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A representation-theoretic proof of the

branching rule for Macdonald polynomials

Yi Sun

We give a new representation-theoretic proof of the branching rule
for Macdonald polynomials using the Etingof-Kirillov Jr. expres-
sion for Macdonald polynomials as traces of intertwiners of Uq(gln)
given in [11]. In the Gelfand-Tsetlin basis, we show that diagonal
matrix elements of such intertwiners are given by application of
Macdonald’s operators to a simple kernel. An essential ingredi-
ent in the proof is a map between spherical parts of double affine
Hecke algebras of different ranks based upon the Dunkl-Kasatani
conjecture of [8, 9, 13, 20].
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1. Introduction

The Macdonald polynomials Pλ(x; q, t) are a two-parameter family of sym-
metric functions indexed by partitions λ which form an orthogonal basis for
the ring of symmetric functions with respect to a (q, t)-deformation of the
standard inner product. They were originally introduced by Macdonald (see
[21]) as a generalization of many known families of special functions, includ-
ing Schur functions, Jack and Hall-Littlewood polynomials, and Heckman-
Opdam hypergeometric functions. Macdonald proved a branching rule for
the Pλ(x; q, t) and conjectured three additional symmetry, evaluation, and
norm identities collectively known as Macdonald’s conjectures. These con-
jectures were proven by Cherednik using techniques from double affine Hecke
algebras in [6]. Etingof and Kirillov Jr. realized the Macdonald polynomials
in [11] in terms of traces of intertwiners of the quantum group Uq(gln); using
this interpretation, they gave new proofs of Macdonald’s conjectures in [12].

The purpose of this paper is to give a representation-theoretic proof
and interpretation of Macdonald’s branching rule from the perspective of
quantum groups. We give a new expression for diagonal matrix elements of
Uq(gln)-intertwiners in the Gelfand-Tsetlin basis as the application of Mac-
donald’s difference operators to a simple kernel. We then show that the re-
sulting summation expression for Pλ(x; q, t) becomes Macdonald’s branching
rule after a summation by parts procedure. A key ingredient which is of in-
dependent interest is the construction of a map Resl between spherical parts
of double affine Hecke algebras of different ranks. Our construction makes
essential use of the Dunkl-Kasatani conjecture stated in [8, 20] and proven
in [9, 13] and is compatible with Cherednik’s SL2(Z)-action on spherical
DAHA.

In the remainder of the introduction, we summarize our motivations,
give precise statements of our results, and explain how they relate to other
recent work.

1.1. Macdonald polynomials

Let ρ =
(
n−1
2 , . . . , 1−n2

)
and let er denote the elementary symmetric polyno-

mial. For a partition λ, the Macdonald polynomial Pλ(x; q
2, t2) is the joint

polynomial eigenfunction with leading term xλ and eigenvalue er(q
2λt2ρ) of

the operators

Dr
n,x(q

2, t2) = tr(r−n)
∑
|I|=r

∏
i∈I,j /∈I

t2xi − xj
xi − xj

Tq2,I ,
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where Tq2,I =
∏

i∈I Tq2,i and Tq2,if(x1, . . . , xn) = f(x1, . . . , q
2xi, . . . , xn) so

that we have

Dr
n,x(q

2, t2)Pλ(x; q
2, t2) = er(q

2λt2ρ)Pλ(x; q
2, t2).

Note that our normalization of Dr
n,x(q

2, t2) differs from that of [21]. An
integral signature λ is a sequence λ = (λ1, . . . , λn) with λi − λj ∈ Z, and it
is dominant if λi ≥ λi+1. We extend the definition of Macdonald polynomials
to arbitrary signatures by setting

P(λ1+c,...,λn+c)(x; q
2, t2) = (x1 · · ·xn)cPλ(x; q

2, t2).

We say that dominant integral signatures μ = (μ1 ≥ · · · ≥ μn−1) and λ =
(λ1 ≥ · · · ≥ λn) interlace if

λ1 ≥ μ1 ≥ λ2 ≥ · · · ≥ μn−1 ≥ λn.

Denote interlacing by μ ≺ λ and write |λ| = ∑
i λi. A Gelfand-Tsetlin pat-

tern subordinate to λ is an interlacing sequence

μ = {μl}1≤l≤n = {μ1 ≺ μ2 ≺ · · · ≺ μn−1 ≺ μn = λ}

ending in λ. Define the q-Pochhammer symbol by

(u; q)∞ =
∏
n≥0

(1− uqn).

In [21], Macdonald showed that Pλ(x; q, t) satisfies the following branch-
ing rule, which yields an explicit summation expression for Pλ(x; q, t) over
Gelfand-Tsetlin patterns subordinate to λ.

Theorem 1.1 ([21, VI.7.13’]). The Macdonald polynomials satisfy the
branching rule

Pλ(x1, . . . , xn; q, t) =
∑
μ≺λ

ψλ/μ(q, t)Pμ(x1, . . . , xn−1; q, t)x|λ|−|μ|n ,

where the branching coefficient is

ψλ/μ(q, t) =
∏

1≤i≤j≤�(μ)

(qμi−μj tj−i+1; q)∞(qλi−λj+1tj−i+1; q)∞
(qμi−μj+1tj−i; q)∞(qλi−λj+1+1tj−i; q)∞

(qλi−μj+1tj−i; q)∞(qμi−λj+1+1tj−i; q)∞
(qλi−μj tj−i+1; q)∞(qμi−λj+1tj−i+1; q)∞

.
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Corollary 1.2. The Macdonald polynomials admit the summation formula

Pλ(x; q, t) =
∑

μ1≺···≺μn−1≺μn=λ

n∏
i=1

ψμi/μi−1(q, t)

n∏
i=1

x
|μi|−|μi−1|
i .

1.2. The quantum group Uq(gln)

For a generic value of q1/2, let Uq(gln) be the associative algebra with gen-

erators ei, fi for i = 1, . . . , n− 1 and q±
hi
2 for i = 1, . . . , n and relations

q
hi
2 eiq

−hi
2 = q

1

2 ei, q
hi
2 ei−1q−

hi
2 = q−

1

2 ei−1,

q
hi
2 fiq

−hi
2 = q−

1

2 fi q
hi
2 fi−1q−

hi
2 = q

1

2 fi−1,

[q
hi
2 , ej ] = [q

hi
2 , fj ] = 0 for j �= i, i− 1, q

hi
2 · q−hi

2 = 1

[ei, fj ] = δij
qhi−hi+1 − qhi+1−hi

q − q−1
, [ei, ej ] = [fi, fj ] = 0 for |i− j| > 1

e2i ej − (q+q−1)eiejei + eje
2
i = 0,

f2
i fj − (q+q−1)fifjfi + fjf

2
i = 0 for |i− j| = 1.

We take the coproduct on Uq(gln) defined by

Δ(ei) = ei ⊗ q
hi+1−hi

2 + q
hi−hi+1

2 ⊗ ei

Δ(fi) = fi ⊗ q
hi+1−hi

2 + q
hi−hi+1

2 ⊗ fi

Δ(q
hi
2 ) = q

hi
2 ⊗ q

hi
2 .

Denote the subalgebra generated by fi and q
hi
2 by Uq(b−). For each r <

n, the subalgebra generated by e1, . . . , er−1, f1, . . . , fr−1, and q
h1
2 , . . . , q

hr
2

forms a copy of Uq(glr) within Uq(gln). Finally, we denote the finite di-
mensional irreducible Uq(gln)-representation corresponding to a dominant
integral signature λ by Lλ.

1.3. Etingof-Kirillov Jr. approach to Macdonald polynomials

Etingof and Kirillov Jr. gave an interpretation of Macdonald polynomials
via representation-valued traces of Uq(gln) in [11]. Let Wk−1 denote the
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Uq(gln)-representation

L((k−1)(n−1),−(k−1),...,−(k−1)) = Sym(k−1)n(Cn)⊗ (det)−(k−1),

and choose an isomorphism Wk−1[0] � C · wk−1 for some wk−1 ∈Wk−1[0]
which spans the 1-dimensional zero weight space Wk−1[0]. Define the weight
ρn =

(
n−1
2 , . . . , 1−n2

)
. Writing ρ for ρn, for a signature λ, there exists a unique

intertwiner

Φn
λ : Lλ+(k−1)ρ → Lλ+(k−1)ρ ⊗Wk−1

normalized to send the highest weight vector vλ+(k−1)ρ in Lλ+(k−1)ρ to

vλ+(k−1)ρ ⊗ wk−1 + (lower order terms),

where (lower order terms) denotes terms of weight lower than λ+ (k − 1)ρ
in the first tensor coordinate. Traces of these intertwiners lie in Wk−1[0] =
C · wk−1 and yield Macdonald polynomials when interpreted as scalar func-
tions via the identification wk−1 	→ 1. Write xh for xh = xh1

1 · · ·xhn
n , where in

any Uq(gln)-representation we interpret xhi

i as acting on the μ weight space
by xμi

i .

Theorem 1.3 ([11, Theorem 1]). The Macdonald polynomial Pλ(x;
q2, q2k) is given by

Pλ(x; q
2, q2k) =

Tr(Φn
λx

h)

Tr(Φn
0x

h)
.

Proposition 1.4 ([11, Main Lemma]). On L(k−1)ρ, the trace may be
expressed explicitly as

Tr(Φn
0x

h) = (x1 · · ·xn)−
(k−1)(n−1)

2

k−1∏
s=1

∏
i<j

(xi − q2sxj).

Remark. Our notation for Macdonald polynomials is related to that of
[11] via PEK

λ (x; q, t) = Pλ(x; q
2, t2).

1.4. Gelfand-Tsetlin basis

The representation Lλ of Uq(gln) admits a basis {vμ} indexed by Gelfand-
Tsetlin patterns μ subordinate to λ. The weight of a basis vector vμ is

wt(vμ) =
(
|μn| − |μn−1|, . . . , |μ2| − |μ1|, |μ1|

)
.
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It was shown in [28] that these basis vectors may be expressed in terms of
lowering operators dr,i in Uq(glr) ∩ Uq(b−) ⊂ Uq(gln) applied to the highest
weight vector vλ. More precisely, we have the following.

Proposition 1.5 ([28, Theorem 2.9]). There exist lowering operators
dr,i ∈ Uq(glr) ∩ Uq(b−) so that the Gelfand-Tsetlin basis vectors are given
by

vμ = dμ
1

1 dμ
2−μ1

2 · · · dμn−μn−1

n vλ,

where dτr = dτ1r,1 · · · dτrr,r for a partition τ .

1.5. Statement of the main results

Computing the trace of Uq(gln)-intertwiners in Theorem 1.3 in the Gelfand-
Tsetlin basis of Lλ+(k−1)ρ yields an expression for Pλ(x; q

2, t2) as a summa-
tion over Gelfand-Tsetlin patterns subordinate to λ+ (k − 1)ρ. Our main
result shows that diagonal matrix elements of these intertwiners are given
by application of Macdonald’s operators to a simple kernel.

Theorem 4.4. In the Gelfand-Tsetlin basis, the diagonal matrix element
of Φn

λ on the basis vector corresponding to the Gelfand-Tsetlin pattern

{σ1 ≺ · · · ≺ σn−1 ≺ λ+ (k − 1)ρ}

with σl
i = μi + (k − 1)n+1−2i

2 for all l is given by(
k−1∏
a=1

Dn−1,q2μ̄(q2a; q−2, q2(k−1))

∏
i≤j

[λi − μj + k(j − i)]k−1
∏
i<j

[μi − λj + k(j − i) + k − 2]k−1

)
∏
i≤j

[μi − μj + k(j − i) + k − 1]−1k−1
∏
i<j

[λi − λj + k(j − i)− 1]−1k−1,

where μ̄i = μi − k(i− 1), [m] = qm−q−m

q−q−1 , [m]k = [m] · · · [m− k + 1], and

Dn−1,q2μ̄(u; q2, t2) =
n−1∑
r=0

(−1)n−1−run−1−rDr
n−1,q2μ̄(q

2, t2).

Using Theorem 4.4, we give a new representation-theoretic proof of Mac-
donald’s branching rule.
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Theorem 5.1. At t = qk for positive integer k, we have

Pλ(x1, . . . , xn; q
2, q2k) =

∑
μ≺λ

x|λ|−|μ|n Pμ(x1, . . . , xn−1; q2, q2k)ψλ/μ(q
2, q2k)

with

ψλ/μ(q
2, q2k) =

∏
i≤j [λi − μj + k(j − i) + k − 1]k−1∏
i≤j [μi − μj + k(j − i) + k − 1]k−1∏
i<j [μi − λj + k(j − i)− 1]k−1∏
i<j [λi − λj + k(j − i)− 1]k−1

.

Remark. This formulation is equivalent to that of Theorem 1.1. To see
this, note that for each λ and μ the branching coefficients ψλ/μ(q, t) are
rational functions in q and t and are therefore uniquely determined by their
values at (q2, q2k) for all positive integers k.

Remark. Theorem 1.3 gives Pλ(x; q
2, q2k) as a summation over Gelfand-

Tsetlin patterns subordinate to λ+ (k − 1)ρ and Macdonald’s branching
rule gives it as a summation over Gelfand-Tsetlin patterns subordinate to
λ. Our result explains how these summations over different index sets are
related.

1.6. Maps between spherical DAHA’s of different rank

Denote by Hn(q, t) and eHn(q, t)e the double affine Hecke algebra of GLn

and its spherical part (see Section 3 for precise definitions). An essential
ingredient in our proof is a map

Resl(q
2) : eHnl(q

−2l, q2)e→ eHn(q
−2, q2l)e

between spherical DAHA’s of different ranks which results from the Dunkl-
Kasatani conjecture of [8, 9, 13, 20]. We show in Theorem 3.7 and Corol-
lary 3.8 that Resl(q

2) commutes with Cherednik’s SL2(Z)-action on DAHA
and that it intertwines the map Resl(q

2) : C[(Xa
i )
±1]Snl → C[X±1

i ]Sn of spher-
ical polynomial representations given by

Resl(q
2) : Xa

i 	→ q2(1−l+2a)Xi.

Remark. Such maps were considered in the rational limit in [5], [17, The-
orem 7.11], and [27].



894 Yi Sun

1.7. Degenerations of our results and connections to recent work

Considering our results under the many degenerations of Macdonald polyno-
mials to other special functions yields some connections to recent literature
and some interpretations of independent interest. In this section, we discuss
the Heckman-Opdam, Jack, and Hall-Littlewood limits and a generalization
to the Macdonald functions of [14].

• In the quasi-classical limit q = eε, t = qk, λ = �ε−1Λ, x = eεX , and
ε→ 0, the Macdonald polynomials become the Heckman-Opdam hy-
pergeometric functions introduced in [18, 19, 23, 24]. These functions
were recently realized as integrals over Gelfand-Tsetlin polytopes in [3]
by taking a scaling limit of Corollary 1.2. In [27], the expression of [3]
was lifted to an integral over dressing orbits of a Poisson-Lie group by
integration over the Liouville tori and an adjunction procedure involv-
ing Calogero-Sutherland Hamiltonians. The techniques of this paper
degenerate to the techniques used in [27] under the degeneration from
Macdonald-Ruijsenaars to Calogero-Sutherland integrable systems.

• The Jack polynomials are a scaling limit of Macdonald polynomials
under the specialization t = qk and the limit q → 1 and have a similar
branching rule. They were given in [10] as traces of intertwiners of
U(gln)-modules using a degeneration of the Etingof-Kirillov Jr. con-
struction, under which our methods degenerate to a representation-
theoretic proof of the Jack branching rule.

• In the specialization q = 0, the Macdonald polynomials become the
Hall-Littlewood polynomials. In [29], a summation expression was given
for matrix elements of the Uq(gln)-intertwiners Φn

λ in the Gelfand-
Tsetlin basis; this expression factors and becomes particularly simple
in the Hall-Littlewood limit. In the notation of [29], Ωβ/μ(q

2, q2k) can
be non-zero only if μi ≤ βi ≤ μi + (k − 1), meaning that the prelimit
expression of [29, Theorem 1.3] is a sum over an index set similar
to that which appears in Proposition 4.3. It would be interesting to
understand if the factorization which results from degenerating [29,
Theorem 1.3] may be obtained by degenerating our Theorem 4.4.

• Replacing the finite dimensional module Lλ+(k−1)ρ by the Verma mod-
ule Mλ in the Etingof-Kirillov Jr. construction yields the Macdonald
functions of [14]. In particular, for a (possibly non-integral) λ, for the
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normalization factor

χk−1(λ) =
k−1∏
a=1

∏
i<j

(1− q−2(λi−λj+j−i)+2a)

and Ψ̃λ : Mλ →Mλ ⊗Wk−1 the unique intertwiner so that

Ψ̃λ(vλ) = vλ ⊗ χk−1(λ)wk−1 + (lower order terms),

the Macdonald function is the joint eigenfunction of the Dr
n,ex(q

2, q2k)
given by

ϕ(λ, x) =
q2(k−1)(ρ,λ−ρ)Tr(Ψ̃λ−ρxh)∏

i<j

∏k−1
a=1(q

ae(xi−xj)/2 − q−ae(xj−xi)/2)
.

Note that our notation is related to that of [14] by the substitution
k 	→ k + 1. For a dominant integral signature λ and τ a dominant
weight in the root lattice, if λi − λi+1 ≥ l for some l� 0, the quotient
map Mλ → Lλ is an isomorphism in the (λ− τ)-weight space. The fact
from [14] that the branching coefficient for Macdonald functions is a
rational function in qλi and qμi therefore implies the branching rule

ϕ(λ, x) =
∑

μ1∈λ1−Z≥0

· · ·
∑

μn−1∈λn−1−Z≥0

ψ̃k
λ/μ(q

2)ϕ(μ, x1, . . . , xn−1)exn(|λ|−|μ|)

with branching coefficient given by

ψ̃k
λ/μ(q

2) = q−(n−1)k(k−1)/2q2(k−1)((ρ,λ−ρ)−(ρ,μ−ρ))
χk−1(λ)
χk−1(μ)

ψλ−kρ/μ−kρ(q2, q2k)

= (q − q−1)(k−1)(n−1)
∏

i<j [λi − λj + j − i− 1]k−1∏
i<j [μi − μj + j − i− 1]k−1∏

i≤j [λi − μj + k − 1]k−1
∏

i<j [μi − λj − 1]k−1∏
i≤j [μi − μj + k − 1]k−1

∏
i<j [λi − λj − 1]k−1

.

Our techniques apply to this setting. For any M > 0, there is some
l > 0 so that if |τ | < M and λi − λi+1 ≥ l, the matrix elements of Ψ̃λ−ρ
on the Gelfand-Tsetlin basis elements of Mλ−ρ of weight λ− ρ− τ
coincide with those of χk−1(λ)Φn

λ−kρ. As shown in [14], the matrix
elements are rational functions, hence coincide with the expression of
Theorem 4.4 for all (possibly non-integral) λ. Applying a adjunction



896 Yi Sun

argument similar to that of the polynomial case yields the branching
rule for Macdonald functions.

1.8. Outline of method and organization

We briefly outline our method. Our main technical result is Theorem 3.7,
which constructs and characterizes a map Resl(q

2) between spherical
DAHA’s of rank nl and n. We use Theorem 3.7 to relate Macdonald dif-
ference operators in n variables at t = ql to Macdonald difference operators
in nl variables at t = q1/l. Combining this with an explicit summation ex-
pression for Uq(gln) matrix elements given in [1], we obtain in Theorem 4.4
a new expression for diagonal Uq(gln) matrix elements as the application of
Macdonald difference operators to an explicit kernel.

To obtain Macdonald’s branching rule, we interpret the Etingof-
Kirillov Jr. expression for the Macdonald polynomial Pλ(x; q

2, q2k) as a sum-
mation formula over Gelfand-Tsetlin patterns subordinate to λ+ (k − 1)ρ.
Applying Theorem 4.4, the symmetry identity, and summation by parts re-
duces this to the summation over Gelfand-Tsetlin patterns subordinate to
λ found in the branching rule.

The remainder of this paper is organized as follows. In Section 2, we give
some necessary background on Macdonald polynomials and reformulate the
results in a convenient form. In Section 3, we define a map Resl(q

2) between
spherical double affine Hecke algebras of different rank and prove the key
Theorem 3.7 which allows us to compute the image of a certain Macdonald
operator in Lemma 3.10. In Section 4, we prove the main Theorem 4.4 on
matrix elements of Uq(gln)-intertwiners by applying the technique developed
in Section 3 and a formula from [1]. In Section 5, we put everything together
to derive a new proof of Macdonald’s branching rule. Section 6 contains some
technical manipulations of the result of [1] postponed from Section 4.

2. Quantum groups and Macdonald polynomials

2.1. Notations

We will frequently need to consider expressions involving a signature and
various shifts; we collect here the conventions we use to denote these. Set
ρn,i =

n+1
2 − i and 1 = (1, . . . , 1). For any set of indices I, let 1I denote the

vector with 1’s in those indices and 0’s elsewhere. Define ρ̃n = ρn − n−1
2 1

so that ρ̃n,i = −(i− 1) and ρ̃n−1,i = ρ̃n,i. For any signature λ, define the

shifts λ̃ = λ+ (k − 1)ρ̃ and λ̄ = λ+ kρ̃ so that λ̃i = λi − (k − 1)(i− 1) and
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λ̄i = λi − k(i− 1). Finally, denote by [a] = qa−q−a

q−q−1 the q-number, [a]! = [a] ·
[a− 1] · · · [1] the q-factorial, and [a]m = [a] · [a− 1] · · · [a−m+ 1] the falling
q-factorial.

2.2. Macdonald symmetry identity

In this subsection, we state the Macdonald symmetry identity and use it to
produce conjugates of the Macdonald difference operators acting diagonally
on the Macdonald polynomials via their index.

Proposition 2.1 (Macdonald symmetry identity). We have

Pλ(q
2μ+2kρ; q2, q2k) =

∏
i<j

[λi − λj + k(j − i) + k − 1]k
[μi − μj + k(j − i) + k − 1]k

Pμ(q
2λ+2kρ; q2, q2k).

We would like now to produce Macdonald operators acting on indices of
Macdonald polynomials. For this, we writeDr

n−1,q2μ̄ for Macdonald difference

operators acting on the variables q2μ̄.

Proposition 2.2. The operator

D̃r
n−1,q2μ̄(q

2, q2k) =
∏
i<j

[μ̄i − μ̄j + k − 1]k ◦Dr
n−1,q2μ̄(q

2, q2k)

◦
∏
i<j

[μ̄i − μ̄j + k − 1]−1k

satisfies

D̃r
n−1,q2μ̄(q

2, q2k) =
∑
|I|=r

∏
i∈I,j /∈I,i>j

[μ̄i − μ̄j + k][μ̄i − μ̄j − k + 1]

[μ̄i − μ̄j ][μ̄i − μ̄j + 1]
Tq2,I

and

D̃r
n−1,q2μ̄(q

2, q2k)Pμ(x; q
2, q2k) = er(x)Pμ(x; q

2, q2k).

Proof. The expression for D̃r
n−1,q2μ̄(q

2, q2k) follows by direct computation,
and the eigenvalue identity from the Macdonald symmetry identity. �

2.3. Adjoints of Macdonald difference operators

We would like now to consider adjoints of Macdonald operators with respect
to a Jackson-type inner product. Fix lower and upper limits ζ = (ζ−, ζ+)
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with ζ− = (ζ−1 , . . . , ζ−n−1), ζ
+ = (ζ+1 , . . . , ζ+n−1), and ζ+i − ζ−i ∈ Z≥0. Define

the inner product

〈f, g〉ζ :=
ζ+∑

μ=ζ−

f(q2μ)g(q2μ),

where we define the iterated summation symbol by

(2.1)

ζ+∑
μ=ζ−

:=

ζ+
1∑

μ1=ζ−1

· · ·
ζ+
n−1∑

μn−1=ζ−n−1

.

We will consider situations where g vanishes along a border of the region of
summation. In particular, we say that the function g(q2μ) is (ζ, l)-adapted
if g(q2μ) = 0 on the set

{μ | ζ+i < μi ≤ ζ+i + l or ζ−i − l ≤ μi < ζ−i for any i}.

We now characterize adjoints with respect to 〈, 〉ζ when applied to an (ζ, l)-
adapted function.

Proposition 2.3. If f(q2μ) is (ζ, l)-adapted, we have for any g that

〈
l∏

i=1

D̃
rl+1−i

n−1,q2μ̄(q
2, q2k)†f, g

〉
(ζ−,ζ++l1)

=

〈
f,

l∏
i=1

D̃ri
n−1,q2μ̄(q

2, q2k)g

〉
ζ

,

where

D̃r
n−1,q2μ̄(q

2, q2k)† =
∏
i<j

[μ̄i − μ̄j + k − 1]−1k−1

◦Dr
n−1,q2μ̄(q

−2, q2(k−1)) ◦
∏
i<j

[μ̄i − μ̄j + k − 1]k−1.

Proof. First, we check by a direct computation that

D̃r
n−1q2μ̄(q

2, q2k)† =
∑
|I|=r

∏
i∈I,j /∈I,i>j

[μ̄i − μ̄j + k − 1][μ̄i − μ̄j − k]

[μ̄i − μ̄j − 1][μ̄i − μ̄j ]
Tq−2,I .
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Now, for any subset of indices I, we have

〈f, Tq2,Ig〉ζ =
ζ+∑

μ=ζ−

f(q2μ)g(q2(μ+1I)) =

ζ++1I∑
μ=ζ−+1I

f(q2(μ−1I))g(qμ)(2.2)

= 〈Tq−2,If, g〉(ζ−+1I ,ζ++1I).

Using this, we induct on l. For l = 1, we have〈
D̃r

n−1,q2μ̄(q
2, q2k)†f, g

〉
(ζ−,ζ++1)

=

ζ++1∑
μ=ζ−

∑
|I|=r

∏
i∈I,j /∈I,i>j

[μ̄i − μ̄j + k − 1][μ̄i − μ̄j − k]

[μ̄i − μ̄j − 1][μ̄i − μ̄j ]
f(q2(μ−1I))g(q2μ)

=
∑
|I|=r

ζ+∑
μ=ζ−−1I

f(q2μ)Tq2,I⎛⎝ ∏
i∈I,j /∈I,i>j

[μ̄i − μ̄j + k − 1][μ̄i − μ̄j − k]

[μ̄i − μ̄j − 1][μ̄i − μ̄j ]

⎞⎠ g(q2(μ+1I))

=
∑
|I|=r

ζ+∑
μ=ζ−

f(q2μ)
∏

i∈I,j /∈I,i>j

[μ̄i − μ̄j + k][μ̄i − μ̄j − k + 1]

[μ̄i − μ̄j ][μ̄i − μ̄j + 1]
g(q2(μ+1I))

=
〈
f, D̃r

n−1,q2μ̄(q
2, q2k)g

〉
ζ
,

where the second equality follows from (2.2), the third follows because f is
(ζ, 1)-adapted, and the last equality follows from Proposition 2.2. Now sup-
pose the claim holds for l − 1. If f is (ζ, l)-adapted, then D̃r1

n−1,q2μ̄(q
2, q2k)†f

is (ζ−, ζ+ + 1, l − 1)-adapted, so we have by applying the cases of l − 1 and
then 1 that 〈

l∏
i=1

D̃
rl+1−i

n−1,q2μ̄(q
2, q2k)†f, g

〉
(ζ−,ζ++l1)

=

〈
D̃r1

n−1,q2μ̄(q
2, q2k)†f,

l−1∏
i=1

D̃
rl+1−i

n−1,q2μ̄(q
2, q2k)g

〉
(ζ−,ζ++1)

=

〈
f,

l∏
i=1

D̃ri
n−1,q2μ̄(q

2, q2k)g

〉
ζ

.

�
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2.4. Reformulating the Etingof-Kirillov Jr. construction

In this subsection we shift the weights of the representations used in the
Etingof-Kirillov Jr. construction to make restriction from Uq(gln) to Uq(gln−1)
more notationally convenient. For a partition λ, define the intertwiner

Φ̃n
λ : Lλ+(k−1)ρ̃ → Lλ+(k−1)ρ̃ ⊗Wk−1

to be Φ̃n
λ = Φn

λ ⊗ id
(det)−

(k−1)(n−1)
2

. We now rephrase Theorem 1.3 in terms of

the intertwiners Φ̃n
λ.

Corollary 2.4. The Macdonald polynomial Pλ(x; q
2, q2k) is given by

Pλ(x; q
2, q2k) =

Tr(Φ̃n
λx

h)

Tr(Φ̃n
0x

h)
.

Proof. This follows from Theorem 1.3 and the relation

Tr(Φ̃n
λx

h) = Tr(Φn
λx

h)(x1 · · ·xn)−
(k−1)(n−1)

2 . �

Corollary 2.5. The denominator in Corollary 2.4 is given by

Tr(Φ̃n
0x

h) = (x1 · · ·xn)−(k−1)(n−1)
k−1∏
s=1

∏
i<j

(xi − q2sxj).

Proof. This follows from Proposition 1.4 and the definition of Φ̃n
0 . �

3. Spherical subalgebras of double affine Hecke algebras
of different ranks

3.1. Double affine Hecke algebras

Let Hn(q, t) denote the double affine Hecke algebra (DAHA) of GLn defined
by [6]. Following [25], it is defined as the associative algebra generated by
invertible elements X±1

1 , . . . , X±1
n , Y ±11 , . . . , Y ±1n , and T±11 , . . . , T±1n−1 subject

to the relations

• (Ti − t1/2)(Ti + t−1/2) = 0, TiTi+1Ti = Ti+1TiTi+1, [Ti, Tj ] = 0 for |i−
j| �= 1;
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• TiXiTi = Xi+1, T
−1
i YiT

−1
i = Yi+1, and [Ti, Xj ] = [Ti, Yj ] = 0 for |i−

j| > 1;

• [Xi, Xj ] = 0; [Yi, Yj ] = 0; Y1X1 · · ·Xn = qX1 · · ·XnY1; X−1
1 Y2 =

Y2X
−1
1 T−21 .

Note that {Ti} generate a copy of the finite-type Hecke algebra, and {Ti, Xj}
and {Ti, Yj} generate copies of the affine Hecke algebra. For σ = si1 · · · sil a
reduced decomposition in Sn, let Tσ = Ti1 · · ·Til . Define the idempotent

e =
(1− t)n

(t; t)n

∑
σ∈Sn

t�(σ)/2Tσ.

The spherical DAHA is defined to be the subalgebra eHn(q, t)e. From the
results of [2, 4, 25, 26] surveyed in [22] on maps between the Drinfeld double
of the elliptic Hall algebra and the spherical DAHA, we may extract the
following small set of generators.

Lemma 3.1 ([22, Section 2.4]). Let p1(X) = X1 + · · ·+Xn and
p−1(X) = X−1

1 + · · ·+X−1
n , and define p1(Y ) and p−1(Y ) similarly. The

elements ep1(Y )e, ep−1(Y )e, ep1(X)e, and ep−1(X)e generate eHn(q, t)e.

3.2. Polynomial representation of DAHA and
Macdonald operators

The double affine Hecke algebra admits a faithful representation ρ on
C[X±1

1 , . . . , X±1
n ] given by

ρ(Xi) = Xi · −

ρ(Ti) = t1/2si +
t1/2 − t−1/2

Xi/Xi+1 − 1
(si − 1)

ρ(Yi) = ρ(Ti) · · · ρ(Tn−1)sn−1 · · · s1Tq,X1
ρ(T−11 ) · · · ρ(T−1i−1),

where Xi · − denotes multiplication by Xi, si exchanges Xi and Xi+1 and
Tq,X1

is the q-shift operator in X1. The action of elements of eHn(q, t)e on
the symmetric part of the polynomial representation yields the Macdonald
operators.
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Proposition 3.2. The action of e · er(Y1, . . . , Yn) · e restricted to
C[X±1

1 , . . . , X±1
n ]Sn is given by Macdonald’s operator

ρ(e · er(Y1, . . . , Yn) · e) = ρ(er(Y1, . . . , Yn)) = Dr
n,X(q, t).

In particular, for any n-variable symmetric polynomial f , the operator

Lf = f(Y1, . . . , Yn)

is diagonalized on Pλ(X; q, t) with eigenvalue f(qλtρ).

Proposition 3.3. When restricted to C[X±1
1 , . . . , X±1

n ]Sn , the action of
e · p1(Y −1) · e is given by

Dn−1
n,X (q, t) ◦Dn

n,X(q, t)−1 = t−
n−1

2

n∑
i=1

∏
j �=i

txj − xi
xj − xi

Tq−1,i.

Proof. This follows from the fact that ep1(Y
−1)e = e · en−1(Y )en(Y

−1) · e
and Proposition 3.2. �

Remark. By faithfulness, we will refer interchangeably to elements of the
DAHA and spherical DAHA and their images under the polynomial repre-
sentation in what follows.

3.3. SL2(Z)-action on DAHA

Define ε(q, t) : Hn(q, t)→ Hn(q
−1, t−1) by

ε(q, t) : Xi 	→ Yi, Yi 	→ Xi, Ti 	→ T−1i , q 	→ q−1, t 	→ t−1

and τ+(q, t) : Hn(q, t)→ Hn(q, t) by

τ+ : Xi 	→ Xi, Ti 	→ Ti, Y1 · · ·Yr 	→ q−r/2X1 · · ·XrY1 · · ·Yr.

These are algebra isomorphisms. Define also the composition τ− = ετ+ε.

Proposition 3.4 ([7, Section 3.2.2]). The map(
1 0
1 1

)
	→ τ−,

(
1 1
0 1

)
	→ τ+

defines an action of SL2(Z) on Hn(q, t) which preserves eHn(q, t)e.
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The action of τ+ in the polynomial representation is realized via conju-
gation by the Gaussian

γn(q) = q
∑

i x̃
2
i/2,

where qx̃i = Xi. Here, we view γn(q) as an element in the completion of
Hn(q, t) by degree of X.

Proposition 3.5 ([7, Section 3.7]). When evaluated in the polynomial
representation, the action of τ+ on Hn(q, t) is given by conjugation by γn(q).
That is, we have the equality

ρ(τ+(f)) = γn(q)ρ(f)γn(q)
−1.

3.4. Multiwheel condition and the restriction map

Following the generalization in [20] of the original wheel condition of [15, 16],
we say that (X0

1 , . . . , X
l−1
n ) ∈ Cnl satisfies the multiwheel condition if the

indices may be permuted so that

Xa
i = X0

i t
a−1 for 1 ≤ i ≤ n and 0 ≤ a ≤ l − 1.

Define the ideal Inl(t) ⊂ C[(Xa
i )
±1] by

Inl(t) = {f | f(X) = 0 if X satisfy the multiwheel condition}.

In [20], this ideal was characterized as a Hnl(q, t)-submodule.

Proposition 3.6 ([20, Theorem 6.3] and [13, Theorem 5.10]). The
subspace Inl(t) ⊂ C[(Xa

i )
±1] is a Hnl(q, t)-submodule and C[(Xa

i )
±1]/Inl(t)

is irreducible.

Remark. Along with some finer statements about the structure of Inl(t)
and other submodules defined by similar multiwheel conditions, Proposi-
tion 3.6 was conjectured in [20, Conjecture 6.4] and in the rational limit
in [8]. These statements are known as the Dunkl-Kasatani conjecture and
were later proven in [9] for generic values of parameters and for all values of
parameters in [13, Theorem 5.10].
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Define the map Resl(q
2) : C[(Xa

i )
±1]Snl → C[X±1

i ]Sn by

Resl(q
2)(Xa

i ) = q1−l+2aXi.

The kernel of Resl(q
2) is ISnl

nl (q2), so Resl(q
2) induces by Proposition 3.6 an

action of eHnl(q
−2l, q2)e on C[X±1

i ]Sn , giving a map

R̃esl(q
2) : eHnl(q

−2l, q2)e→ End(C[X±1
i ]Sn).

We claim that this map factors through the polynomial representation

eHn(q
−2, q2l)e→ End(C[X±1

i ]Sn)

via a map of algebras Resl(q
2) : eHnl(q

−2l, q2)e→ eHn(q
−2, q2l)e.

Theorem 3.7. The map Resl(q
2) : eHnl(q

−2l, q2)e→ eHn(q
−2, q2l)e defined

by

Resl(q
2)(ep(Xa

i )e) = ep(q1−lX1, . . . , q
l−1X1, . . . , q

1−lXn, . . . , q
l−1Xn)e and

Resl(q
2)(ep(Y a

i )e) = ep(q1−lY1, . . . , ql−1Y1, . . . , q1−lYn, . . . , ql−1Yn)e

for p ∈ C[(Xa
i )
±1]Snl is well defined and satisfies

(a) for any h ∈ eHnl(q
−2l, q2)e, as operators on C[(Xa

i )
±1]Snl we have

Resl(q
2) ◦ h = Resl(h) ◦ Resl(q2);

(b) as operators on eHnl(q
−2l, q2)e, we have

Resl(q
−2) ◦ εnl(q−2l, q2) = εn(q

−2, q2l) ◦ Resl(q2);

(c) as operators on eHnl(q
−2l, q2)e, we have

Resl(q
2) ◦ τ+ = τ+ ◦ Resl(q2).
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Proof. We first check that (a) holds on the generating set of Lemma 3.1.
This is evident for h ∈ eC[(Xa

i )
±1]Snle. For h = ep1(Y

a
i )e, we compute

Resl(q
2)D1

nl,X(q−2l, q2)f(X1, . . . , Xn)

= q1−nl
n∑

i=1

l−1∑
a=0

∏
(j,b) �=(i,a)

q2+2aXi − q2bXj

q2aXi − q2bXj

f(q1−lX1, . . . , q
l−1X1, . . . , q

1−l+2a−2lXi, . . . , q
l−1Xn)

= q1−nl
n∑

i=1

∏
(j,b) �=(i,l−1)

q2lXi − q2bXj

q2l−2Xi − q2bXj

f(q1−lX1, . . . , q
l−1X1, . . . , q

1−lXi, . . . , q
l−3Xi, q

−1−lXi, . . . , q
l−1Xn)

= q1−nl
n∑

i=1

l−2∏
b=0

q2(q2l−2 − q2b−2)
q2l−2 − q2b

∏
j �=i

l−1∏
b=0

q2(q2l−2Xi − q2b−2Xj)

q2l−2Xi − q2bXj

Tq−2,Xi
Resl(q

2)(f)(X1, . . . , Xn)

= q1−nl
1− q2l

1− q2

n∑
i=1

∏
j �=i

q2lXi −Xj

Xi −Xj
Tq−2,Xi

Resl(q
2)f(X1, . . . , Xn)

= [l]D1
n,X(q−2, q2l)Resl(q2)f(X1, . . . , Xn),

which shows that (a) holds for h = ep1(Y
a
i )e. A similar computation using

the expression of Proposition 3.3 yields (a) for h = ep1((Y
a
i )
−1)e. We con-

clude that (a) holds for h in the generating set ep1(X)e, ep1(X
−1)e, ep1(Y )e,

ep1(Y
−1)e. Therefore, the stated values of Resl(q

2) extend to a well-defined
map satisfying (a).

We now use (a) and the value of Resl(q
2) on the generators to prove

(b) and (c). For (b), by Lemma 3.1, it suffices to check on ep1(Y
±1)e and

ep1(X
±1)e. We give the computations for ep1(X)e and ep1(Y )e; the checks

for ep1(X
−1)e and ep1(Y

−1)e are analogous. For the first check, note that

Resl(q
−2)(εnl(q−2l, q2)(D1

nl,X(q−2l, q2))) = Resl(q
−2)(p1,nl(X))

= [l] p1,n(X), and

εn(q
−2; q2l)Resl(q2)(D1

nl,X(q−2l, q2)) = εn(q
−2; q2l)[l]D1

n,X(q−2, q2l)
= [l] p1,n(X).
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For the second check, note that

Resl(q
−2)(εnl(q−2l, q2)(p1(Xa

i ))) = Resl(q
−2)(D1

nl,X(q2l, q−2))

= [l]D1
n,X(q2, q−2l)

εn(q
−2; q2l)(Resl(q2)(p1(Xa

i ))) = εn(q
−2; q2l)([l]p1(Xi))

= [l]D1
n,X(q2, q−2l),

where we apply the fact from (a) that

Resl(q
2)D1

nl,X(q−2l, q2) = [l]D1
n,X(q−2, q2l)

with q and q−1 interchanged. This completes the proof of (b).
For (c), note that in Hn(q

−2l; q2), we have

Resl(q
2)(q−2lx̃

a
i ) = Resl(q

2)(Xa
i ) = Xiq

2(1−l+2a) = q−2x̃i+2(1−l+2a).

This implies that

Resl(q
2)(γnl(q

−2l)) = Resl(q
2)(q−l

∑
i,a(x̃

a
i )

2

)

= q−2
∑

i x̃
2
i− 1

l

∑
i,a(1−l+2a)2 = q−

1

l

∑
i,a(1−l+2a)2γn(q

−2),

which yields the desired by Proposition 3.5.
Finally, to obtain the claimed values on ep(Y )e for all p, we note by (b)

that

Resl(ep(Y
a
i )e)

= Resl(q
2)(εnl(q

2l, q−2)(ep(Xa
i )e))

= εn(q
2, q−2l)(Resl(q−2)(ep(Xa

i )e))

= εn(q
2, q−2l)(ep(ql−1X1, . . . , q

1−lX1, . . . , q
l−1Xn, . . . , q

1−lXn)e)

= ep(q1−lY1, . . . , ql−1Y1, . . . , q1−lYn, . . . , ql−1Yn)e. �

Corollary 3.8. The map Resl(q
2) commutes with the action of SL2(Z) on

the spherical DAHA.

Proof. By Theorem 3.7(bc) and the fact that the SL2(Z)-action is imple-
mented via ε+ and τ+. �
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3.5. Extending the restriction map

In our application, we must extend the restriction map slightly. The assign-
ment

Resl(q
2)((Xa

i )
1/2) = qa−(l−1)/2X1/2

i

extends Resl(q
2) to an operator C[(Xa

i )
±1/2]Snl → C[X

1/2
i ]Sn . If we identify

elements of the spherical DAHA with difference operators, they define valid
operators on the subspace∏

i,a

(Xa
i )

1/2 · C[(Xa
i )
±1]Snl ⊂ C[(Xa

i )
±1/2]Snl ,

though they do not in general satisfy the spherical DAHA relations. We see
that Theorem 3.7(a) continues to hold in this setting.

Corollary 3.9. For h ∈ eHnl(q
−2l, q2)e, as operators on

∏
i,a(X

a
i )

1/2 ·
C[(Xa

i )
±1]Snl we have

Resl(q
2) ◦ h = Resl(h) ◦ Resl(q2).

Proof. We interpret both sides as operators∏
i,a

(Xa
i )

1/2 · C[(Xa
i )
±1]Snl →

∏
i

X
l/2
i · C[X±1

i ]Sn

and identify
∏

i,a(X
a
i )

1/2 · C[(Xa
i )
±1]Snl with C[(Xa

i )
±1]Snl and

∏
iX

l/2
i ·

C[X±1
i ]Sn with C[X±1

i ]Sn . For h ∈ eC[(Xa
i )
±1]e, both sides yield the map

of Theorem 3.7. For h = ep(Y a
i )e with p a degree r homogeneous symmetric

polynomial, both sides are equal to the map of Theorem 3.7 multiplied by
q−lr. Together, these give the claim. �

3.6. Computing Resl(q2) on a specific operator

Define the operator

(3.1) Dn,X(u; q, t) =
∑
r

(−1)n−run−rDr
n,X(q, t).

Identify eHnl(q
−2l, q2)e with its image under the polynomial representation;

in this identification, we now compute the image of a specific operator under
Resl.
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Lemma 3.10. We have the relation

Resl(q
2)(Dnl,X(ql+1; q−2l, q2)) =

l∏
a=1

Dn,X(q2a; q−2, q2l).

Proof. Observe that

Dnl,X(u; q−2l, q2) =
∑
r

(−1)nl−runl−rDr
nl,X(q−2l, q2)

= εnl(q
2l, q−2)

∑
r

(−1)nl−rūnl−rer(Xa
i )

= εnl(q
2l, q−2)

∏
i,a

(Xa
i − ū),

where ū = εnl(q
2l, q−2)(u). Therefore, by Theorem 3.7(b) with q and q−1

interchanged we find that

Resl(q
2)Dnl,X(u; q−2l, q2)

= Resl(q
2)εnl(q

2l, q−2)
∏
i,a

(Xa
i − ū)

= εn(q
2, q−2l)Resl(q−2)

∏
i,a

(Xa
i − ū)

= εn(q
2, q−2l)

∏
i,a

(q−2a+l−1Xi − ū)

= εn(q
2, q−2l)

l−1∏
a=0

(∑
r

(−1)n−r(q2a−l+1ū)n−rer(Xi)

)

=

l−1∏
a=0

(∑
r

(−1)n−r(ql−1−2au)n−rDr
n,X(q−2, q2l)

)

=

l−1∏
a=0

Dn,X(uql−1−2a; q−2, q2l).

Setting u = ql+1 implies the desired

Resl(q
2)(Dnl,X(ql+1; q−2l, q2)) =

l∏
a=1

Dn,X(q2a; q−2, q2l).
�
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4. Computing diagonal matrix elements in the
Gelfand-Tsetlin basis

4.1. Factorization of matrix elements

For a choice of μ1, . . . , μn = λ so that μ̃i ≺ · · · ≺ μ̃n = λ̃ forms a Gelfand-
Tsetlin pattern subordinate to λ̃, denote the pattern by μ̃. Let c(μ̃, λ) denote
the diagonal matrix coefficient of vμ̃ in Φ̃λ. For a signature μ ≺ λ, let the
pattern gt(μ) be defined by

(4.1) gt(μ)li = μi for l < n.

Define c(μ, λ) to be the diagonal matrix coefficient c(gt(μ̃), λ) of vgt(μ̃) in Φ̃λ.

We show that Φ̃λ has non-zero diagonal matrix elements only on basis
vectors indexed by patterns of the form μ̃ and that these elements admit a
level-by-level factorization.

Lemma 4.1. If vμ is not of the form vμ̃, then vμ has zero diagonal matrix

element in Φ̃λ.

Proof. For some r < n, we cannot write μr = τ̃ for any τ . Let U ⊂Wk−1 be
the Uq(glr)-submodule consisting of vectors of weight 0 for qhr+1 , . . . , qhn so
that U � L(k−1)(r−1,−1,...,−1) as a Uq(glr)-module. Let μr denote the trun-
cation of μr so that μr

i
= μr

i . Consider the Gelfand-Tsetlin pattern ξ given
by

ξ = {gt(μr) ≺ μr+1 ≺ · · · ≺ μn−1 ≺ λ}.

Let Lμr ⊂ L
λ̃
be the Uq(glr)-submodule with highest weight μr generated by

vξ. By Proposition 1.5, the diagonal matrix element of vμ lies in Lμr ⊗ U ,
hence is a multiple of the matrix element of vμ in the induced Uq(glr)-
intertwiner

Lμr → L
λ̃
→ L

λ̃
⊗Wk−1 → Lμr ⊗ U

given by projection onto Lμr ⊗ U . This intertwiner is zero because μr is not
of the form μr = τ̃ for some τ , giving the claim. �
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Proposition 4.2. For any Gelfand-Tsetlin pattern

μ̃ = {μ̃1 ≺ μ̃2 ≺ · · · ≺ μ̃n = λ̃}

subordinate to λ̃, we have the factorization

c(μ̃, λ) =

n−1∏
i=1

c(μi, μi+1).

Proof. By induction on n, it suffices to check that

c(μ̃, λ) = c(μ, λ)c
(
{μ̃1 ≺ · · · ≺ μ̃n−1}, μn−1

)
.

Let μ = μn−1. By Proposition 1.5, the basis vector vμ̃ lies in the Uq(gln−1)
submodule Lμ̃ ⊂ L

λ̃
with highest weight vector vgt(μ̃). Let U ⊂Wk−1 be the

Uq(gln−1)-submodule consisting of elements of weight 0 under qhn . Consider
the Uq(gln−1)-intertwiner

φ : Lμ̃ → Lμ̃ ⊗ U

given by composing Φ̃λ with the projection onto Lμ̃ ⊗ U . The matrix element
c(μ̃, λ) lies in U , hence is the matrix element of vμ̃ in φ. Notice that φ maps
the Uq(gln−1)-highest weight vector vgt(μ̃) to

c(μ, λ)vgt(μ̃) ⊗ wk−1 + (l.o.t.)

so that φ = c(μ, λ)Φ̃μ and the matrix element of vμ̃ is the desired

c(μ, λ)c
(
{μ̃1 ≺ · · · ≺ μ̃n−1}, μn−1

)
.

�

4.2. Matrix elements as applications of Macdonald
difference operators

Our main technical result expresses matrix elements of Uq(gln)-intertwiners
as the application of Macdonald difference operators to an explicit kernel.
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Define the elements Δk−1
1 (μ) and Δk−1

2 (μ) by

(4.2)

Δk−1
1 (μ) =

∏
i<j

[μ̄i − μ̄j + (k − 1)]k−1

Δk−1
2 (μ) =

∏
i<j

[μ̄i − μ̄j − 1]k−1

and the element Δk−1(μ, λ) by

Δk−1(μ, λ) =
∏
i≤j

[λi − μj + k(j − i) + k − 1]k−1(4.3) ∏
i<j

[μi − λj + k(j − i)− 1]k−1.

We use Theorem 6.1 to compute the diagonal matrix elements of Φ̃λ in terms
of these elements, resulting in the following expression after manipulation.
We defer the proof of Proposition 4.3 to Section 6.

Proposition 4.3. Let μ′ = μ+ (k − 1)1, and ν ′ = ν + (k − 1)1. Then
c(μ, λ) is given by

c(μ, λ) =
(−1)(n−1)(k−1)q(n−1)k(k−1)

Δk−1
2 (λ)Δk−1

1 (μ)

μ̄′∑
ν̄′=μ̄′−(k−1)1

(−1)|ν̄′|−|μ̄′|qk(|ν̄′|−|μ̄′|)

∏
i

1

[ν̄ ′i − μ̄′i + (k − 1)]![μ̄′i − ν̄ ′i]!∏
i<j [μ̄

′
i − μ̄′j + k − 1]2k−1

∏
i<j [ν̄

′
i − ν̄ ′j ]∏

i<j [ν̄
′
i − μ̄′j + (k − 1)]k[μ̄

′
i − ν̄ ′j ]k∏

i≤j
[λ̄i − ν̄ ′j + (k − 1)]k−1

∏
i<j

[ν̄ ′i − λ̄j − 1]k−1.

In this form, we can now identify the matrix element with an application
of Macdonald difference operators.

Theorem 4.4. Let μ′ = μ+ (k − 1)1. The matrix element c(μ, λ) is given
by

c(μ, λ) =

∏k−1
a=1 Dn−1,q2μ̄(q2a; q−2, q2(k−1))Δk−1(μ′, λ)

Δk−1
1 (μ)Δk−1

2 (λ)
,

where Dn−1,q2μ̄(q2a; q−2, q2(k−1)) was defined in (3.1).
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Proof. For an expression E, let 1E = 1 if E holds and 1E = 0 otherwise.
Interpreting Resl(q

2) in the sense of Subsection 3.5, notice that

Resl(q
2)D(n−1)l,q2μ̄(ql+1; q−2l, q2)

l−1∏
a=0

∏
i≤j

[λ̄i − μ̄a
j + k/2]

∏
i<j

[μ̄a
i − λ̄j − k/2]

= Resl(q
2)

⎛⎝∑
I

(−1)(n−1)l−|I|qk((n−1)l−|I|)
∏

(i,a)∈I;(j,b)/∈I

[μ̄a
i − μ̄b

j + 1]

[μ̄a
i − μ̄b

j ]

∏
i≤j,a

[λ̄i − μ̄a
j + l1(j,a)∈I + k/2]

∏
i<j,a

[μ̄a
i − λ̄j − l1(i,a)∈I − k/2]

⎞⎠
=

∑
I

(−1)(n−1)l−|I|qk(l(n−1)−|I|)
∏

(i,a)∈I;(j,b)/∈I

[μ̄i − μ̄j + a− b+ 1]

[μ̄i − μ̄j + a− b]∏
i≤j,a

[λ̄i − μ̄j − a+ l1(j,a)∈I + l]
∏
i<j,a

[μ̄i + a− λ̄j − l1(i,a)∈I − l],

where both sums are over subsets I ⊂ {(i, a) | 1 ≤ i ≤ n− 1, 0 ≤ a ≤ l − 1}.
If (i, a) ∈ I and (i, a+ 1) /∈ I, then the corresponding term is zero, so the
only subsets I which contribute to the sum are those of the form

I = {(i, a) | a ≥ si} for some s1, . . . , sn−1.

We rewrite the sum in these terms as

Resl(q
2)D(n−1)l,q2μ̄(ql+1; q−2l, q2)

l−1∏
a=0

∏
i≤j

[λ̄i − μ̄a
j + k/2]

∏
i<j

[μ̄a
i − λ̄j − k/2]

=

l∑
s1,...,sn−1=0

(−1)−
∑

i siqk
∑

i si
∏
i≤j

[λ̄i − μ̄j + 2l − si]l

∏
i<j

[μ̄i − λ̄j − l + si − 1]l
∏
i,j

l−1∏
a=si

sj−1∏
b=0

[μ̄i − μ̄j + a− b+ 1]

[μ̄i − μ̄j + a− b]
.
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Observe now that

∏
i,j

l−1∏
a=si

sj−1∏
b=0

[μ̄i − μ̄j + a− b+ 1]

[μ̄i − μ̄j + a− b]

=
∏
i,j

sj−1∏
b=0

[μ̄i − μ̄j + l − b]

[μ̄i − μ̄j + si − b]
=

∏
i,j

[μ̄i − μ̄j + l]sj
[μ̄i − μ̄j + si]sj

=
∏
i<j

[μ̄i − μ̄j + l]2l+1[μ̄i − μ̄j + si − sj ]

[μ̄i − μ̄j − sj + l]l+1[μ̄i − μ̄j + si]l+1

∏
i

[l]!

[si]![l − si]!
.

Substituting this into the previous expression and changing variables to
ri = l − si, we obtain

Resl(q
2)D(n−1)l,q2μ̄(ql+1; q−2l, q2)

l−1∏
a=0

∏
i≤j

[λ̄i − μ̄a
j + k/2]

∏
i<j

[μ̄a
i − λ̄j − k/2]

= qkl(n−1)(−1)l(n−1)
l∑

r1,...,rn−1=0

(−1)
∑

i riq−k
∑

i ri

∏
i≤j

[λ̄i − μ̄j + rj + l]l
∏
i<j

[μ̄i − λ̄j − ri − 1]l

∏
i<j

[μ̄i − μ̄j + l]2l+1[μ̄i − μ̄j − ri + rj ]

[μ̄i − μ̄j + rj ]l+1[μ̄i − μ̄j − ri + l]l+1

∏
i

[l]!

[ri]![l − ri]!
,

On the other hand, we have that

Resl(q
2)

⎛⎝ l−1∏
a=0

∏
i≤j

[λ̄i − μ̄a
j + k/2]

∏
i<j

[μ̄a
i − λ̄j − k/2]

⎞⎠
=

∏
i≤j

[λ̄i − μ̄j + k − 1]k−1
∏
i<j

[μ̄i − λ̄j − 1]k−1.
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Therefore, by Lemma 3.10 and Corollary 3.9 with l = k − 1 and Xa
i = q2μ̄

a
i ,

we conclude that

l∏
a=1

Dn−1,q2μ̄(q2a; q−2, q2l)
∏
i≤j

[λ̄i − μ̄j + k − 1]k−1
∏
i<j

[μ̄i − λ̄j − 1]k−1

= qkl(n−1)(−1)l(n−1)
l∑

r1,...,rn−1=0

(−1)
∑

i riq−k
∑

i ri

∏
i≤j

[λ̄i − μ̄j + rj + l]l
∏
i<j

[μ̄i − λ̄j − ri − 1]l

∏
i<j

[μ̄i − μ̄j + l]2l+1[μ̄i − μ̄j − ri + rj ]

[μ̄i − μ̄j + rj ]l+1[μ̄i − μ̄j − ri + l]l+1

∏
i

[l]!

[ri]![l − ri]!
.

Dividing both sides by
∏

i<j [λ̄i − λ̄j − 1]l
∏

i≤j [μ̄i − μ̄j + l]l, we obtain∏l
a=1Dn−1,q2μ̄(q2a; q−2, q2l)

∏
i≤j [λ̄i − μ̄j + k − 1]k−1

∏
i<j [μ̄i − λ̄j − 1]k−1∏

i<j [λ̄i − λ̄j − 1]l
∏

i≤j [μ̄i − μ̄j + l]l

=
qkl(n−1)(−1)l(n−1)∏

i<j [λ̄i − λ̄j − 1]l
∏

i<j [μ̄i − μ̄j + l]l
l∑

r1,...,rn−1=0

(−1)
∑

i riq−k
∑

i ri
∏
i

1

[ri]![l − ri]!

∏
i≤j

[λ̄i − μ̄j + rj + l]l

∏
i<j

[μ̄i − λ̄j − ri − 1]l
∏
i<j

[μ̄i − μ̄j + l]2l+1[μ̄i − μ̄j − ri + rj ]

[μ̄i − μ̄j + rj ]l+1[μ̄i − μ̄j − ri + l]l+1
,

where the second expression is equal to c(μ− (k − 1)1, λ) by Proposition 4.3.
Replacing μ by its shift μ′ = μ+ (k − 1)1 and recalling the definitions of
Δk−1

1 (μ), Δk−1
2 (λ), and Δk−1(μ, λ) yields the claimed expression

∏k−1
a=1 Dn−1,q2μ̄ (q

2a;q−2,q2(k−1))
∏

i≤j [λ̄i−μ̄′j+k−1]k−1

∏
i<j [μ̄

′
i−λ̄j−1]k−1∏

i≤j [μ̄
′
i−μ̄′j+k−1]k−1

∏
i<j [λ̄i−λ̄j−1]k−1

for c(μ, λ). �

5. Proving Macdonald’s branching rule

We now put everything together to give a new proof of Macdonald’s branch-
ing rule, which we reformulate for t = qk with k a positive integer.
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Theorem 5.1. At t = qk for positive integer k, we have

Pλ(x1, . . . , xn; q
2, q2k)

=
∑
μ≺λ

x|λ|−|μ|n Pμ(x1, . . . , xn−1; q2, q2k)ψλ/μ(q
2, q2k)

with

ψλ/μ(q
2, q2k) =

Δk−1(μ, λ)
Δk−1

1 (μ)Δk−1
2 (λ)

.

Proof. We induct on n. The base case is trivial because Pλ(x1; q
2, q2k) = x

|λ|
1 .

For the inductive step, by Lemma 4.1, it is enough to consider matrix ele-
ments for basis vectors of the form vμ̃. By Proposition 4.2 and the inductive
hypothesis, we thus have

Tr(Φ̃n
λx

h)

=
∑

μ̃1<···<μ̃n−1<λ̃

c(μ0, μ1) · · · c(μn−1, λ)
∏
i

x
(|μ̃i|−|μ̃i−1|)
i

=
∑
μ̃<λ̃

c(μ, λ)x|λ|−|μ|−(k−1)(n−1)n∑
μ̃1<···<μ̃n−2<μ̃

c(μ0, μ1) · · · c(μn−2, μn−1)
n−1∏
i=1

x
|μ̃i|−|μ̃i−1|
i

=
∑
μ̃<λ̃

c(μ, λ)x|λ|−|μ|−(k−1)(n−1)n Tr(Φ̃n−1
μ xh)

=
∑
μ̃<λ̃

c(μ, λ)x|λ|−|μ|−(k−1)(n−1)n Pμ(x; q
2, q2k)Tr(Φ̃n−1

0 xh),

where x = (x1, . . . , xn−1). By Corollary 2.5, we have that

Tr(Φ̃n−1
0 xh)

Tr(Φ̃n
0x

h)
= (x1 · · ·xn−1)k−1x(k−1)(n−1)n

k−1∏
s=1

n−1∏
i=1

(xi − q2sxn)
−1.
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We conclude that

Tr(Φ̃n
λx

h)

Tr(Φ̃n
0x

h)

= (x1 · · ·xn−1)k−1
k−1∏
s=1

n−1∏
i=1

(xi − q2sxn)
−1 ∑

μ̃<λ̃

c(μ, λ)x|λ|n Pμ(x/xn; q
2, q2k)

= (x1 · · ·xn−1)k−1
k−1∏
s=1

n−1∏
i=1

(xi − q2sxn)
−1

λ↑∑
μ=λ↓−(k−1)1

c(μ, λ)x|λ|n Pμ(x/xn; q
2, q2k)

= x(k−1)(n−1)n

k−1∏
s=1

n−1∏
i=1

(xi − q2sxn)
−1

λ↑+(k−1)1∑
μ′=λ↓

c(μ′ − (k − 1)1, λ)x|λ|n Pμ′(x/xn; q
2, q2k),

where λ↓ = (λ2, . . . , λn) and λ↑ = (λ1, . . . , λn−1) are vectors of lower and

upper indices for μ so that
∑

μ≺λ =
∑λ↑

μ=λ↓ in the notation of (2.1). Note

that μ̃ < λ̃ if and only if λi ≥ μi ≥ λi+1 − (k − 1). By the expression for
c(μ′ − (k − 1)1, λ) given in Theorem 4.4, we obtain

Pλ(x; q
2, q2k) =

Tr(Φ̃n
λx

h)

Tr(Φ̃n
0x

h)

= x(k−1)(n−1)n

k−1∏
s=1

n−1∏
i=1

(xi − q2sxn)
−1

λ↑+(k−1)1∑
μ′=λ↓

x|λ|n Pμ′(x/xn; q
2, q2k)

∏k−1
a=1 Dn−1,q2μ̄ (q

2a;q−2,q2(k−1))
∏

i≤j [λ̄i−μ̄′j+k−1]k−1

∏
i<j [μ̄

′
i−λ̄j−1]k−1∏

i≤j [μ̄
′
i−μ̄′j+k−1]k−1

∏
i<j [λ̄i−λ̄j−1]k−1

.

Define the operator

D̃n−1,q2μ̄′ (q
2a; q2, q2k) =

∑
r

(−1)n−1−rq2a(n−1−r)D̃r
n−1,q2μ̄′ (q

2, q2k),
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and note that it is diagonalized on Pμ′(x; q
2, q2k) by Proposition 2.2. Notice

now that the function∏
i≤j

[λ̄i − μ̄′j + k − 1]k−1
∏
i<j

[μ̄′i − λ̄j − 1]k−1

is 0 for λi+1 − (k − 1) ≤ μ′i < λi+1 and λi < μ′i ≤ λi + (k − 1), so it is
(λ↓, λ↑, k − 1)-adapted. Applying Proposition 2.3 to this function yields

Pλ(x; q
2, q2k) = x(k−1)(n−1)n

k−1∏
s=1

n−1∏
i=1

(xi − q2sxn)
−1

λ↑∑
μ′=λ↓

x|λ|n

k−1∏
a=1

D̃n−1,q2μ̄′ (q
2a; q2, q2k)Pμ′(x/xn; q

2, q2k)∏
i≥j [λ̄j − μ̄′i + k − 1]k−1

∏
i<j [μ̄

′
i − λ̄j − 1]k−1∏

i≤j [μ̄
′
i − μ̄′j + k − 1]k−1

∏
i<j [λ̄i − λ̄j − 1]k−1

= x(k−1)(n−1)n

k−1∏
s=1

n−1∏
i=1

xi/xn − q2s

xi − q2sxn

λ↑∑
μ′=λ↓

x|λ|−|μ
′|

n Pμ′(x; q
2, q2k)

∏
i≥j [λ̄j − μ̄′i + k − 1]k−1

∏
i<j [μ̄

′
i − λ̄j − 1]k−1∏

i≤j [μ̄
′
i − μ̄′j + k − 1]k−1

∏
i<j [λ̄i − λ̄j − 1]k−1

=
∑
μ′≺λ

x|λ|−|μ
′|

n Pμ′(x; q
2, q2k)

∏
i≥j [λ̄j − μ̄′i + k − 1]k−1

∏
i<j [μ̄

′
i − λ̄j − 1]k−1∏

i≤j [μ̄
′
i − μ̄′j + k − 1]k−1

∏
i<j [λ̄i − λ̄j − 1]k−1

,

which is the desired result. �

6. Specializing the expression for diagonal matrix elements

We will prove Proposition 4.3 using a result of [1] on reduced Clebsch-Gordan
coefficients. We normalize and translate this result to matrix elements to ob-
tain our desired expression. We first modify the intertwiner slightly. Consider
the composition

Ψ̃λ : Lλ+(k−1)ρ̃ → Lλ+(k−1)ρ̃ ⊗Wk−1 � Lλ+(k−1)ρ̃−(k−1)1 ⊗ Sym(k−1)n
C
n.

The diagonal matrix element c(μ, λ) of vgt(μ̃) in Φ̃λ is equal to the matrix

element from vgt(μ̃) to vgt(μ̃)−(k−1)1 in Ψ̃λ. We will compute this matrix
element instead.
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6.1. The expression of [1] for reduced Clebsch-Gordan
coefficients

The Uq(gln)-representation Lτ ⊗ Symp
Cn contains each irreducible with mul-

tiplicity at most one, meaning that for any τ ′, there is a one-dimensional
family of intertwiners

Lτ ′ → Lτ ⊗ Symp
C
n.

In [1], a general formula for the matrix coefficients in the Gelfand-Tsetlin
basis of one such map is given. Such matrix coefficients are known as Clebsch-
Gordan coefficients.

Remark. Note that [1] uses the coproduct ΔAS = Δ21. As bialgebras,
Uq−1(gln) equipped with ΔAS and Uq(gln) equipped with Δ are isomorphic,
so we state and apply here the formulas of [1] with q and q−1 exchanged.

Note that a Gelfand-Tsetlin basis vector vξ for Symp
Cn takes the form

ξi = (ξi, 0, . . . , 0), so we will denote this by ξi = ξi. For basis vectors vσ ∈
Lτ ′ and vη ⊗ vξ ∈ Lτ ⊗ Symp

Cn, it is shown in [1] that the corresponding
Clebsch-Gordan coefficient is given by a product

C

[
τ p τ ′

η ξ σ

]
=

n−1∏
i=1

C

[
σi+1 ξi+1 ηi+1

σi ξi ηi

]
,

where product is over reduced Clebsch-Gordan coefficients whose values are
given by the following.

Theorem 6.1 ([1, Equation (3.4)]). The reduced Clebsch-Gordan coef-
ficient of the map

Lτ ′ → Lτ ⊗ Symp
C
n

is given by

C

[
τ p τ ′

η r η′

]
= q−

b

2
S(η′, η)S(τ, η)S(τ ′, τ ′)S(η, η)

S(τ ′, τ)S(τ ′, η′)
[p− r]!1/2∑

σ

(−1)|σ|−|η|q(p−r+1)(|σ|−|η|) S(σ, σ)2S(τ ′, σ)2

S(σ, η)2S(η′, σ)2S(τ, σ)2
,

where the sum is over σ of length n− 1 satisfying

max{ηi, τ ′i+1} ≤ σi ≤ min{η′i, τi}
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and where b and S are given by

b =
∑
i<j

(τ ′i − τi)(τ
′
j − τj)−

∑
i<j

(η′i − ηi)(η
′
j − ηj)

+
∑
i

(η′i − ηi)(ηi − i+ 1)−
∑
i

(τ ′i − τi)(τi − i+ 1) + (p− r)(|τ | − |η|)

and

S(a, b)2 =

∏
i≤j [ai − bj + j − i]!∏

i<j [bi − aj + j − i− 1]!
.

6.2. Specializing the reduced Clebsch-Gordan coefficient

We restrict now to our case of Ψ̃λ. The relevant parameters are

τ ′ = λ̃ τ = λ̃− (k − 1)1 η′ = μ̃

η = μ̃− (k − 1)1 p = n(k − 1) r = (n− 1)(k − 1).

In this case, we see that

b =
n(n− 1)

2
(k − 1)2 − (n− 1)(n− 2)

2
(k − 1)2 + (k − 1)|μ̃|

− (n− 1)(n− 2)

2
(k − 1)− (k − 1)|λ̃|

+
n(n− 1)

2
(k − 1) + (k − 1)(|λ̃| − |μ̃|)

= (n− 1)(k − 1)2 + (n− 1)(k − 1)

= (n− 1)k(k − 1).

Further, the constraint on σ takes the form

max{μi − (k − 1)− (k − 1)i, λi+1 − (k − 1)(i+ 1)} ≤ σi

min{μi − (k − 1)i, λi − (k − 1)− (k − 1)i} ≥ σi,

so if σ = ν + (k − 1)ρ̃, we have

max{μi − (k − 1), λi+1 − (k − 1)} ≤ νi ≤ min{μi, λi − (k − 1)}.
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Translating and canceling a factor, we have that

C

[
λ̃− (k − 1)1 n(k − 1) λ̃
μ̃− (k − 1)1 (n− 1)(k − 1) μ̃

]
= q−

(n−1)k(k−1)

2 [k − 1]!1/2
S(μ̃, μ̃− (k − 1)1)S(λ̃, λ̃)S(μ̃, μ̃)

S(λ̃, λ̃− (k − 1)1)∑
ν

(−1)|ν|−|μ|qk(|ν|−|μ|) S(ν̃, ν̃)2S(λ̃, ν̃)2

S(ν̃, μ̃− (k − 1)1)2S(μ̃, ν̃)2S(λ̃− (k − 1)1, ν̃)2
.

Denote the latter sum by Σ(μ, λ) and the prefactor by B(μ, λ).

6.3. Computing the normalization factor

Write λ for the truncation of λ, and note that both interpretations of λ̃ are
equal. Further, denote by sgt(r) the pattern

{(k − 1) ≺ 2(k − 1) ≺ · · · ≺ r(k − 1)},

where for 1 ≤ i ≤ r, i(k − 1) is identified with the length i signature (i(k −
1), 0, . . . , 0); note that vsgt(n) has weight (k − 1)1 in Symn(k−1)

Cn.
We now consider the special case where μ = λ, which will allow us to

translate between normalization factors for the Clebsch-Gordan coefficients.
In this case, the constraint on ν implies the sum is over the single term
ν = μ− (k − 1)1 = λ− (k − 1)1, and the matrix coefficient is

C

[
λ̃− (k − 1)1 n(k − 1) λ̃

λ̃− (k − 1)1 (n− 1)(k − 1) λ̃

]

= q−
(n−1)k(k−1)

2 [k − 1]!1/2(−1)(n−1)(k−1)q−k(k−1)(n−1)
S(λ̃,λ̃−(k−1)1)S(λ̃,λ̃)S(λ̃,λ̃)S(λ̃,λ̃)2S(λ̃,λ̃−(k−1)1)2

S(λ̃,λ̃−(k−1)1)S(λ̃,λ̃)2S(λ̃,λ̃−(k−1)1)2S(λ̃−(k−1)1,λ̃−(k−1)1)2

= (−1)(n−1)(k−1)q− 3(n−1)k(k−1)

2
[k − 1]!1/2S(λ̃, λ̃)S(λ̃, λ̃)S(λ̃, λ̃− (k − 1)1)2

S(λ̃, λ̃− (k − 1)1)S(λ̃, λ̃− (k − 1)1)S(λ̃, λ̃)2
.
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Notice now that

(
S(λ̃, τ̃)S(λ̃, τ̃)

S(λ̃, τ̃)2

)2

=
∏

1≤i≤j≤n−1

[λ̄i − τ̄j ]!
2

[λ̄i − τ̄j ]!2

∏
1≤i<j≤n−1

[τ̄i − λ̄j − 1]!2

[τ̄i − λ̄j − 1]!2∏
1≤i≤n

[λ̄i − τ̄n]!
∏

1≤i<n

[τ̄i − λ̄n − 1]!2

[τ̄i − λ̄n − 1]!

= [λ̄n − τ̄n]!

n−1∏
i=1

[λ̄i − τ̄n]![τ̄i − λ̄n − 1]!.

Applying this twice, we conclude that

C

[
λ̃− (k − 1)1 n(k − 1) λ̃

λ̃− (k − 1)1 (n− 1)(k − 1) λ̃

]

= (−1)(n−1)(k−1)q− 3(n−1)k(k−1)

2

(
n−1∏
i=1

[λ̄i − λ̄n]![λ̄i − λ̄n − 1]!

[λ̄i − λ̄n + (k − 1)]![λ̄i − λ̄n − k]!

)1/2

= (−1)(n−1)(k−1)q− 3(n−1)k(k−1)

2

(
n−1∏
i=1

[λ̄i − λ̄n − 1]k−1
[λ̄i − λ̄n + (k − 1)]k−1

)1/2

.

Iterating this, we find that the diagonal Clebsch-Gordan coefficient of the
highest weight vector is

C

[
λ̃− (k − 1)1 n(k − 1) λ̃

gt(λ̃− (k − 1)1) sgt(n− 1) gt(λ̃)

]

= (−1)n(n−1)(k−1)

2 q−
3n(n−1)k(k−1)

4

⎛⎝∏
i<j

[λ̄i − λ̄j − 1]k−1
[λ̄i − λ̄j + (k − 1)]k−1

⎞⎠1/2

,

where we recall that gt was defined in (4.1).

6.4. Proof of Proposition 4.3

We now put everything together to prove Proposition 4.3. The diagonal
Clebsch-Gordan coefficient of each highest weight vector for Uq(gln−1) in
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the Gelfand-Tsetlin basis is

C

[
λ̃− (k − 1)1 n(k − 1) λ̃

gt(μ̃− (k − 1)1) sgt(n− 1) gt(μ̃)

]
= C

[
λ̃− (k − 1)1 n(k − 1) λ̃
μ̃− (k − 1)1 (n− 1)(k − 1) μ̃

]
C

[
μ̃− (k − 1)1 (n− 1)(k − 1) μ̃

gt(μ̃− (k − 1)) sgt(n− 2) gt(μ̃)

]
= B(μ, λ)Σ(μ, λ)(−1) (n−1)(n−2)(k−1)

2 q−
3(n−1)(n−2)k(k−1)

4∏
i<j

[μ̄i − μ̄j − 1]
1/2
k−1

[μ̄i − μ̄j + (k − 1)]
1/2
k−1

.

In terms of Δk−1
1 and Δk−1

2 from (4.2), the matrix element of Ψ̃λ and hence

Φ̃λ we are interested in is c(μ, λ), which is given by

C

[
λ̃− (k − 1)1 n(k − 1) λ̃

gt(μ̃− (k − 1)) sgt(n− 1) gt(μ̃)

]

C

[
λ̃− (k − 1)1 n(k − 1) λ̃

gt(λ̃− (k − 1)1) sgt(n− 1) gt(λ̃)

]−1
= B(μ, λ)Σ(μ, λ)(−1)(n−1)(k−1)q 3(n−1)k(k−1)

2
Δk−1

1 (λ)1/2Δk−1
2 (μ)1/2

Δk−1
2 (λ)1/2Δk−1

1 (μ)1/2

= (−1)(n−1)(k−1)q(n−1)k(k−1)[k − 1]!1/2
Δk−1

1 (λ)1/2Δk−1
2 (μ)1/2

Δk−1
2 (λ)1/2Δk−1

1 (μ)1/2

S(μ̃, μ̃− (k − 1)1)S(λ̃, λ̃)S(μ̃, μ̃)

S(λ̃, λ̃− (k − 1)1)
Σ(μ, λ),

where

Σ(μ, λ) =
∑
ν

(−1)|ν|−|μ|qk(|ν|−|μ|)X(ν, μ, λ)

with

X(ν, μ, λ) =
S(ν̃, ν̃)2S(λ̃, ν̃)2

S(ν̃, μ̃− (k − 1)1)2S(μ̃, ν̃)2S(λ̃− (k − 1)1, ν̃)2
.
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Observe that

S(λ̃, λ̃)

S(λ̃, λ̃− (k − 1)1)
=

⎛⎝∏
i≤j

[λ̄i − λ̄j ]!

[λ̄i − λ̄j + (k − 1)]!

∏
i<j

[λ̄i − λ̄j − k]!

[λ̄i − λ̄j − 1]!

⎞⎠1/2

= [k − 1]!−n/2Δk−1
1 (λ)−1/2Δk−1

2 (λ)−1/2

and

S(μ̃, μ̃− (k − 1)1)S(μ̃, μ̃) =

(∏
i≤j [μ̄i − μ̄j + (k − 1)]![μ̄i − μ̄j ]!∏
i<j [μ̄i − μ̄j − k]![μ̄i − μ̄j − 1]!

)1/2

= [k − 1]!
n−1

2

∏
i<j

[μ̄i − μ̄j ]Δ
k−1
1 (μ)1/2Δk−1

2 (μ)1/2.

We conclude that

c(μ, λ) = (−1)(n−1)(k−1)q(n−1)k(k−1)
∏
i<j

[μ̄i − μ̄j ]
Δk−1

2 (μ)

Δk−1
2 (λ)

Σ(μ, λ).

We now notice that

S(ν̃, μ̃− (k − 1)1)2S(μ̃, ν̃)2

=

∏
i≤j [ν̄i − μ̄j + (k − 1)]![μ̄i − ν̄j ]!∏
i<j [μ̄i − ν̄j − k]![ν̄i − μ̄j − 1]!

=
∏
i

[ν̄i − μ̄i]![μ̄i − ν̄i]!
∏
i<j

[ν̄i − μ̄j + (k − 1)]k[μ̄i − ν̄j ]k

and that

S(λ̃, ν̃)2

S(λ̃− (k − 1)1, ν̃)2
=

∏
i≤j

[λ̄i − ν̄j ]!

[λ̄i − ν̄j − (k − 1)]!

∏
i<j

[ν̄i − λ̄j + k − 2]!

[ν̄i − λ̄j − 1]!

=
∏
i

[λ̄i − ν̄i]k−1
∏
i<j

[λ̄i − ν̄j ]k−1[ν̄i − λ̄j + (k − 2)]k−1.

We conclude that

X(ν, μ, λ) =
S(ν̃, ν̃)2S(λ̃, ν̃)2

S(ν̃, μ̃− (k − 1)1)2S(μ̃, ν̃)2S(λ̃− (k − 1)1, ν̃)2

=
∏
i<j

[ν̄i − ν̄j ]
∏
i

[λ̄i − ν̄i]k−1
[ν̄i − μ̄i]![μ̄i − ν̄i]!

∏
i<j

[λ̄i − ν̄j ]k−1[ν̄i − λ̄j + (k − 2)]k−1
[ν̄i − μ̄j + (k − 1)]k[μ̄i − ν̄j ]k

.
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Putting everything together, the expression we obtain for the diagonal ma-
trix element is

c(μ, λ) = (−1)(n−1)(k−1)q(n−1)k(k−1)
∏
i<j

[μ̄i − μ̄j ]
Δk−1

2 (μ)

Δk−1
2 (λ)

μ∑
ν=μ−(k−1)1

(−1)|ν|−|μ|qk(|ν|−|μ|)
∏
i<j

[ν̄i − ν̄j ]
∏
i

[λ̄i − ν̄i]k−1
[ν̄i − μ̄i]![μ̄i − ν̄i]!∏

i<j

[λ̄i − ν̄j ]k−1[ν̄i − λ̄j + (k − 2)]k−1
[ν̄i − μ̄j + (k − 1)]k[μ̄i − ν̄j ]k

.

In terms of μ′ and ν ′, this is the desired

c(μ, λ) = (−1)(n−1)(k−1)q(n−1)k(k−1)
∏
i<j

[μ̄′i − μ̄′j ]
Δk−1

2 (μ′)
Δk−1

2 (λ)

μ′∑
ν′=μ′−(k−1)1

(−1)|ν′|−|μ′|qk(|ν′|−|μ′|)
∏
i<j

[ν̄ ′i − ν̄ ′j + k(j − i)]

∏
i

[λ̄i − ν̄ ′i + (k − 1)]k−1
[ν̄ ′i − μ̄′i + (k − 1)]![μ̄′i − ν̄ ′i]!∏

i<j

[λ̄i − ν̄ ′j + (k − 1)]k−1[ν̄ ′i − λ̄j − 1]k−1
[ν̄ ′i − μ̄′j + (k − 1)]k[μ̄

′
i − ν̄ ′j ]k

=
(−1)(n−1)(k−1)q(n−1)k(k−1)

Δk−1
2 (λ)Δk−1

1 (μ′)

μ′∑
ν′=μ′−(k−1)1

(−1)|ν′|−|μ′|qk(|ν′|−|μ′|)

∏
i

1

[ν̄ ′i − μ̄′i + (k − 1)]![μ̄′i − ν̄ ′i]!∏
i<j [μ̄

′
i − μ̄′j + k − 1]2k−1

∏
i<j [ν̄

′
i − ν̄ ′j ]∏

i<j [ν̄
′
i − μ̄′j + (k − 1)]k[μ̄

′
i − ν̄ ′j ]k∏

i≤j
[λ̄i − ν̄ ′j + (k − 1)]k−1

∏
i<j

[ν̄ ′i − λ̄j − 1]k−1.
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