

We now choose

(11) a(x) =

⎧⎨
⎩

L1u(x)

L4u(x)
, |x1| < δ,

0, |x1| ≥ δ,

so that Lu(x) = a(x)L2u(x) on |x1| < δ. On δ ≤ |x1| ≤ 1, we have Lu(x) =
L1u(x). By the above estimates, L1(ur + v) is bounded for δ ≤ |x1| ≤ 1.
Since L2u is bounded for any bounded u, we conclude that u(x) = ur(x1) +
v(x1) satisfies (8). �

Note that the result of the previous lemma remains true for any choice
of c(x) ∈ [−1, 1], since L3u(x) is a bounded function, for any bounded u.
A nonzero choice of c(x) will be used to make the right hand side of the
equation zero and obtain our main result.

In the next lemma, we find a function w such that |L1w| is small, L3w
is large, and L2w and L4w cancel each other. If we add w to the function
ur + v from Lemma 1, these properties will allow us to choose a(x) and c(x)
in (3) such that L(ur + v + w) = 0.
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Lemma 2. For any constant C0 > 0, there exists a bounded function w
depending only on x1, and monotonically increasing in x1, satisfying

L3w(x)− |L1w(x)| ≥ C0,(12)

L2w(x)− L4w(x) = 0,(13)

for all x ∈ B1, where Li are defined in (5).

Proof. Let w1(x1) be defined by

w1(x1) =

⎧⎪⎨
⎪⎩
−1, x1 < −1,
x1, |x1| ≤ 1,

1, x1 > 1,

,

and let wK(x1) = Kw1(x1/K), where K > 2 is a large number to be de-
termined later. Since wK is linear when |x1| ≤ 1, the identity wK(x+ y)−
wK(x)− y · ∇wK(x) = 0 holds there, so we have L2wK(x)− L4wK(x) = 0
in B1.

Next, we claim that for K large enough, |L1wK(x1)| will be uniformly
bounded by an arbitrarily small constant c for |x1| ≤ 1. By a direct compu-
tation, if |x1| ≤ 1, we have

L1w1(x1) = c0

(∫ −1−x1

−∞

−1− x1
|y1|1+α

dy1 +

∫ 1−x1

−1−x1

y1
|y1|1+α

dy1

+

∫ ∞

1−x1

1− x1
|y1|1+α

dy1

)

=
c0

α(1− α)

(|x1 − 1|1−α − |x1 + 1|1−α) ,

with c0 as in (9). Since g(x1) = L1w1(x1) is differentiable at x1 = 0, we have
|g(x1)|/|x1| → C as x1 → 0, for some constant C. By the scaling (7), this
implies

(14) |L1wK(x1)| = K1−α|L1w1(x1/K)| ≤ K1−αC|x1/K| = CK−α,

for |x1| ≤ 1, with C independent of K. Therefore, for K large enough,
|L1wK(x1)| ≤ c < 1 for all |x1| ≤ 1 and a small constant c.
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For L3wK , since the integrand (wK(x1 + y1)− wK(x1))sgn(y1)/|y|n+α is
positive everywhere, we can write

L3wK(x1) =

∫
Rn\B1

wK(x1 + y1)− wK(x1)

|y|n+α
sgn(y1) dy1

≥
∫
BK−1\B1

|y1|
|y|n+α

dy1

=

∫ K−1

1

∫
Sn−1

ρ|θ1|
ρn+α

ρn−1 dθ dρ

=
(K − 1)1−α − 1

1− α

∫
Sn−1

|θ1| dθ
= C((K − 1)1−α − 1).

This lower bound holds uniformly for |x1| ≤ 1, so forK large enough, we have
inf |x1|≤1wK(x1) > 1. This implies we can choose K, depending on α, n, λ,
and Λ, such that

L3wK(x1)− |L1wK(x1)| ≥ 1− c > 0, |x1| ≤ 1.

Therefore, given C0 > 0, we can choose a constant C such that

w(x1) := CwK(x1)

satisfies (12) and (13). �
We are now in a position to prove our result.

Proof of Theorem 1. Fix a modulus of continuity η. Let ū = ū(x1) be the
function from Lemma 1 with the corresponding kernel K = K1 + a(x)K2.

For all x ∈ B1, we have

(15) − C0 ≤ L1ū(x) + a(x)(L2ū(x)− L4ū(x)) ≤ C0.

Lemma 2 implies the existence of w(x1) such that

(16)
L1w + a(x)(L2w − L4w) + L3w ≥ C0, |x1| ≤ 1,

L1w + a(x)(L2w − L4w)− L3w ≤ −C0, |x1| ≤ 1.

We define u(x) = ū(x1) + w(x1). By (15) and (16), we have

L1u+ a(x)(L2u− L4u) + L3u ≥ 0,

L1u+ a(x)(L2u− L4u)− L3u ≤ 0.
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if |x1| ≤ 1. By the intermediate value theorem, there is a c(x) ∈ [−1, 1] so
that

L1u+ a(x)(L2u− L4u)− c(x)L3u ≤ 0,

which implies Lu(x) = 0 in B1 by (6).
Since w is also monotonically increasing in x1, the oscillation ωBr

u ≥
ωBr

ur = 1, and u breaks the modulus of continuity η. �
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