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Yamabe invariants and the

Pin−(2)-monopole equations

Masashi Ishida, Shinichiroh Matsuo, and Nobuhiro Nakamura

We compute the Yamabe invariants for a new infinite class of
closed 4-dimensional manifolds by using a “twisted” version of the
Seiberg-Witten equations, the Pin−(2)-monopole equations. The
same technique also provides a new obstruction to the existence
of Einstein metrics or long-time solutions of the normalised Ricci
flow with uniformly bounded scalar curvature.

1. Introduction

The Yamabe invariant is a diffeomorphism invariant of smooth manifolds,
which arises from a variational problem for the total scalar curvature of Rie-
mannian metrics. The Pin−(2)-monopole equations are a “twisted” version
of the Seiberg-Witten equations. In this paper we will compute the Yamabe
invariants for a new infinite class of closed 4-dimensional manifolds by using
the Pin−(2)-monopole equations.

We begin by recalling the Yamabe invariant. Let X be a closed, oriented,
connected manifold of dimX = m ≥ 3, and M(X) the space of all smooth
Riemannian metrics on X. For each metric g ∈M(X), we denote by sg the
scalar curvature and by dμg the volume form. Then the normalised Einstein-
Hilbert functional EX : M(X)→ R is defined by

EX : g �→
∫
X sg dμg(∫
X dμg

)m−2

m

.

The classical Yamabe problem is to find a metric ǧ in a given conformal class
C such that the normalised Einstein-Hilbert functional attains its minimum
on C: EX(ǧ) = infg∈C EX(g). This minimising metric ǧ is called a Yamabe
metric, and a conformal invariant Y(X,C) := EX(ǧ) the Yamabe constant.
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We define a diffeomorphism invariant Y(X) by the supremum of Y(X,C) of
all the conformal classes C on X:

Y(X) := sup
C
Y(X,C) = sup

C
inf
g

∫
X sg dμg(∫
X dμg

)m−2

m

.

We call it the Yamabe invariant of X; it is also referred to as the σ-constant.
See [16] and [28].

It is a natural problem to compute the Yamabe invariant. In dimension
4, Seiberg-Witten theory and LeBrun’s curvature estimates have played a
prominent role in this problem. LeBrun used the ordinary Seiberg-Witten
equations to compute the Yamabe invariants of most algebraic surfaces [17,
19]. In particular, he showed that a compact Kähler surface is of gen-
eral type if and only if its Yamabe invariant is negative. He also showed
Y(CP2) = 12

√
2π via the perturbed Seiberg-Witten equations [18]. Bauer

and Furuta’s stable cohomotopy Seiberg-Witten invariant [2] or Sasahira’s
spin bordism Seiberg-Witten invariant [27] enable us to compute the Yamabe
invariants of connected sums of some compact Kähler surfaces [13–15, 27].
In this paper, we will employ a recently introduced “twisted” version of the
Seiberg-Witten invariant, the Pin−(2)-monopole invariant [24], to compute
the Yamabe invariants for a new infinite class of 4-dimensional manifolds.
The advantage of using this new invariant lies in the fact that it can be
non-trivial even when the ordinary Seiberg-Witten invariants, the spin bor-
dism Seiberg-Witten invariants, and the stable cohomotopy Seiberg-Witten
invariants all vanish. Example 6 lies at the heart of this paper.

We now state the main theorems of this paper. In what follows, χ(X)
and τ(X) denote the Euler number and the signature of a manifold X re-
spectively, and mX := X# · · ·#X denotes the m-fold connected sum.

Theorem 1. Let M be a compact, connected, minimal Kähler surface with
b+(M) ≥ 2 and c21(M) = 2χ(M) + 3τ(M) ≥ 0. Let N be a closed, oriented,
connected 4-manifold with b+(N) = 0 and Y(N) ≥ 0. Let Z be a connected
sum of arbitrary positive number of 4-manifolds, each of which belongs to
one of the following types:

1) S2 × Σ, where Σ is a compact Riemann surface with positive genus, or

2) S1 × Y , where Y is a closed oriented 3-manifold.

The Yamabe invariant of the connected sum M#N#Z is equal to
−4π

√
2c21(M).
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Theorem 2. Let M be an Enriques surface. Let N and Z satisfy the as-
sumptions in Theorem 1. The Yamabe invariant of M#N#Z is equal to 0.

The key ingredients of the proofs are Proposition 9 and Proposition 12,
the non-vanishing of the Pin−(2)-monopole invariants of M#N#Z. We
emphasise that the ordinary Seiberg-Witten invariants, the spin bordism
Seiberg-Witten invariants, and the stable cohomotopy Seiberg-Witten in-
variants all vanish if Z contains at least one S2 × Σ as a connected-summand.

Much more subtle is the following theorem. In general, the moduli spaces
of the Pin−(2)-monopole equations are, in contrast to ordinary Seiberg-
Witten theory, not orientable, and only Z2-valued invariants are defined;
these invariants are powerful enough to prove the theorems above.

Theorem 3. Let M be an Enriques surface. Let N be a closed, oriented,
connected 4-manifold with b+(N) = 0 and Y(N) ≥ 0. For any m ≥ 2, the
Yamabe invariant of mM#N is equal to 0; moreover, it does not admit
Riemannian metrics of non-negative scalar curvature.

The ordinary Seiberg-Witten invariants of mM are trivial; furthermore,
its Z2-valued Pin−(2)-monopole invariants are also trivial [24, Theorem 1.13].
We need refined Z-valued Pin−(2)-monopole invariants to prove the last the-
orem.

2. The Pin−(2)-monopole equations and LeBrun’s
curvature estimates

2.1. The Pin−(2)-monopole equations

We briefly review Pin−(2)-monopole theory; for a thorough treatment, we
refer the reader to [24, 25].

Let X be a closed, oriented, connected 4-manifold. Fix a Riemannian
metric g on X. Let X̃ → X be an unbranched double cover, and � :=
X̃ ×{±1} Z its associated local system. Let b�j(X) := rankHj(X; �) and

b�+(X) := rankH+(X; �). Recall that Pin−(2) := U(1) ∪ jU(1) ⊂ Sp(1) and

Spinc−(4) := Spin(4)×{±1} Pin−(2). A Spinc−-structure on X̃ → X is de-
fined to be a triple s = (P, σ, τ), where

• P is a Spinc−(4)-bundle on X,

• σ is an isomorphism between X̃ and P/Spinc(4), and

• τ is an isomorphism between the frame bundle of X and P/Pin−(2).
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We call the associated O(2)-bundle E := P/Spin(4) the characteristic bundle
of a Spinc−-structure s = (P, σ, τ), and denote its �-coefficient Euler class
by c̃1(s) ∈ H2(X; �). If X̃ → X is trivial, any Spinc−-structure on X̃ → X
canonically induces a Spinc-structure on X [24, 2.4].

Spinc−-structures are in many ways like Spinc-structures: The Spinc−-
structure s on X̃ → X determines a triple (S+, S−, ρ), where S± are the
spinor bundles on X and ρ : Ω1(X; �⊗√−1R)→ Hom(S+, S−) is the Clif-
ford multiplication. An O(2)-connection A on E gives a Dirac operator
DA : Γ(S+)→ Γ(S−). Note that F+

A ∈ Ω+(X; �⊗√−1R). The canonical real
quadratic map is denoted by q : S+ → Ω+(X; �⊗√−1R).

We denote byA the space of O(2)-connections on E. Let C := A× Γ(S+)
and C∗ := A× (Γ(S+) \ {0}). We define the Pin−(2)-monopole equations to
be ⎧⎨⎩DAΦ = 0

1

2
F+
A = q(Φ)

for (A,Φ) ∈ C. The gauge group G := Γ(X̃ ×{±1} U(1)) acts on the set of
solutions of these equations; the moduli space is defined to be the set of
solutions modulo G. The formal dimension of the moduli space is given by

d(s) :=
1

4

(
c̃1(s)

2 − τ(X)
)− (

b�+(X)− b�1(X) + b�0(X)
)
.

Note that b�0(X) = 0 if X̃ is non-trivial.
Let B∗ := C∗/G be the irreducible configuration space. As in ordinary

Seiberg-Witten theory, we can define the Pin−(2)-monopole invariant

SWPin−(2)(X, s) : Hd(s)(B∗;Z2)→ Z2

via intersection theory on the moduli space. In contrast to ordinary Seiberg-
Witten theory, a moduli space of solutions of the Pin−(2)-monopole equa-
tions might not be orientable, and thus the invariant is, in general, Z2-valued.
We remark, however, that, in the case of Theorem 3, the moduli spaces are
orientable, and we will use the refined Z-valued invariant [25, Theorem 1.13].

Example 4. Let T̃ 2 → T 2 be a non-trivial double cover, and � := T̃ 2 ×±1
Z its associated local system. Set Σ := T 2# · · ·#T 2. The connected sum
�# · · ·#� gives a local system on Σ. We define a local system �Σ on S2 × Σ
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by the pull-back of �# · · ·#� by the projection S2 × Σ→ Σ. Then, we have

b�Σ0 (S2 × Σ) = b�Σ2 (S2 × Σ) = b�Σ4 (S2 × Σ) = 0

b�Σ1 (S2 × Σ) = b�Σ3 (S2 × Σ) = χ(Σ).

In particular, b�Σ+ (S2 × Σ) = 0, while b+(S
2 × Σ) > 0.

Example 5. Let Y be a closed oriented 3-manifold. Let S̃1 → S1 be a

connected double cover. We define a non-trivial double cover S̃1 × Y → S1 ×
Y by the pull-back of S̃1 by the projection S1 × Y → S1, and denote by
�S1 its associated local system. Then, we have b

�S1

j (S1 × Y ) = 0 for all j =
0, . . . , 4.

Example 6. Let Z be a connected sum

Z :=
(
S2 × Σ1# · · ·#S2 × Σn

)
#
(
S1 × Y1# · · ·#S1 × Ym

)
,

where each Σj is a Riemann surface of positive genus and each Yi is a closed

oriented 3-manifold. We define a non-trivial double cover Z̃ → Z by the

connected sum of ˜S2 × Σj and S̃1 × Yi in Examples 4 and 5, and denote
by �Z its associated local system. We emphasise that b�Z+ (Z) = 0, even if
b+(Z) > 0. It follows that c̃1(s) is a torsion class for every Spinc−-structure
s on Z̃ → Z. See [25, Theorem 1.7].

2.2. LeBrun’s curvature estimates

Definition 7. Let X be a closed, oriented, connected 4-manifold. Assume
that X has a non-trivial double cover X̃ → X with b�+(X) ≥ 2, where � :=

X̃ ×±1 Z. A cohomology class a ∈ H2(X; �)/Tor is called a Pin−(2)-basic
class if there exists a Spinc−-structure s on X̃ → X with c̃1(s) = a modulo
torsions for which the Pin−(2)-monopole invariant is non-trivial.

As in ordinary Seiberg-Witten theory, if X has a Pin−(2)-basic class,
the corresponding Pin−(2)-monopole equations have at least one solution for
every Riemannian metric; hence, X does not admit Riemannian metrics of
positive scalar curvature. We have, moreover, LeBrun’s curvature estimates,
which we will explain. In what follows, given a Riemannian metric g on X,
we identify H2(X; �⊗ R) with the space of �-coefficient g-harmonic 2-forms,
and denote by a+g the g-self-dual part of a ∈ H2(X; �)/Tor ⊂ H2(X; �⊗ R).
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Proposition 8. Let X be a closed, oriented, connected 4-manifold. Assume
that X has a non-trivial double cover π : X̃ → X with b�+(X) ≥ 2, where

� := X̃ ×{±1} Z. If there exists a Pin−(2)-basic class a ∈ H2(X; �)/Tor, then
the following hold for every Riemannian metric g on X:

• The scalar curvature sg of g satisfies

(1)

∫
X
s2g dμg ≥ 32π2(a+g)2.

If a+g 
= 0, equality holds if and only if there exists an integrable com-
plex structure on the double cover X̃ compatible with the pulled-back
metric g̃ := π∗g such that the covering transformation ι : X̃ → X̃ is
anti-holomorphic and the compatible Kähler form ω̃ satisfies ι∗ω̃ =
−ω̃.

• The scalar curvature sg and the self-dual Weyl curvature W+
g of g

satisfy

(2)

∫
X

(
sg −

√
6|W+

g |
)2

dμg ≥ 72π2(a+g)2.

If a+g 
= 0, equality holds if and only if the pulled-back metric g̃ := π∗g
on X̃ is an almost-Kähler metric with almost-Kähler form ω̃ such that
ι∗ω̃ = −ω̃.

Proof. LeBrun’s arguments [20, 21] or the perturbations introduced in [10]
are easily adapted to prove (1) and (2) by using the Weitzenböck formulae
of the Dirac operator for Spinc−-spinors and the Hodge Laplacian for �-
coefficient self-dual forms.

Assume that equality holds. We lift a solution (A,Φ) of the Pin−(2)-
monopole equations on X to the double cover X̃. The lifted Spinc−-structure
on X̃ canonically reduces to a Spinc-structure, and the lifted solution (Ã, Φ̃)
can be identified with a solution of the ordinary Seiberg-Witten equations
on X̃ that satisfies∫

˜X
s2g̃ dμg̃ = 32π2((π∗a)+g̃)2, or

∫
˜X

(
sg̃ −

√
6|W+

g̃ |
)2

dμg̃ = 72π2((π∗a)+g̃)2.

If the former (resp. latter) equality holds, the g̃-self-dual form ω̃ =
√
2iq(Φ̃)/

|q(Φ̃)| is a Kähler (resp. almost-Kähler) form compatible with g̃. See [22,
Proposition 3.2 and Proposition 3.8]. Since q(Φ̃) = π∗q(Φ) and iq(Φ) ∈
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Ω2(X; �⊗ R), we have ι∗ω̃ = −ω̃. In the former case, moreover, ι is anti-
holomorphic because ι∗g̃ = g̃. �

3. Gluing formulae and Pin−(2)-basic classes

Based on gluing formulae for the Pin−(2)-monopole invariant [25], we will
establish the existence of Pin−(2)-basic classes on some classes of closed
4-manifolds.

3.1. Irreducible U(1) and reducible Pin−(2).

We first establish a non-vanishing result based on a gluing formula for irre-
ducible U(1)-monopoles and reducible Pin−(2)-monopoles [25, Theorem 3.8].
It will play a pivotal role in the proof of Theorem 1.

Proposition 9. Let M be a closed, oriented, connected 4-manifold that
satisfies the following:

• b+(M) ≥ 2, and

• there exists a Spinc-structure sM such that c1(sM )2 = 2χ(M) + 3τ(M)
and its ordinary Seiberg-Witten invariant is odd.

Let N be a closed, oriented, connected 4-manifold with b+(N) = 0. Let Z be
a connected sum of arbitrary positive number of 4-manifolds, each of which
belongs to one of the following types:

1) S2 × Σ, where Σ is a compact Riemann surface with positive genus,

2) S1 × Y , where Y is a closed oriented 3-manifold.

Set X := M#N#Z. Then, there exists a non-trivial double cover X̃ → X
and a Pin−(2)-basic class a ∈ H2(X; �X), where �X := X̃ ×{±1} Z, such that

(a+g)2 ≥ 2χ(M) + 3τ(M)

for any Riemannian metric g on X.

Proof. Set X1 := M#N and X2 := Z. We will apply [25, Theorem 3.8] to
X = X1#X2 as follows.

We can choose a set of non-trivial smooth loops γ1, . . . , γb in N so that
surgery along them produces a 4-manifold N ′ with b1(N

′) = 0 and b+(N
′) =

0. Conversely, we can find a set of homologically trivial embedded 2-spheres
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in N ′ so that surgery along them recovers N . We will identify H2(N ;Z)
with H2(N ′;Z).

SetX ′
1 := M#N ′. Let e1, . . . , ek be a set of generators forH2(N ′;Z)/Tor

relative to which the intersection form is diagonal [5]. By Froyshov’s gen-
eralised blow-up formula [9, Corollary 14.1.1], X ′

1 has a Spinc-structure s′1
such that

c1(s
′
1) = c1(sM ) + (±e1 + · · ·+±ek),

its ordinary Seiberg-Witten moduli space is 0-dimensional, and its ordinary
Seiberg-Witten invariant is equal to that of (M, sM ). Here, the signs of ±ei
are arbitrary and independent of one another.

By Ozsváth and Szabó’s surgery formula [26, Proposition 2.2], X1 has a
Spinc-structure s1 such that c1(s1) = c1(s

′
1) and

SWU(1)(X1, s1)(μ(γ1) · · ·μ(γb)) = SWU(1)(X ′
1, s

′
1)(1)

for some homology orientation on X ′
1, where SWU(1) denotes the ordinary

Seiberg-Witten invariant and μ : H1(X1;Z)→ H1(B∗;Z) is a “μ-map” to
the irreducible configuration space B∗ = B∗(s1).

We take a non-trivial double cover X̃2 → X2 as described in Example 6,
and choose any Spinc−-structure s2 on X̃2 → X2. Note that c̃1(s2)

2 = 0.

Set X̃ := X1#X1#X̃2. It now follows from [25, Theorem 3.8] that

a := c1(sM ) + (±e1 + · · ·+±ek) + c̃1(s2)

is a Pin−(2)-basic class. Given a Riemannian metric g on X, we can choose
the signs of ±ei so that

(a+g)2 ≥ (c1(sM ) + c̃1(s2))
2 = 2χ(M) + 3τ(M)

holds [13, Corollary 11]. This completes the proof. �

3.2. Surgery formulae for the Pin−(2)-monopole invariant

We digress to generalise Ozsváth and Szabó’s surgery formula to the Pin−(2)-
monopole invariant.

We first describe a surgery formula for the Z2-valued Pin−(2)-monopole
invariant, which will be used to prove Proposition 12. Let X be a closed,
oriented, connected 4-manifold and π : X̃ → X a non-trivial double cover.
Fix a Spinc−-structure s on X̃ → X. Let S ⊂ X be an embedded 2-sphere
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with zero self-intersection number. Note that the restriction of s to a tubu-
lar neighbourhood of S is untwisted; therefore, it canonically induces a
usual Spinc-structure on the neighbourhood. We denote by X ′ the mani-
fold obtained by surgery on S, and let C ⊂ X ′ be the core of the added
S1 ×D3. The inverse image π−1(S) ⊂ X̃ consists of disjoint embedded 2-
spheres S1 and S2. Equivariant surgery on S1 and S2 produces a double
covering X̃ ′ → X ′. Let {C1, C2} := π−1(C) ⊂ X̃ ′.

X̃ \ {S1 ∪ S2} X̃ ′ \ {C1 ∪ C2}

X \ S X ′ \ C.

∼=

∼=

There is a unique Spinc−-structure s′ on X̃ ′ → X ′ with the property that

s′
∣∣
˜X′\{C1∪C2}→X\S = s|

˜X\{S1∪S2}→X′\C .

Note that the restriction of s′ to a tubular neighbourhood of C is untwisted;
therefore, it canonically induces a usual Spinc-structure on the neighbour-
hood. We define a “μ-map” associated with s′ by

μE : H1(X
′;Z2)→ H1(B∗;Z2), α �→ w2(E)/α,

where E is the universal characteristic O(2)-bundle on X ′ × B∗.

Proposition 10.

SWPin−(2)(X ′, s′)(ξ · μE(C)) = SWPin−(2)(X, s)(ξ)

for any ξ ∈ H∗(B∗;Z2).

Proof. Fix a cylindrical-end metric on X \ S modelled on the standard prod-
uct metric on [0,∞)× S1 × S2. This metric on X \ S can be extended over
both S1 ×D3 and D2 × S2 to give metrics with non-negative scalar curva-
ture. As noted above, the Spinc−-structure s induces a usual Spinc-structure
on a neighbourhood of S, and so does s′ on a neighbourhood of C. Thus, the
moduli spaces of solution of the Pin−(2)-monopole equations over S1 × S2,
S1 ×D3, and D2 × S2 can be identified with the moduli spaces of reducible
solutions of the ordinary Seiberg-Witten equations. We also observe that
each solution of the Pin−(2)-monopole equations on X and X ′ restricts to a
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solution of the ordinary Seiberg-Witten equations near S and C respectively.
The rest of the proof runs parallel to that of [26, Proposition 2.2]. �

We next describe a surgery formula for the Z-valued Pin−(2)-monopole
invariant, which will be used to prove Theorem 3. Assume that the moduli
space on (X, s) is orientable. As noted above, the restriction of s and that
of s′ canonically induce Spinc-structures on tubular neighbourhoods of S
and C respectively. For a Spinc-structure, the determinant line bundle of
its Dirac operators is always trivial. Then, by the excision property for the
indices of families (see [7, 7.1.3] and [25, Lemma 6.10]), we can show that
the moduli space on (X ′, s′) is also orientable. Consequently, if the Z-valued

invariant SW
Pin−(2)
Z

(X, s) is defined, so does SW
Pin−(2)
Z

(X ′, s′). We define
another “μ-map” associated with s′ by

μ̂E : H1(X
′; �′)→ H1(B∗;Z), α �→ c̃1(E)/α,

where �′ := X̃ ′ ×±1 Z. The proof of the following surgery formula also runs
parallel to that of [26, Proposition 2.2].

Proposition 11. Assume that the moduli space on (X, s) is orientable. We
have, for any ξ ∈ H∗(B∗;Z),

SW
Pin−(2)
Z

(X ′, s′)(ξ · μ̂E(C)) = SW
Pin−(2)
Z

(X, s)(ξ)

for some orientations on the moduli spaces.

3.3. Irreducible Pin−(2) and reducible Pin−(2)

We can establish another non-vanishing result based on a generalised blow-
up formula for the Pin−(2)-monopole invariant [24, Theorem 3.9] and a
gluing formula for irreducible Pin−(2)-monopoles and reducible Pin−(2)-
monopoles [25, Theorem 3.11]. It will play a key role in the proof of Theo-
rem 2.

Proposition 12. Let M be a closed, oriented, connected 4-manifold that
satisfies the following:

• there exists a non-trivial double cover M̃ →M with b�M+ (M) ≥ 2, where

�M = M̃ ×{±1} Z, and
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• there exists a Spinc−-structure sM on M̃ →M such that c̃1(sM )2 =
2χ(M) + 3τ(M) and its Z2-valued Pin−(2)-monopole invariant is non-
trivial.

Let N be a closed, oriented, connected 4-manifold with b+(N) = 0. Let Z be
a connected sum of arbitrary positive number of 4-manifolds, each of which
belongs to one of the following types:

1) S2 × Σ, where Σ is a compact Riemann surface with positive genus,

2) S1 × Y , where Y is a closed oriented 3-manifold.

Set X := M#N#Z. Then, there exist a non-trivial double cover X̃ → X and
a Pin−(2)-basic class a ∈ H2(X; �X), where �X := X̃ ×{±1} Z, such that

(a+g)2 ≥ 2χ(M) + 3τ(M)

for any Riemannian metric on X.

Proof. Set X1 := M#N and X2 := Z. We will first apply [25, Theorem 3.9]
to X1 = M#N , and next [25, Theorem 3.11] to X = X1#X2 as follows.

We can choose a set of non-trivial smooth loops γ1, . . . , γb in N so that
surgery along them produces a 4-manifold N ′ with b1(N

′) = 0 and b+(N
′) =

0. Conversely, we can find a set of homologically trivial embedded 2-spheres
in N ′ so that surgery along them recovers N . We will identify H2(N ;Z)
with H2(N ′;Z).

SetX ′
1 := M#N ′. Let e1, . . . , ek be a set of generators forH2(N ′;Z)/Tor

relative to which the intersection form is diagonal. By a generalised blow-up
formula for the Pin−(2)-monopole invariant [25, Theorem 3.9], we have a

double cover X̃ ′
1 → X ′

1 and a unique Spinc−-structure s′1 on it such that

c̃1(s
′
1) = c̃1(sM ) + (±e1 + · · ·+±ek),

its Pin−(2)-monopole moduli space is 0-dimensional, and its Pin−(2)-
monopole invariant is equal to that of (M, sM ). Here, the signs of ±ei are
arbitrary and independent of one another.

By Proposition 10, we have a double cover X̃1 → X1 and a unique
Spinc−-structure s1 on it such that c̃1(s1) = c̃1(s

′
1) and

SWPin−(2)(X1, s1)(μE(γ1) · · ·μE(γb)) = SWPin−(2)(X ′
1, s

′
1)(1).

We take a non-trivial double cover X̃2 → X2 as described in Example 6,
and choose any Spinc−-structure s2 on X̃2 → X2. Note that c̃1(s2)

2 = 0.
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It now follows from [25, Theorem 3.11] that

a := c1(sM ) + (±e1 + · · ·+±ek) + c̃1(s2)

is a Pin−(2)-basic class. Given a Riemannian metric g on X, we can choose
the signs of ±ei so that

(a+g)2 ≥ (c1(sM ) + c̃1(s2))
2 = 2χ(M) + 3τ(M)

holds [13, Corollary 11]. This completes the proof. �

4. Computations of the Yamabe invariant

Let us recall that we have

Is(X) := inf
g

∫
X
|sg|2 dμg =

{
(Y(X))2 if Y(X) ≤ 0

0 if Y(X) ≥ 0

for any closed oriented 4-manifold X [3, 19].

Proposition 13. Let M , N , and Z satisfy the assumptions in Proposi-
tion 9 or Proposition 12. Set X = M#N#Z. Then, we have

Is(X) ≥ 32π2
(
2χ(M) + 3τ(M)

)
.

Proof. Proposition 9 or Proposition 12 and LeBrun’s curvature estimate (1)
imply that ∫

X
s2g dμg ≥ 32π2(a+g)2 ≥ 32π2

(
2χ(M) + 3τ(M)

)
for any Riemannian metric g on X. �

Proof of Theorem 1 and Theorem 2. Let M , N , and Z satisfy the assump-
tions in Theorem 1 or Theorem 2. We have Is(M) = 32π2c21(M) by [17, 19],
and Is(N) = 0 by assumption. Note that Y(S1 × Y ) ≥ 0 for any closed ori-
ented 3-manifold Y ; thus, Is(Z) = 0. We remark that an Enriques surface
satisfies the assumption for M in Proposition 12 by [25, Theorem 1.3]. Set
X := M#N#Z.
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By Proposition 13, we have

Is(X) ≥ 32π2
(
2χ(M) + 3τ(M)

)
= 32π2c21(M).

On the other hand, by [13, Proposition 13], we have

Is(X) ≤ Is(M) + Is(N) + Is(Z) = 32π2c21(M).

Since X has a Pin−(2)-basic class, Y(X) ≤ 0. Thus,

Y(X) = −
√
Is(X) = −4π

√
2c21(M).

This completes the proof. �
Proof of Theorem 3. Let M be an Enriques surface. By [25, Theorem 1.13],
the Z-valued Pin−(2)-monopole invariant of mM is non-trivial for any
m ≥ 2.

If b1(N) = 0, by [24, Theorem 3.9], the Z-valued Pin−(2)-monopole in-
variant of mM#N is non-trivial. We remark that [24, Theorem 3.9] holds
for the Z-valued Pin−(2)-monopole invariant. If b1(N) > 0, by using Propo-
sition 11 as in the proof of Proposition 9 or that of Proposition 12, we are
reduced to the case when b1(N) = 0. Thus, the Z-valued Pin−(2)-monopole
invariant of mM#N is non-trivial. In particular, we have

Y(mM#N) ≤ 0.

On the other hand, we have

0 ≤ Is(mM#N) ≤ mIs(M) + Is(N) = 0.

Thus, Y(mM#N) = 0.
Since 2χ(mM#N) + 3τ(mM#N) < 0, by the Hitchin-Thorpe inequal-

ity, it does not admit Ricci-flat metrics. Consequently, it does not admit
Riemannian metrics of non-negative scalar curvature. �

5. Obstructions to Einstein metrics

We begin by examining LeBrun’s inequalities (Cf. [20, Proposition 3.2]).

Lemma 14. Let M , N , and Z satisfy the assumptions in Proposition 9 or
Proposition 12. If equality holds in either (1) or (2) for some Riemannian
metric g on X := M#N#Z, then a+g = 0.
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Proof. Suppose that equality holds and a+g 
= 0. Proposition 8 implies that

the double cover X̃ = M̃#Z admits an almost-Kähler structure; therefore,
its ordinary Seiberg-Witten invariant is non-trivial [29]. On the other hand,

X̃ = M#M#N#N#Z̃ or X̃ = M̃#N#N#Z̃#(S1 × S3) according as M
satisfies the assumptions of Proposition 9 or those of Proposition 12; in
either case, X̃ has at least two connected-summands with positive b+; thus,
its ordinary Seiberg-Witten invariant is trivial. This is a contradiction. �

Proposition 15. Let M , N , and Z satisfy the assumptions in Proposition 9
or Proposition 12. Then, we have a strict inequality

1

4π2

∫
X

(
s2g
24

+ 2|W+
g |2

)
dμg >

2

3

(
2χ(M) + 3τ(M)

)
for any Riemannian metric g on X := M#N#Z.

Proof. Combined with Proposition 9 or Proposition 12, the Cauchy-Schwarz
inequality and LeBrun’s curvature estimate (2) yield

1

4π2

∫
X

(
s2g
24

+ 2|W+
g |2

)
dμg ≥ 1

4π2

1

27

∫
X

(
sg −

√
6|W+

g |
)2

dμg

≥ 1

4π2

1

27
· 72π2(a+g)2

≥ 2

3

(
2χ(M) + 3τ(M)

)
for any Riemannian metric g on X (Cf. [20, Proposition 3.1]).

We remark that X is not diffeomorphic to a finite quotient of a K3
surface or T 4; in particular, X does not admit a Ricci-flat anti-self-dual
metric [11]. Suppose that equality holds for some Riemannian metric g onX.
By Lemma 14, we have a+g = 0; therefore, sg = W+

g = 0. Note that X does
not admit a Riemannian metric of positive scalar curvature by Proposition 9
or Proposition 12. Consequently, g is Ricci-flat and anti-self-dual. This is a
contradiction. �

Proposition 15 leads to a new obstruction to the existence of Einstein
metrics (Cf. [13, Section 6]).

Theorem 16. Let M , N , and Z satisfy the assumptions in Proposition 9
or Proposition 12. If X := M#N#Z admits an Einstein metric, then

1

3

(
2χ(M) + 3τ(M)

)
> 4− (

2χ(N#Z) + 3τ(N#Z)
)
.
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Proof. We first note that

2χ(X) + 3τ(X) = 2
(
χ(M) + χ(N#Z)− 2

)
+ 3

(
τ(M) + τ(N#Z)

)
= 2χ(M) + 3τ(M) + 2χ(N#Z) + 3τ(N#Z)− 4.

By the Chern-Gauss-Bonnet formula and the Hirzebruch signature theorem,
if X admits an Einstein metric, we have

2χ(X) + 3τ(X) =
1

4π2

∫
X

(
s2g
24

+ 2|W+
g |2

)
dμg.

By Proposition 15, we have a strict inequality

1

4π2

∫
X

(
s2g
24

+ 2|W+
g |2

)
dμg >

2

3

(
2χ(M) + 3τ(M)

)
.

Thus, we have

2χ(M) + 3τ(M) + 2χ(N#Z) + 3τ(N#Z)− 4 >
2

3

(
2χ(M) + 3τ(M)

)
.

The proof is completed by rearranging terms. �

Theorem 17. Let M , N , and Z satisfy the assumptions in Proposition 9 or
Proposition 12. If X := M#N#Z admits an anti-self-dual Einstein metric,
then

1

4

(
2χ(M) + 3τ(M)

)
> 4− (

2χ(N#Z) + 3τ(N#Z)
)
.

Proof. We first note that

2χ(X) + 3τ(X) = 2
(
χ(M) + χ(N#Z)− 2

)
+ 3

(
τ(M) + τ(N#Z)

)
= 2χ(M) + 3τ(M) + 2χ(N#Z) + 3τ(N#Z)− 4.

By the Chern-Gauss-Bonnet formula and the Hirzebruch signature theorem,
if X admits an anti-self-dual Einstein metric, we have

2χ(X) + 3τ(X) =
1

4π2

∫
X

s2g
24

dμg =
1

96π2

∫
X
s2g dμg.

We have a strict inequality∫
X
s2g dμg > 72π2

(
2χ(M) + 3τ(M)

)
= 96π2 · 3

4

(
2χ(M) + 3τ(M)

)
,
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which follows by the same method as in Proposition 15 using LeBrun’s
curvature estimate (2) and Lemma 14. Thus, we have

2χ(M) + 3τ(M) + 2χ(N#Z) + 3τ(N#Z)− 4 >
3

4

(
2χ(M) + 3τ(M)

)
.

The proof is completed by rearranging terms. �

Example 18. Mumford constructed a compact complex surface K of gen-
eral type that is homeomorphic to the complex projective plane [23]. Let M
be a closed symplectic manifold with b+(M) ≥ 2. Let Z be a connected sum
of arbitrary positive number of 4-manifolds, each of which belongs to one of
the following types:

1) S2 × Σ, where Σ is a compact Riemann surface with positive genus,

2) S1 × Y , where Y is a closed oriented 3-manifold.

Then, M#mCP2#nK#Z does not admit an Einstein metric if

4− 5(n+m) ≥ (
2χ(Z) + 3τ(Z)

)
+

1

3

(
2χ(M) + 3τ(M)

)
,

and it does not admit an anti-self-dual Einstein metric if

4− 5(n+m) ≥ (
2χ(Z) + 3τ(Z)

)
+

1

4

(
2χ(M) + 3τ(M)

)
.

We end this section by examining an equality related to Proposition 15,
the proof of which is worth mentioning here although it will not play any
role in our work.

Proposition 19. Let π : M̃ →M satisfy the the assumptions in Proposi-
tion 12. If there exists a Riemannian metric g on M that satisfies

1

4π2

∫
M

(
s2g
24

+ 2|W+
g |2

)
dμg =

2

3

(
2χ(M) + 3τ(M)

)
,

then (M̃, π∗g) is a K3 surface or T 4 with hyper-Kähler metric and the cov-

ering transformation of M̃ is anti-holomorphic; moreover, M is an Enriques
surface if M̃ is a K3 surface.

Proof. It follows from a similar argument as in [20, Proposition 3.2] that

(M̃, π∗g) is a K3 surface or T 4 with hyperKähler metric, and that the cover-
ing transformation is anti-holomorphic. By “Donaldson’s trick” (see [6] and
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[4, Section 15.1]), we can show that there exists another complex structure

on M̃ compatible with π∗g for which the covering transformation is holo-
morphic; in particular, M is an Enriques surface if M̃ is a K3 surface. �

6. Obstructions to long-time Ricci flows

Recall that a long-time solution of the normalised Ricci flow is a family of
Riemannian metrics that satisfies

∂

∂t
g(t) = −2Ricg(t)+

2

m

(∫
X sg(t) dμg(t)∫

X dμg(t)

)
g(t)

for t ∈ [0,∞). Proposition 15 also leads to a new obstruction to the existence
of long-time solutions of the normalised Ricci flow with uniformly bounded
scalar curvature (Cf. [12, Section 5]).

Lemma 20. Let M , N , and Z satisfy the assumptions in Proposition 9
or Proposition 12. If X := M#N#Z admits a long-time solution of the
normalised Ricci flow with uniformly bounded scalar curvature, then we have
Y(X) < 0.

Proof. By Proposition 9 or Proposition 12, X has a Pin−(2)-basic class;
hence, Y(X) ≤ 0. Then, by [1, Theorem A] and [30, Theorem 1.1], we have
a Hitchin-Thorpe type inequality

2χ(X)− 3|τ(X)| ≥ 1

96π2
Y(X)2.

Thus, 2χ(X) + 3τ(X) ≥ 0. Note that 2χ(N#Z) + 3τ(N#Z) < 0. Thus, we
get

2χ(M) + 3τ(M) > 0.

By Proposition 13, we have

Y(X) = −Is(X) ≤ −32π2
(
2χ(M) + 3τ(M)

)
< 0.

This completes the proof. �

Theorem 21. Let M , N , and Z satisfy the assumptions in Proposition 9
or Proposition 12. If X := M#N#Z admits a long-time solution of the
normalised Ricci flow with uniformly bounded scalar curvature, then

4− (
2χ(N#Z) + 3τ(N#Z)

) ≤ 1

3

(
2χ(M) + 3τ(M)

)
.
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Proof. By Lemma 20, we have Y(X) < 0. Then, by [12, Proposition 5], we
have

sup
t∈[0,∞)

min
x∈X

sg(t)(x) < 0.

Thus, by [8, Lemma 3.1], we have∫ ∞

0

∫
X

∣∣◦rg(t)∣∣2 dμg(t) dt <∞,

where we denote by
◦
r the traceless Ricci tensor. Hence, we have

(3) lim
m→∞

∫ m+1

m

∫
X

∣∣◦rg(t)∣∣2 dμg(t) dt = 0.

By the Chern-Gauss-Bonnet formula and the Hirzebruch signature theorem,
we have

2χ(X) + 3τ(X) =
1

4π2

∫
X

(s2g(t)

24
+ 2|W+

g(t)|2 −
∣∣◦rg(t)∣∣2

2

)
dμg(t)

for any t ∈ [0,∞). Hence, we have

(4) 2χ(X) + 3τ(X) =
1

4π2

∫ m+1

m

∫
X

(s2g(t)

24
+ 2|W+

g(t)|2 −
∣∣◦rg(t)∣∣2

2

)
dμg(t) dt

for any m ∈ [0,∞). By (3) and (4), we have

2χ(X) + 3τ(X) = lim
m→∞

1

4π2

∫ m+1

m

∫
X

(s2g(t)

24
+ 2|W+

g(t)|2
)
dμg(t) dt.

On the other hand, by Lemma 15, we have

1

4π2

∫
X

(s2g(t)

24
+ 2|W+

g(t)|2
)
dμg(t) >

2

3

(
2χ(M) + 3τ(M)

)
for any t ∈ [0,∞). Thus,

lim
m→∞

1

4π2

∫ m+1

m

∫
X

(s2g(t)

24
+ 2|W+

g(t)|2
)
dμg(t) dt ≥

2

3

(
2χ(M) + 3τ(M)

)
.

Consequently, we get

2χ(X) + 3τ(X) ≥ 2

3

(
2χ(M) + 3τ(M)

)
.
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This completes the proof. �
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