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On Fano varieties whose effective divisors

are numerically eventually free

Stéphane Druel

In this paper we classify mildly singular Fano varieties with maxi-
mal Picard number whose effective divisors are numerically even-
tually free. In addition, we prove that if a Del Pezzo surface of
degree r admits a finite morphism of degree > 1 onto a Del Pezzo
surface of degree s, then either r = s � 6, or r < s and s � 8.

1. Introduction

Let X be a normal projective variety and consider the finite dimensional
dual R-vector spaces

N1(X) =
({1− cycles}/ ≡ )⊗ R and N1(X) =

(
Pic(X)/ ≡ )⊗ R,

where≡ denotes numerical equivalence. The dimension ρ(X) = dimN1(X) =
dimN1(X) is called the Picard Number of X. The Mori cone of X is the
closure NE(X) ⊂ N1(X) of the cone NE(X) spanned by classes of effective
curves. Its dual cone is the nef cone Nef(X) ⊂ N1(X), which by Kleiman’s
criterion is the closure of the cone spanned by ample classes. The closure of
the cone spanned by effective classes in N1(X) is the pseudo-effective cone
Psef(X). These cones

Nef(X) ⊂ Psef(X) ⊂ N1(X)

carry geometric information about the variety X. It is natural to try to
describe (normal projective) varieties X with Nef(X) = Psef(X). The sim-
plest examples of complex projective manifolds with Nef(X) = Psef(X) are
given by manifolds with Picard number 1 and homogeneous spaces. The
case of projective space bundles over curves was worked out by Fulger
in [13]. If E is a locally free sheaf of finite rank on a smooth complex
projective curve C, then Nef

(
PC(E )

)
= Psef

(
PC(E )

)
if and only if E is
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semistable (see [13, Lemma 3.2]). A smooth projective toric variety X sat-
isfies Nef(X) = Psef(X) if and only if X is isomorphic to a product of pro-
jective spaces by [12, Proposition 5.3]. The case of smooth projective horo-
spherical varieties is addressed in [21].

Let X be a normal projective variety such that KX is Q-Cartier. We say
that X is Q-Fano if −KX is ample. The Mori cone of a Q-Fano variety with
log canonical singularities is rational polyhedral, and generated by classes
of curves (see [10, Theorem 16.6]). The geometry of X is reflected to a large
extent in the combinatorial properties of NE(X) = NE(X). Every face V of
NE(X) corresponds to a surjective morphism with connected fibers ϕ : X →
Y onto a normal projective variety, which is called a Mori contraction. The
morphism ϕ contracts precisely those curves on X with class in V (see [10,
Theorem 16.4]). Conversely, any morphism with connected fibers onto a
normal projective variety arises in this way.

In this paper we address mildly singular Q-Fano varieties with Nef(X) =
Psef(X). The main theorem of this paper is the following.

Theorem 1.1. Let X be a Q-Fano variety with locally factorial canoni-
cal singularities. Suppose that Nef(X) = Psef(X). Then ρ(X) � dimX, and
equality holds only if X ∼= X1 × · · · ×Xm where Xi is a double cover of
P1 × · · · × P1 branched along a reduced divisor of type (2, . . . , 2) for each
i ∈ {1, . . . ,m}.

Remark 1.2. Example 9.2 shows that the statement of Theorem 1.1 does
not hold for Q-Fano varieties with Gorenstein canonical singularities.

Occhetta, Solá Conde, Watanabe, and Wísniewski recently posted a
somewhat related result. They proved in [24] that a Fano manifold whose
elementary contractions are P1-fibrations is rational homogenous, without
any assumption on the Picard number of X (see also [5, Proposition 2.4]).

The argument for the proof of Theorem 1.1 goes as follows. Suppose
furthermore that dimX � 3. The first step in the proof of Theorem 1.1 is
to show that the Mori cone NE(X) is simplicial. This is done in Lemma 4.9.
Then we argue by induction on the dimension of X. If X → Y is a con-
traction, then it is easy to see that Y satisfies all the conditions listed in
Theorem 1.1.

Suppose first that there is a contraction X → Y where Y is a double
cover of P1 × · · · × P1 branched along a divisor of type (2, . . . , 2). It is easy
to see that we must have dimY � 3 (see Proposition 6.1) and that there
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is a contraction X → T such that the induced morphism X → Y × T is
surjective and finite. We conclude thatX ∼= Y × T using the following result.

Theorem 1.3. Let Z be a Q-Fano variety of dimension � 3 with Goren-
stein canonical singularities, Y a double cover of P1 × · · · × P1 branched
along a reduced divisor B =

∑
j∈J Bj of type (2, . . . , 2), and f : Z → Y a

finite morphism. Suppose that Bj is ample for each j ∈ J . Then deg(f) = 1.

Suppose now that for each contraction X → Y , we have Y ∼= P1 × · · · ×
P1. Then apply the following characterization result to complete the proof
of Theorem 1.1.

Proposition 1.4. Let X be a Q-Fano variety of dimension � 3 with Goren-
stein canonical singularities. Suppose that Nef(X) = Psef(X) and ρ(X) =
dimX. Suppose furthermore that each non-trivial contraction X → Y with
dimY < dimX satisfies Y ∼= P1 × · · · × P1. Then, either X ∼= P1 × · · · × P1,
or X is a double cover of P1 × · · · × P1 branched along a reduced divisor of
type (2, . . . , 2).

In order to prove Theorem 1.3, we are led to study finite morphisms
between some Del Pezzo surfaces (see Propositions 7.2 and 8.3). Beauville
classified in [4] the smooth Del Pezzo surfaces which admit an endomorphism
of degree > 1.

Proposition 1.5 ([4, Proposition 3]). A smooth Del Pezzo surface S
admits an endomorphism of degree > 1 if and only if K2

S � 6.

In section 10, we address finite morphisms between smooth Del Pezzo
surfaces. Our result is the following. We believe that this result is interesting
on its own and that it will be useful when considering Fano manifolds with
Nef(X) = Psef(X) and arbitrary Picard number.

Theorem 1.6. Let S and T be smooth Del Pezzo surfaces with K2
S < K2

T ,
and let f : S → T be a finite morphism. Then K2

T � 8.

2. Notation and conventions

Throughout this paper we work over the field of complex numbers. Varieties
are always assumed to be reduced and irreducible.

We denote by Sing(X) the singular locus of a variety X.
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Let X be a normal projective variety, and B =
∑

aiBi an effective Q-
divisor on X, i.e., B is a nonnegative Q-linear combination of distinct prime
Weil divisors Bi’s on X. Suppose that KX +B is Q-Cartier, i.e., some
nonzero multiple of it is a Cartier divisor. Let μ : X̃ → X be a log reso-
lution of the pair (X,B). This means that X̃ is a smooth projective variety,
μ is a birational projective morphism whose exceptional locus is the union
of prime divisors Ei’s, and the divisor

∑
Ei + B̃ has simple normal crossing

support, where B̃ denotes the strict transform of B in X. There are uniquely
defined rational numbers a(Ei, X,B)’s such that

KX̃ + B̃ = μ∗(KX +B) +
∑

a(Ei, X,B)Ei.

The a(Ei, X,B)’s do not depend on the log resolution μ, but only on the val-
uations associated to the Ei’s. We say that (X,B) is canonical (respectively,
log terminal or klt) if all ai � 1 (respectively, ai < 1), and, for some log res-
olution μ : X̃ → X of (X,B), a(Ei, X,B) � 0 (respectively, a(Ei, X,B) �
−1) for every μ-exceptional prime divisor Ei. We say that (X,B) is log
canonical if all ai � 1, and, for some log resolution μ : X̃ → X of (X,B),
a(Ei, X,B) � −1 for every μ-exceptional prime divisor Ei. If these condi-
tions hold for some log resolution of (X,B), then they hold for every log
resolution of (X,B). We say that X is canonical (respectively log canonical)
if so is (X, 0). We say that X is Gorenstein, if X is locally Cohen-Macaulay
and KX is Cartier. Note that if X is Gorenstein, then X is canonical if and
only if X is klt. We say that X is Q-Gorenstein, if KX is Q-Cartier.

Let X be a normal projective variety such that KX is Q-Cartier. We say
that X is Q-Fano if −KX is ample. We say that a normal surface S is a
Del Pezzo surface if S is Q-Fano with canonical singularitites. Note that a
normal surface S is canonical if and only if S has Du Val singularities (see
[19, Theorem 4.5]).

Let X be a normal projective variety, and B an effective Q-divisor on X
such that KX +B is Q-Cartier. We say that (X,B) is Q-Fano if −(KX +B)
is ample.

If E is a locally free sheaf of OX -modules on a variety X, we denote by
PX(E ) the Grothendieck projectivization ProjX(Sym(E )), and by OPX(E )(1)
its tautological line bundle.

Given a positive integer m, we denote by Fm the surface PP1

(
OP1 ⊕

OP1(−m)
)
.

Given line bundles L1 and L2 on varieties X1 and X2, we denote by
L1 � L2 the line bundle π∗

1L1 ⊗ π∗
2L2 on X1 ×X2, where π1 and π2 are

the projections onto X1 and X2, respectively.
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3. Double covers

In this section we gather some properties of double covers of smooth (pro-
jective) varieties.

3.1. Let f : X → Y be a finite surjective morphism of degree 2. Suppose
that X is Cohen-Macaulay and Y is smooth. Then there exist a line bun-
dle L on Y , a section s ∈ H0(Y,L ⊗2), and an isomorphism f∗OX

∼= OY ⊕
L ⊗−1 of OY -algebras, where the structure of OY -algebra on OY ⊕L ⊗−1 is
induced by s∨ : L ⊗−2 → OY . We refer to [8] for details. This implies that
X is Gorenstein with dualizing sheaf ωX

∼= f∗(ωY ⊗L ). If moreover Y is
projective, then X is Q-Fano if and only if (ωY ⊗L )⊗−1 is an ample line
bundle.

Denote by B the divisor of zeroes of s. A straightforward local compu-
tation shows that X is normal if and only if B is reduced. By [19, Proposi-
tion 5.20], X is canonical if and only if (Y, 12B) is klt.

Lemma 3.2. Fix an integer n � 1, and let f : X → (P1)n be a double cover
branched along a reduced divisor B. Then X is Q-Fano if and only if B has
type (2d1, . . . , 2dn) with di ∈ {0, 1} for each i ∈ {1, . . . , n}.

Remark 3.3. In the setup of Lemma 3.2, denote by m the cardinality of
the set {1 � i � n | di = 0}. Then X ∼= (P1)m × Y where Y is a double cover
of (P1)n−m branched along a reduced divisor of type (2, . . . , 2).

Lemma 3.4. Let X and Y be projective Fano manifolds, and let X → Y be
a double cover branched along an ample divisor. Suppose furthermore that
dimX = dimY � 3. Then ρ(X) = ρ(Y ).

Proof. From 3.1 and [20, Theorem 2.1], we conclude that b2(X) = b2(Y ).
Since X and Y are Fano manifolds, we also have ρ(X) = b2(X) and ρ(Y ) =
b2(Y ), proving the lemma. �

Corollary 3.5. Let X be a smooth double cover of P1 × · · · × P1 branched
along a reduced divisor B of type (2, . . . , 2) with dimX � 3. Then ρ(X) =
dimX.

Proof. This follows from Lemma 3.4 together with Lemma 3.2. �

The following example shows that the statement of Lemma 3.4 does not
hold for surfaces.
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Example 3.6. Let S be a double cover of P1 × P1 branched along a smooth
divisor of type (2, 2). Then S is a (smooth) Del Pezzo surface of degree
K2

S = 4, and ρ(S) = 6.

We will need the following observations.

Lemma 3.7. Let (R,m) be a regular local ring, and let f1, f2 ∈ m be co-
prime elements. Then the hypersurface ring

R[t](t)/(t
2 − f1f2)

is not factorial.

Proof. Let n be the maximal ideal of the ring O = R[t](t)/(t
2 − f1f2). Note

that t is irreducible since t ∈ n \ n2. To prove the lemma, suppose to the
contrary that O is factorial. Since t2 = f1f2 and f1 and f2 are coprime, we
conclude that f1 or f2 is a unit. This yields a contradiction. �

Lemma 3.8. Let a, b, c, d, e, and f be complex numbers. The hypersurface
ring

C[x, y, t](x,y,t)/
(
t2 − ax2 − bxy − cy2 − dx2y − exy2 − fx2y2

)

is not factorial.

Proof. Let a1 ∈ C such that a = a21. The hypersurfaceX ⊂ A3 given by equa-
tion

t2 − ax2 − bxy − cy2 − dx2y − exy2 − fx2y2 = 0

contains (0, 0, 0) in its singular locus. Moreover, the line given by equations

y = t− a1x = 0

is a smooth hypersurface on X passing through (0, 0, 0). Therefore X is not
locally factorial at (0, 0, 0). �

The next result is an immediate consequence of Lemma 3.8.

Corollary 3.9. Let X be a double cover of P1 × P1 branched along a re-
duced divisor of type (2, 2). Then X is locally factorial if and only if it is
smooth.
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Lemma 3.10. Let f : X → Y be a finite surjective morphism of degree 2
with X Cohen-Macaulay and Y smooth. If dim(Sing(X)) � dimX − 4, then
X is locally factorial.

Proof. The lemma follows from 3.1 and [15, Exposé XI Corollaire 3.14]. �
The following example shows that the statement of Lemma 3.10 becomes

wrong if one relaxes the assumption on dim(Sing(X)).

Example 3.11. Let B ⊂ P1 × P1 × P1 be defined by equation

x20y
2
0z

2
1 + z20x

2
1y

2
1 + z0z1(x0x1y

2
1 + y0y1x

2
1) = 0

and let X be the double cover of P1 × P1 × P1 branched along B. Denote
by f : X → P1 × P1 × P1 the natural morphism. Set P = (0, 1)× (0, 1)×
(0, 1) ∈ P1 × P1 × P1 and Q = f−1(P ) ∈ X. A straightforward computation
shows that X is normal and singular at Q. The surface S = f−1

({z0 = 0}) is
the double cover of P1 × P1 branched along the divisor defined by equation
x20y

2
0 = 0. Hence, S is the union of two copies of {z0 = 0} ∼= P1 × P1 passing

through Q. Therefore X is not locally factorial at Q.

Lemma 3.12. Let X be a double cover of P1 × · · · × P1 branched along
a reduced divisor B of type (2, . . . , 2). If dimSing(X) � dimX − 3, then
π1

(
X \ Sing(X)

) ∼= {1}.

Proof. Set n = dimX. By Lemma 3.2, X is Q-Fano. If n = 1, then X ∼= P1,
and hence π1(X) = {1} as claimed. Suppose that n � 2. Then apply Lemma
3.13 below to any projection f1 : X → (P1)n−1 such that f1

(
Supp(B)

)
=

(P1)n−1. �

Lemma 3.13. Let Y be a Q-Fano variety of dimension n � 2, and let
π : Y → T be a surjective equidimensional morphism with connected fibers
onto a normal variety such that dimπ

(
Sing(Y )

)
� dimT − 2. Then π1

(
T \

Sing(T )
) ∼= π1

(
Y \ Sing(Y )

)
.

Proof. Let F be a general fiber of π. Then F is a Fano manifold, and there-
fore F is rationally chain connected (see [6] and [18]). Consider a smooth
general complete intersection curve B ⊂ T , and set Z = π−1(B). Then Z is
smooth, and the morphism πZ : Z → B induced by the restriction of π to Z
has rationally chain connected general fibers. By [14], we conclude that the
scheme theoretic fiber π−1

Z (b) has a smooth point for each b ∈ B. Therefore,
there exists a codimension � 2 closed subset G of T such that
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• Sing(T ) ∪ π
(
Sing(Y )

) ⊂ G,

• for each t ∈ T \G, the scheme theoretic fiber π−1(p) has a smooth
point.

Thus, by [23, Lemma 1.5], there is an exact sequence

π1(F )→ π1
(
Y \ π−1(G)

)→ π1(T \G)→ 1.

Now, we have π1(T \G) ∼= π1
(
T \ Sing(T )) and π1

(
Y \ π−1(G)

) ∼= π1
(
Y \

Sing(Y )
)
since S and π−1(G) have codimension � 2 respectively. Fano man-

ifolds being simply connected, we conclude that π1
(
T \ Sing(T )) ∼= π1

(
Y \

Sing(Y )
)
, proving the lemma. �

Remark 3.14. Example 6.2 shows that the statements of Lemmata 3.12
and 3.13 becomes wrong if one relaxes the assumption on dimπ

(
Sing(Y )

)
.

4. Mori point of view

Let ϕ : X → Y be an arbitrary surjective morphism of normal projective
varieties. The natural morphism ϕ∗ : N1(Y )→ N1(X) is injective,

ϕ∗(Nef(Y )
)
= Nef(X) ∩ ϕ∗(N1(Y )

)
, and

ϕ∗(Psef(Y )
)
= Psef(X) ∩ ϕ∗(N1(Y )

)
.

Let now X and Y be normal projective varieties. If Nef(X × Y ) =
Psef(X × Y ), then it is easy to see that Nef(X) = Psef(X) and Nef(Y ) =
Psef(Y ). We have the following partial converse to the above statement.

Lemma 4.1. Let X and Y be normal projective varieties. Suppose that
h1(X,OX) = 0. If Nef(X) = Psef(X) and Nef(Y ) = Psef(Y ), then Nef(X ×
Y ) = Psef(X × Y ).

Proof. Since h1(X,OX) = 0, we have Pic(X × Y ) ∼= Pic(X)× Pic(Y ). It is
easy to see that Nef(X × Y ) ∼= Nef(X)×Nef(Y ), and Psef(X × Y ) ∼=
Psef(X)× Psef(Y ). The lemma follows. �

We will make use of the following elementary lemma.

Lemma 4.2. Let f : X → Y be an arbitrary surjective morphism of normal
projective varieties. If Nef(X) = Psef(X), then Nef(Y ) = Psef(Y ).

Proof. The lemma follows from the projection formula. �
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Remark 4.3. Let ϕ : X → P1 × P1 × P1 be a double cover branched along
a smooth divisor of type (2, 2, 2), and let π : X → P1 be a projection. Then a
general fiber F of π is a smooth Del Pezzo surface of degree 4 with Nef(F ) �
Psef(F ).

The following observation will prove to be crucial.

Lemma 4.4. Let (X,B) be a Q-Fano pair with Q-factorial log canonical
singularities. Then the following conditions are equivalent.

1) Nef(X) = Psef(X).

2) Any effective Cartier divisor on X is semiample.

3) Any elementary contraction X → Y satisfies dimY < dimX.

4) Any non-trivial contraction X → Y satisfies dimY < dimX.

Proof. (1) ⇒ (2) Let E be an effective Cartier divisor on X. Then E is nef
and thus E − (KX +B) is ample. By [10, Theorem 13.1], we conclude that
E is semiample.

(2) ⇒ (3) Let ϕ : X → Y be an elementary contraction. We argue by
contradiction, and assume that dimY = dimX. Set C = ϕ∗B. Let A be an
ample Cartier divisor on Y such that KY + C +A is Q-ample, and let m
be a positive integer such that mB ∈ Z1(X)Z and h0

(
Y,OY (m(KY + C +

A))
)
� 1.

Suppose first that dimExc(ϕ) = dimX − 1. Then F = Exc(ϕ) is irre-
ducible, Y is Q-factorial, and KX +B = ϕ∗(KY + C) + aF for some ratio-
nal number a � 0. Assume in addition that ma ∈ Z. Then

h0
(
X,OX(m(KX +B + ϕ∗A))

)

= h0
(
X,ϕ∗OY (m(KY + C +A) +maF )

)

= h0
(
Y,OY (m(KY + C +A))

)
since ma ∈ N

� 1.

Thus, there exists an effective Cartier divisor E ∼Q KX +B + ϕ∗A. This
yields a contradiction since KX +B + ϕ∗A is not nef.
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Suppose now that dimExc(ϕ) � dimX − 2. Set X◦ = X \ Exc(ϕ) and
Y ◦ = Y \ ϕ(Exc(ϕ)). Then

h0
(
X,OX(m(KX +B + ϕ∗A))

)

= h0
(
X◦,OX(m(KX +B + ϕ∗A))

)
since codimExc(ϕ) � 2

= h0
(
Y ◦,OY (m(KY + C +A))

)
since X◦ ∼= Y ◦

= h0
(
Y,OY (m(KY + C +A))

)
since codimϕ(Exc(ϕ)) � 2

� 1.

We conclude as before that there exists an effective divisor E ∼Q KX +B +
ϕ∗A, yielding a contradiction since KX +B + ϕ∗A is not nef. This proves
that dimY < dimX.

(3) ⇒ (4) is obvious.

(4) ⇒ (1) Let E be an effective Cartier divisor. Suppose that E is not
nef. Then there exists an extremal ray R ⊂ NE(X) such that E · C < 0 for
every curve C with [C] ∈ R. Let ϕ : X → Y be the corresponding contrac-
tion. Then we must have Exc(ϕ) ⊂ Supp(E), yielding a contradiction, and
completing the proof of the lemma. �

To prove Theorem 1.1, we will argue by induction on dimX. We will
make use of the following result.

Lemma 4.5. Let (X,B) be a Q-Fano pair with log terminal (respectively,
log canonical) singularities. Let ϕ : X → Y be any contraction. Then there
exists an effective Q-divisor BY on Y such that (Y,BY ) is Q-Fano with log
terminal (respectively, log canonical) singularities.

Proof. Let A be an ample Q-divisor on Y , 0 < ε� 1 a rational number, and
C ∼Q −(KX +B)− εϕ∗A an effective Q-divisor such that (X,B + C) is klt.
Suppose that (X,B) has log terminal singularities. By [1, Theorem 4.1] ap-
plied to (X,B + C), there exists an effective Q-divisor BY on Y such that
(Y,BY ) is klt and KY +BY ∼Q −εA. If (X,B) has log canonical singular-
ities, then one only needs to replace the use of [1, Theorem 4.1] with [11,
Therorem 3.4]. �

The same argument used in the proof of [17, Lemma 5.1.5] shows that the
following lemma holds. One only needs to replace the use of [17, Lemma 3.2.5]
with [10, Theorem 1.1].
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Lemma 4.6. Let (X,B) be a pair with log canonical singularities, and
let ϕ : X → Y be an elementary Mori contraction with dimY < dimX. If
X is locally factorial (respectively, Q-factorial), then Y is locally factorial
(respectively, Q-factorial).

Remark 4.7. Let (X,B) be a pair with log canonical singularities. Then
the conclusion of Lemma 4.6 holds for any quasi-elementary Mori contraction
ϕ : X → Y with dimY < dimX. We refer to [7] for the definition of quasi-
elementary Mori contractions.

Corollary 4.8. Let (X,B) be a Q-Fano pair with log canonical singularities
satisfying Nef(X) = Psef(X). Let V be a face of NE(X), and denote by
ϕ : X → Y the corresponding contraction. If X is locally factorial, then so
is Y .

Proof. We argue by induction on ρ(X/Y ) = ρ(X)− ρ(Y ) � 0. If ρ(X/Y ) =
0, then X ∼= Y and there is nothing to prove. Suppose that ρ(X/Y ) � 1.
Let R ⊂ V be an extremal ray of NE(X), and denote by ψ : X → Z the cor-
responding contraction. There exists a morphism ξ : Z → Y such that ϕ =
ξ ◦ ψ. From Lemma 4.2, we conclude that Nef(Z) = Psef(Z). By Lemma 4.5,
there exists an effective Q-divisor BZ on Z such that (Z,BZ) is Q-Fano
with log canonical singularities. By Lemma 4.4, we have dimZ < dimY ,
and Lemma 4.6 tells us that Z is locally factorial. Notice that ρ(Z/Y ) =
ρ(X/Y )− 1 < ρ(X/Y ). The lemma follows. �

It follows from [27, Theorem 2.2] that a Fano manifold with Nef(X) =
Psef(X) satisfies ρ(X) � dimX. We now extend this result to mildly singular
varieties.

Lemma 4.9. Let (X,B) be a Q-Fano pair with log canonical singularities
satisfying Nef(X) = Psef(X).

1) Then ρ(X) � dimX.

2) Suppose moreover that ρ(X) = dimX. Then NE(X) is simplicial, and
the following holds. Let V be a face of NE(X), and denote by ϕ : X →
Y the corresponding contraction. Then ϕ is equidimensional and
dimY = dimX − dimV = ρ(Y ).

Proof. Set n = dimX. Suppose that ρ(X) = dimNE(X) � n. Let R1, . . . ,
Rn−1 be extremal rays of NE(X) such that Vi = R1 + · · ·+Ri is a face of
NE(X) with dim(R1 +R2 + · · ·+Ri) = i for each 1 � i � n− 1. Denote by
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ϕi : X → Yi the contraction of Vi. We have dimYi � n− i by Lemma 4.4(4).
Let i0 be the smallest number 1 � i � n− 1 such that dimYi0 � 1. By [10,
Theorem 16.4(3)], we have ρ(Yi) = ρ(X)− i, and therefore

ρ(X)− n+ 1 � ρ(X)− i0 = ρ(Yi0) � 1.

We conclude that ρ(X) = n and i0 = n− 1, proving (1).
We proceed to prove (2). Suppose that ρ(X) = n.
We first show that NE(X) is simplicial. Suppose otherwise and consider

a 2-dimensional face W of NE(X) such that Vn−1 ∩W = {0}. Denote by
ψ : X → T the corresponding contraction. Let F and G be fibers of ϕn−1

and ψ respectively. Since dimYn−1 = 1 and dimT � n− 2, we must have
dim(F ∩G) � 1, yielding a contradiction. This proves that NE(X) is sim-
plicial.

Let V be a face of NE(X), and denote by ϕ : X → Y the correspond-
ing contraction. We have ρ(Y ) = ρ(X)− dimV = n− dimV . Thus there
exists a face W of NE(X) with dimW = ρ(Y ) and V ∩W = {0}. Denote by
ψ : X → T the corresponding contraction. By Lemma 4.4(4), we must have

dimY � n− dimV = ρ(Y )

and

dimT � n− dimW = n− ρ(Y ).

Since V ∩W = {0}, we conclude that ϕ and ψ are equidimensional, dimY =
n− dimV , and dimT = n− dimW . This completes the proof of the lemma.

�

Remark 4.10. In the setup of the proof of Lemma 4.9, suppose moreover
that X is smooth. Then Yi is smooth and ϕi is a conic bundle for each
1 � i � n by [2, Theorem 3.1].

Remark 4.11. One might ask whether Lemma 4.9 holds for a larger class
of singular varieties. What we actually proved is the following. Let X be a
normal projective variety with rational polyhedral Mori cone NE(X). Sup-
pose that every face V of NE(X) corresponds to a surjective morphism with
connected fibers ϕ : X → Y onto a normal projective variety such that ϕ
contracts precisely those curves on X with class in V . Suppose furthermore
that ρ(Y ) = ρ(X)− dimV and dimY < dimX for each face V of NE(X).
If Nef(X) = Psef(X), then X satisfies the conclusions of Lemma 4.9.
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The same argument used in the proof of Lemma 4.9 above shows that
the following lemmata hold.

Lemma 4.12. With the assumptions as in Lemma 4.9, suppose further-
more that there is a contraction ϕ : X → Y such that dimY = ρ(Y ). Then,
there exists a contraction ψ : X → T such that the induced morphism (ϕ, ψ) :
X → Y × T is finite and surjective. In particular, ϕ and ψ are equidimen-
sional.

Lemma 4.13. With the assumptions as in Lemma 4.9, suppose further-
more that there is an elementary contraction ϕ : X → Y with dimY =
ρ(X)− 1 = ρ(Y ). Denote by R the corresponding extremal ray. Then NE(X)
is simplicial, and the following holds. Let W be a face of NE(X), and denote
by ψ : X → T the corresponding contraction. Then ψ is equidimensional, and
either dimT = dimX − dimW if R �⊂W or dimT = ρ(X)− dimW = ρ(T )
if R ⊂W .

5. Fibrations on Q-Fano threefolds with canonical
Gorenstein singularities

In this section we provide a technical tool for the proof of the main results.

5.1. Let N � 2 be an integer. We say that Y ⊂ PN is a variety of minimal
degree if Y is nondegenerate and deg(Y ) = codimY + 1. Surfaces of min-
imal degree were classified by Del Pezzo. Bertini then obtained a similar
classification for varieties of any dimension. If Y ⊂ PN is a variety of min-
imal degree and codimY � 2, then Y is either a rational normal scroll or
a cone over the Veronese surface in P2 ⊂ P5. A rational normal scroll is a
cone over a smooth linearly normal variety fibered over P1 by linear spaces.
Note that the Veronese surface contains no lines, and thus a cone over the
Veronese surface cannot contain a linear space of codimension 1. A rational
normal scroll contains a pencil of linear spaces of codimension 1. This pencil
is unique if and only if Y is not a cone over P1 × P1 ⊂ P3.

5.2. Let X be a 3-dimensional Q-Fano variety with Gorenstein canonical
singularities. Then we have

h0
(
X,OX(−KX)

)
= −1

2
K3

X + 3.
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Set N = −1
2K

3
X + 2, and notice that N � 3. Denote by ϕ : X ��� PN the

rational map given by the complete linear system | −KX |, and set Y =
ϕ(X).

The classification of 3-dimensional Q-Fano varieties X with Gorenstein
canonical singularities satisfying Bs(−KX) �= ∅ was established in [16]. Those
with Bs(−KX) = ∅ and −KX not very ample were classified in [25, Theo-
rem 1.5]. We do not include the classification here. Instead, we state the
properties that we need. If Bs(−KX) �= ∅, then Y ⊂ PN is a variety of mini-
mal degree with dimY = 2, and the rational map ϕ : X ��� Y has connected
fibers. If Bs(−KX) = ∅ and −KX is not very ample, then Y ⊂ PN is a variety
of minimal degree, and the finite morphism ϕ : X → Y has degree 2.

We are now ready to state and prove the main result of this section.

Lemma 5.3. Let X be a 3-dimensional Q-Fano variety with Gorenstein
canonical singularities. Then there is at most one fibration f : X → P1 with
general fiber S satisfying K2

S � 2.

Proof. Denote by ϕ : X ��� PN the rational map given by the complete lin-
ear system | −KX |, and set Y = ϕ(X) ⊂ PN .

Let f : X → P1 be a surjective morphism with connected fibers, and
general fiber S. Suppose that K2

S � 2. We will show that there exists a ra-
tional fibration g : Y ��� P1 by linear spaces such that g ◦ ϕ factors through
f . Notice that S has canonical singularities. Denote by ψ : S ��� PM the
rational map given by the complete linear system | −KS |, where M + 1 =
h0

(
S,OS(−KS)

)
= K2

S + 1. Then Bs(−KS) �= ∅ if and only if K2
S = 1. If

K2
S = 2, then ψ : S → P2 is a double cover. We conclude that −KS is not

very ample, and therefore neither is −KX .
The restriction map r : H0

(
X,OX(−KX)

)→ H0
(
S,OS(−KS)

)
induces

a commutative diagram

X
ϕ �� PN

S
ψ

��

��

PM

r∨

��

Notice that ψ is dominant since K2
S � 2 by assumption. Therefore, ϕ(S) ⊂

Y ⊂ PN is a linear subspace of dimension � 2.
Suppose first that Bs(−KX) �= ∅. By 5.2, dimY = 2 and Y ⊂ PN is a

variety of minimal degree. If K2
S = 2, then Y ⊂ PN is a plane. But this

contradicts 5.1. We conclude that K2
S = 1, and ϕ(S) ⊂ Y is a line. Notice
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that the ϕ(S)’s yield a covering family of lines on Y . By 5.1, there is a
rational fibration s : Y ��� P1 by lines such that f = s ◦ ϕ. Suppose that
there is a fibration g : X → P1 with general fiber T satisfying K2

T � 2 and
g �= f . Then, as before, there is a rational fibration t : Y ��� P1 by lines such
that t = t ◦ ϕ and t �= s. By 5.1, we must have Y ∼= P1 × P1 ⊂ P3. It follows
that ϕ = (f, g) but this contradicts the fact that Bs(−KX) �= ∅.

Suppose then that Bs(−KX) = ∅. Notice that dimY = 3. Then we must
have Bs(−KS) = ∅,K2

S = 2, and h0
(
S,OS(−KS)

)
= 3. We claim that the re-

striction map r : H0
(
X,OX(−KX)

)→ H0
(
S,OS(−KS)

)
is surjective. Sup-

pose otherwise. Then | −KS | contains a base point free sub-linear system of
dimension 1, yielding a contradiction since −KS is ample. We conclude that
ϕ(S) ⊂ Y ⊂ PN is a 2-dimensional linear subspace and ϕ|S = ψ. In partic-
ular, deg(ϕ) = deg(ψ) = 2. Therefore, there is a rational fibration s : Y ���
P1 by 2-dimensional linear subspaces, such that f = s ◦ ϕ. By 5.2, either
Y ∼= P3, or Y ⊂ PN is a rational normal scroll. If Y ∼= P3, then s : Y ��� P1

is a linear projection. Thus f = s ◦ ϕ cannot be a morphism, yielding a con-
tradiction. If Y ⊂ PN is a rational normal scroll, then s : Y ��� P1 is unique
so that f is unique as well. This completes the proof of the lemma. �

Example 5.4. Let S be a smooth Del Pezzo surface with K2
S � 2, and

set X = S × P1. Denote by ϕ : X ��� PN the rational map given by the
complete linear system | −KX |, and set Y = ϕ(X). Then Y ∼= P1 × P1 (re-
spectively, Y ∼= P2 × P1) if K2

S = 1 (respectively, K2
S = 2). Any fiber T ∼= S

of the natural projection X → P1 satisfies K2
T � 2.

6. Fano varieties of dimension � 3 with Nef(X) = Psef(X)

The classification of Fano manifolds of dimension� 3 with Nef(X) = Psef(X)
will be presented in this section.

Proposition 6.1. Let S be a locally factorial Del Pezzo surface with ρ(X) �
2. If Nef(S) = Psef(S), then S ∼= P1 × P1.

Proof. Let ϕ : S → P1 be an elementary contraction. The irreducible com-
ponents of fibers of ϕ are smooth rational curves by [3, Corollary 1.9]. Since
S is locally factorial, we conclude that S is smooth. The lemma follows
easily from the Enriques-Kodaira classification of smooth complex proper
surfaces. �

The following example shows that the statement of Proposition 6.1 does
not hold for normal surfaces with canonical singularities.
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Example 6.2. Let T be the Del Pezzo surface of degree K2
S = 4 with 4

singular points of type A1 given by equations

x0x1 + x22 = x3x4 + x22 = 0

in P4. Then T admits a double cover P1 × P1 → T ramified only at the
singular points (see [8, Proposition 0.4.2]). In particular, we have Nef(T ) =
Psef(T ).

Fano manifolds with dimX = 3 and ρ(X) � 2 were classified by Mori
and Mukai in [22]. The classification of those with Nef(X) = Psef(X) follows
easily.

Theorem 6.3. Let X be a Fano manifold of dimension 3 with ρ(X) � 2.
If Nef(X) = Psef(X), then X is isomorphic to one of the following.

1) P1 × P2.

2) A double cover of P1 × P2 branched along a divisor of type (2, 2).

3) A double cover of P1 × P2 branched along a divisor of type (2, 4).

4) A double cover of Y = PP2(TP2) whose branched locus is a member of
| −KY |.

5) A hypersurface of type (1, 1) in P2 × P2.

6) A hypersurface of type (1, 2) in P2 × P2.

7) A hypersurface of type (2, 2) in P2 × P2.

8) A double cover of P1 × P1 × P1 branched along a divisor of type (2, 2, 2).

7. Finite morphisms onto P1 × · · · × P1

In this section we prove Proposition 1.4.

Lemma 7.1. Let S be a Q-Fano surface with Gorenstein singularities, and
let C1 and C2 be two curves contained in the smooth locus of S satisfying
C2
1 = C2

2 = 0. Then

2K2
S(C1 · C2) � (KS · C1 +KS · C2)

2.

Proof. Let μ : T → S be the minimal resolution of singularities of S, and
denote by C̃1 and C̃2 the strict transforms in T of C1 and C2 respectively.
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Using the projection formula, we obtain (μ∗KS)
2 = K2

S > 0. Therefore, by
the Hodge index theorem, we have

(μ∗KS)
2(C̃1 + C̃2)

2 �
(
μ∗KS · (C̃1 + C̃2)

)2
.

The assumption that C1 and C2 are contained in the smooth locus of S yields
(μ∗KS)

2(C̃1 + C̃2)
2 = 2K2

S(C1 · C2). Finally, μ
∗KS · (C̃1 + C̃2) = KS · (C1 +

C2) by the projection formula, completing the proof of the lemma. �

Proposition 7.2. Let S be a Q-Fano surface with Gorenstein singularities
satisfying K2

S � 3, and let f1 : S → P1 and f2 : S → P1 be two surjective
morphisms with connected fibers. Suppose that the induced morphism f =
(f1, f2) : S → P1 × P1 is finite. Then either K2

S = 4 and f makes S a double
cover of P1 × P1 branched along a reduced divisor of type (2, 2), or K2

S = 8
and f induces an isomorphism S ∼= P1 × P1.

Proof. Let C1 and C2 be general fibers of f1 and f2 respectively. Notice that
−KS · C1 = −KS · C2 = 2. By Lemma 7.1, we have

6C1 · C2 � 2K2
S(C1 · C2) � (KS · C1 +KS · C2)

2 = 16,

and thus deg(f) = C1 · C2 � 2. If deg(f) = 1, then S ∼= P1 × P1 andK2
S = 8.

If deg(f) = 2, then f makes S a double cover of P1 × P1 branched along a
reduced divisor of type (2, 2) by Lemma 3.2. A straightaforward computation
then shows that K2

S = 4. �

Proposition 7.3. Let X be a Q-Fano variety of dimension n � 3 with
Gorenstein canonical singularities. Let f : X → (P1)n be a finite morphism
of degree deg(f) > 1 such that each projection X → (P1)n−1 has connected
fibers. Then f makes X a double cover of (P1)n branched along a reduced
divisor of type (2, . . . , 2).

Proof. By Lemma 3.2, it suffices to show that deg(f) = 2.
Suppose first that n = 3, and let f1 : X → P1 and f1 : X → P1 × P1 such

that f = (f1, f
1). Let S be a general fiber of f1. Notice that S is a Del

Pezzo surface. Moreover, the restriction of f1 to S induces a finite mor-
phism f1|S : S → P1 × P1 such that each projection S → P1 has connected

fibers, and deg(f) = deg(f1|S). By Lemma 5.3, we may assume without

loss of generality that K2
S � 3. We conclude that deg(f) = deg(f1|S) = 2

by Proposition 7.2. This proves the proposition in the case when n = 3.
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Suppose from now on that n � 4 is arbitrary, and let f1 : X → (P1)n−3

and f1 : X → (P1)3 such that f = (f1, f
1). Let F be a general fiber of f1.

Then F is a Q-Fano variety of dimension 3 with Gorenstein canonical singu-
larities. The restriction of f1 to F induces a finite morphism F → (P1)3 such
that each projection F → (P1)2 has connected fibers, and deg(f) = deg(f1).
We conclude that deg(f) = deg(f1) = 2 from the previous case, completing
the proof of the proposition. �

Remark 7.4. Proposition 10.4 shows that the statement of Proposition 7.3
above becomes wrong when dimX = 2.

Proof of Proposition 1.4. Let X be a Q-Fano variety of dimension n � 3
with Gorenstein canonical singularities. Suppose that Nef(X) = Psef(X) and
ρ(X) = n. Suppose furthermore that each non-trivial contraction X → Y
with dimY < n satisfies Y ∼= P1 × · · · × P1.

By Lemma 4.9, the Mori cone NE(X) is simplicial. Let V1, . . . , Vn be
the codimension 1 faces of NE(X), and denote by fi : X → P1 the contrac-
tion of Vi. Set f = (f1, . . . , fn) : X → (P1)n. Notice that f is a finite mor-
phism. If deg(f) = 1, thenX ∼= (P1)n. Suppose from now on that deg(f) > 1.
Let g : X → (P1)n−1 be a projection with Stein factorization ϕ : X → Y ∼=
(P1)n−1. Then ϕ is given by n− 1 morphisms with connected fibers X → P1,
and hence g = ϕ. Therefore, Proposition 7.3 applies. Using 3.1, we conclude
that f makes X a double cover of (P1)n branched along a reduced divisor
of type (2, . . . , 2). This completes the proof of the theorem. �

8. Finite morphisms onto Q-Fano cyclic covers of
P1 × · · · × P1

In this section we prove Theorem 1.3.

Lemma 8.1. Let f : Z → Y be a finite surjective morphism of normal pro-
jective Q-Gorenstein varieties. If −KZ is big, then so is −KY .

Proof. Denote by R the ramification divisor of f . The Hurwitz formula
KZ ∼ f∗KY +R shows that −f∗KY ∼ −KZ +R is big. Let A be an ample
Cartier divisor on Y , E an effective divisor on X, and m a positive in-
teger such that m(−f∗KY ) ∼Q f∗A+ E. Then −KY ∼Q

1
mA+ 1

m deg(f)f∗E
by the projection formula. Hence −KY is big, proving the lemma. �

Lemma 8.2. Let Z be a Q-Fano variety of dimension n � 2, Y a dou-
ble cover of (P1)n branched along a reduced divisor B =

∑
j∈J Bj of type
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(2, . . . , 2), and f : Z → Y a finite morphism. Consider a projection π1 : Y →
P1, and set f1 = π1 ◦ f : Z → P1. Suppose that Bj is not contracted by π1
for each j ∈ J . Then f1 has connected fibers.

Proof. Denote by π : Y → (P1)n the natural morphism, and let π1 : Y →
(P1)n−1 such that π = (π1, π

1). The Stein factorization g1 : Z → P1 of f1 =
π1 ◦ f fits into a commutative diagram

Z

f

����

g1
��

Y1
β1

��

α1

��

Y

π1

��

π1

��

π
�� (P1)n ��

��

(P1)n−1

P1 P1
h1

�� P1 P1.

where (α1, π1 ◦ β1) : Y1 → (P1)n is the double cover of (P1)n branched along
(h1, Id(P1)n−1)∗B. The variety Y1 is Cohen Macaulay by 3.1. All fibers of
π1 are generically reduced since π1 does not contract any irreducible com-
ponent of B. This implies that all fibers of α1 are generically reduced as
well, and hence dim

(
Sing(Y1)

)
� n− 2. We conclude that Y1 is normal. A

straightforward computation gives

OY1
(−KY1

) ∼= α∗
1OP1

(
2− deg(h1)

)⊗ (π1 ◦ β1)∗
(
OP1(1)� · · ·� OP1(1)

)
.

By Lemma 8.1, −KY1
is big. Hence, we must have deg(h1) = 1, proving the

lemma. �

Proposition 8.3. Let S be a Q-Fano surface with Gorenstein singularities
satisfying K2

S � 3, T a double cover of P1 × P1 branched along a reduced di-
visor B =

∑
j∈J Bj of type (2, 2), and f : S → T a finite morphism. Suppose

that Bj is ample for each j ∈ J . Then deg(f) = 1.

Proof. Denote by π : T → P1 × P1 the natural morphism, and denote by
π1 : T → P1 and π2 : T → P1 the projections. Set gi = πi ◦ f : S → P1, and
g = (g1, g2) : S → P1 × P1 so that g = π ◦ f . By Lemma 8.2 above, gi has
connected fibers. By Lemma 7.1, we have deg(g)K2

S � 8. Since deg(g) =
2 deg(f), we obtain

deg(f) � 4

K2
S

� 4

3
.

Thus deg(f) = 1, proving the proposition. �
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The following example shows that the statement of Proposition 8.3 be-
comes wrong if one relaxes the assumption on B.

Example 8.4. Let C1 and C2 be smooth rational curves, and let c ∈ C1.
Denote by p1 the projection C1 × C2 → C1, and set B1 = p−1

1 (c). Let B2

be a general member in the linear system |OC1
(1)� OC2

(2)|. Set B = B1 +
B2, and let π : S → C1 × C2 be the 2-fold cyclic cover branched along B.
Then S is a normal surface of degree K2

S = 4 with 2 singular points of type
A1. Let c′ ∈ C1 with c′ �= c, and let h : C̄1 → C1 be the 2-fold cyclic cover
branched along c+ c′. Let S̄ be the normalization of the fiber product S ×C1

C̄1 with natural morphisms α : S̄ → C̄1 and β : S̄ → S. A straightforward
computation shows that β is étale at each point in S̄ \ ((π ◦ β)−1(B1 ∩B2) ∪
(h ◦ α)−1(c′)

)
. Moreover, β ramifies along (h ◦ α)−1(c′) with multiplicity 2.

Therefore, KS̄ ∼ β∗KS + (h ◦ α)−1(c′). We conclude that S̄ is Q-Fano with
Gorenstein singularities. Notice that π1

(
S \ Sing(S)) ∼= π1

(
P1 \ {c}) = {1}

by Lemma 3.13. Moreover, by Proposition 7.2, we have S̄ ∼= P1 × P1.

In the setup of Proposition 8.3, suppose moreover that S and T are
smooth. Then we show that the conclusion still holds when K2

S � 2.

Proposition 8.5. Let S and T be smooth Del Pezzo surfaces, and let
f : S → T be a finite morphism. Suppose that K2

T = 4. Then deg(f) = 1.

Proof. By [9, Theorem 8.6.2], T is isomorphic to the complete intersection
given by equations

x20 + x21 + x22 + x23 + x24 = a0x
2
0 + a1x

2
1 + a2x

2
2 + a3x

2
3 + a4x

2
4 = 0

in P4, where ai �= aj for i �= j. We may assume without loss of generality that
a4 �= 0. Thus, the projection from (0, 0, 0, 0, 1) induces a finite morphism
π : T → Q of degree 2 onto the smooth quadric surface Q ∼= P1 × P1 given
by equation

(a0 − a4)x
2
0 + (a1 − a4)x

2
1 + (a2 − a4)x

2
2 + (a3 − a4)x

2
3 = 0.

Moreover, π is branched along a smooth curve of type (2, 2). Denote by
πi : Y → P1 with i ∈ {1, 2} the natural projections, and set gi = πi ◦ f : S →
P1. By Lemma 8.2, gi has connected fibers. Let F be a component of a
reducible fiber of π, and set E = f−1(F ). Then E and F are exceptional
curves on S and T respectively, and f∗F = E. Taking squares gives deg(f) =
1, proving the proposition. �
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Proof of Theorem 1.3. Let Z be a Q-Fano variety of dimension n � 3 with
Gorenstein canonical singularities, Y a double cover of (P1)n branched along
a reduced divisor B =

∑
j∈J Bj of type (2, . . . , 2), and f : Z → Y a finite

morphism. Suppose that Bj is ample for each j ∈ J .
Let p1 : (P

1)n → P1 be any projection, and let p1 : (P1)n → (P1)n−1 be
the projection onto the product of the remaining factors. Denote by π : Y →
(P1)n the natural morphism, and set π1 = p1 ◦ π and π1 = p1 ◦ π so that
π = (π1, π

1). Let Y1 be a general fiber of π1. Then π|Y1
makes Y1 a double

cover of π(Y1) ∼= (P1)n−1 branched along the reduced divisor B|π(Y1).
We show that there is a dense open subset U ⊂ P1 with the following

property. For any w ∈ U , denote by Yw the fiber of π1 over w. Then any
irreducible component of B|π(Yw) is ample. To prove the claim, suppose to
the contrary that there is a dense subset W ⊂ P1 such that, for any w ∈W ,
some irreducible component of B|π(Yw) is not ample. Notice that an effective
divisor on π(Yw) is not ample if and only if it is the pullback of some effective
divisor under a projection π(Yw) ∼= (P1)n−1 → (P1)n−2. After replacing W
with a subset of it if necessary, we may assume that there exists a projection
q1 : (P1)n−1 → (P1)n−2 such that, for any w ∈W , B|π(Yw) contains in its sup-
port the pullback of a prime divisor under q1 ◦ p1|π(Yw) : π(Yw)→ (P1)n−2.
This implies that B contains in its support the pullback of some effective di-
visor under (p1, q ◦ p1) : (P1)n → P1 × (P1)n−2. But this contradicts the fact
that Bj is ample for each j ∈ J , proving our claim. Thus, we may assume
that any irreducible component of B|π1(Y1) is ample.

By Lemma 8.2, Z1 = f−1(Y1) is connected. Moreover, Z1 has Gorenstein
canonical singularities, and the restriction of f to Z1 induces a finite mor-
phism f1 : Z1 → Y1 with deg(f1) = deg(f). Therefore, to prove the propo-
sition, it suffices to consider the case when n = 3. By Lemma 5.3, we may
assume without loss of generality that K2

Y1
� 3. Then the result follows from

Proposition 8.3. �

Corollary 8.6. Let Z be a Fano manifold of dimension � 2, Y a smooth
double cover of P1 × · · · × P1 branched along a reduced divisor B of type
(2, . . . , 2), and f : Z → Y a finite morphism. Then deg(f) = 1.

Proof. If dimY = 2, then the result follows from Proposition 8.5. Suppose
from now on that dimY � 3. Since Y is smooth, Supp(B) is smooth by 3.1,
and hence irreducible. Thus Theorem 1.3 applies. �
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9. Proof of Theorem 1.1

We are now in position to prove our main result. Notice that Theorem 1.1
is an immediate consequence of Lemma 4.5 and Theorem 9.1 below.

Theorem 9.1. Let (X,B) be a Q-Fano pair with locally factorial canoni-
cal singularities. Suppose that Nef(X) = Psef(X) and ρ(X) = dimX. Then
X ∼= X1 × · · · ×Xm where Xi is a double cover of P1 × · · · × P1 branched
along a reduced divisor of type (2, . . . , 2) for each i ∈ {1, . . . ,m}.

Proof. Notice that B ∈ Nef(X). Thus X is a Q-Fano variety with locally
factorial canonical singularities (see [19, Corollary 2.35]). To prove Theo-
rem 9.1, we argue by induction on n = dimX. By Lemma 4.9, the Mori
cone NE(X) is simplicial, and dimNE(X) = n by assumption.

If n = 2, then the result follows from Proposition 6.1.
Suppose that n � 3.
Let V be a face of NE(X), and denote by ϕ : X → Y the corresponding

contraction. Then ϕ is equidimensional and dimY = n− dimV by Lemma
4.9. From Lemma 4.2, we infer that Nef(Y ) = Psef(Y ). By Lemma 4.5, there
exists an effective Q-divisor BY on Y such that (Y,BY ) is Q-Fano with
log terminal singularities. Finally, by Corollary 4.8, Y is locally factorial.
Arguing as above, we conclude that Y is a Q-Fano variety with canonical
singularities. Hence, Y satisfies the conclusion of Theorem 1.1 provided that
dimY < dimX, or equivalently {0} � V � NE(X) by Lemma 4.4.

Suppose first that there is a face {0} � V � NE(X) such that Y is a dou-
ble cover of (P1)m branched along a divisor C of type (2, . . . , 2) with dimY =
m � 2. Notice that C is reduced by 3.1 and irreducible by Lemma 3.7.
If m = 2, then Y is a Del Pezzo surface of degree 4 satisfying Nef(Y ) =
Psef(Y ). But this contradicts Proposition 6.1, and therefore, we must have
dimY = m � 3. Let W be the face of NE(X) such that V +W = NE(X)
and dimW = n− dimV = m. Denote by ψ : X → T the contraction of W ,
and consider the finite morphism f = (ϕ, ψ) : X → Y × T . Let Z be a gen-
eral fiber of ψ. Then Z is a Q-Fano variety with Gorenstein canonical singu-
larities, and the restriction of f to Z induces a finite morphism f|Z : Z → Y
with deg(f|Z) = deg(f). By Theorem 1.3, we conclude that deg(f|Z) = 1.
The theorem follows easily in this case.

Suppose now that, for each face {0} � V � NE(X), we have Y ∼= (P1)m

for some m � 1. Then apply Proposition 1.4 to conclude that, either X ∼=
(P1)n, or X is a double cover of (P1)n branched along a reduced divisor of
type (2, . . . , 2). This completes the proof of the theorem. �
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The following example shows that Theorem 1.1 does not hold for Q-Fano
varieties with Gorenstein canonical singularities.

Example 9.2. Fix integers m � 2 and n � 2, and let ζ be a primitive mth

root of unity. The group G = 〈ζ〉 acts on P1 × · · · × P1 by

ζ · (x1, y1)× · · · × (xn, yn) = (x1, ζy1)× · · · × (xn, ζyn).

Set X = (P1 × · · · × P1)/G. Then X has Q-factorial log terminal singular-
ities and Picard number ρ(X) � dimX = n by 4, and satisfies NE(X) =
Psef(X). Notice that X admits a finite morphism onto (P1/G)× · · · ×
(P1/G) ∼= P1 × · · · × P1. Thus ρ(X) � dimX, and hence ρ(X) = dimX. The
variety X has isolated singularities and the natural morphism P1 × · · · ×
P1 → X is étale over X \ Sing(X). This implies that X is a Q-Fano vari-
ety. We claim that X is not locally factorial. Notice that the open subset
U = {x1 · · ·xn �= 0} ∼= An ⊂ P1 × · · · × P1 is G-stable. Set W = U/G with
natural morphism π : U →W . We claim that the ideal sheaf of the reduced
hypersurface H = π({y1 = 0}) is not locally free at π

(
(0, . . . , 0)

)
. Suppose

to the contrary that IH is invertible at (0, . . . , 0). The functions y1y
m−1
2 and

ym1 on U are G-invariant, and hence there exist functions g1 and g2 on W
such that y1y

m−1
2 = g1 ◦ π and ym1 = g2 ◦ π. Then IH,(0,...,0) = g1OW,(0,...,0)

and g2 ∈ I m
H,(0,...,0) = gm1 OW,(0,...,0) since y1y

m−1
2 = g1 ◦ π and ym1 = g2 ◦ π

vanish at order 1 and m respectively along {y1 = 0}. This in turn implies
that ym1 = g2 ◦ π vanishes at order � m(m− 1) along {y2 = 0}, yielding a
contradiction. This proves that X is not locally factorial. Finallly, by [26],
X is Gorenstein if and only if n− 2k ≡ 0 [m] for any 0 � k � n, e.g. n is
even and m = 2.

Suppose that n � 3. Then X does not satisfy the conclusion of Theo-
rem 1.1. To prove the claim, we argue by contradiction, and assume that
X ∼= X1 × · · · ×Xs where Xi is a double cover of P1 × · · · × P1 branched
along a reduced divisor of type (2, . . . , 2) for each i ∈ {1, . . . , s}. Since X has
isolated singularities, we must have s = 1. By Lemma 3.12, we conclude that
π1

(
X\Sing(X)

)
={1}, yielding a contradiction since π1

(
X\Sing(X)

) ∼= G.

The following proposition is a first step towards the classification of Fano
manifolds X with Nef(X) = Psef(X) and arbitrary Picard number.

Proposition 9.3. Let (X,B) be a Q-Fano pair with locally factorial canon-
ical singularities satisfying Nef(X) = Psef(X). Suppose that there is a con-
traction ϕ : X → Y with dimY = ρ(Y ) and Y �∼= P1 × · · · × P1. Then X ∼=
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Y1 × Y 1 where Y1 and Y 1 are positive dimensional Q-Fano varieties with lo-
cally factorial canonical singularities, Nef(Y1)=Psef(Y1), and ρ(Y1)=dimY1.

Proof. Notice that B ∈ Nef(X). Therefore, X is a Q-Fano variety with lo-
cally factorial canonical singularities. By Lemma 4.5, Nef(Y ) = Psef(Y ), and
there exists an effective Q-divisor BY on Y such that (Y,BY ) is Q-Fano with
log terminal singularities. From Corollary 4.8, we deduce that Y is locally
factorial. Thus Theorem 9.1 applies to (Y,BY ). We have Y ∼= Y1 × · · · × Ym
where Yi is a double cover of P1 × · · · × P1 branched along a reduced di-
visor Bi of type (2, . . . , 2) for all 1 � i � m. Since Y �∼= P1 × · · · × P1, we
may assume without loss of generality that dimY1 � 2. From Corollary 4.8
applied to X → Y1, we deduce that Y1 is locally factorial. Therefore, by
Proposition 6.1, we must have dimY1 � 3. Notice that B1 is irreducible by
Lemma 3.7.

By Lemma 4.12 applied to ϕ1 : X → Y1, there exists a contraction ϕ1 :
X → Y 1 such that the induced morphism ϕ = (ϕ1, ϕ

1) : X → Y1 × Y 1 is sur-
jective and finite. Let Z be a general fiber of ϕ1. Then Z is a Q-Fano variety
with Gorenstein canonical singularities. Moreover, the restriction of ϕ1 to
Z induces a finite morphism f : Z → Y1 with deg(f) = deg(ϕ). From Theo-
rem 1.3, we conclude that deg(ϕ) = 1, completing the proof of the proposi-
tion. �

Remark 9.4. In the setup of Proposition 9.3, Y1 satisfies the conclusion of
Theorem 1.1.

10. Finite morphisms between smooth Del Pezzo surfaces

In order to prove Theorem 1.1, we were led to study finite morphisms be-
tween Q-Fano varieties. In this section we address finite morphisms between
smooth Del Pezzo surfaces. We believe that these results are interesting on
their own and that they will be useful when considering Fano manifolds with
Nef(X) = Psef(X) and arbitrary Picard number.

Beauville classified smooth Del Pezzo surfaces which admit an endomor-
phism of degree > 1 in [4]. We will consider a finite morphism f : S → T
of degree > 1 between smooth Del Pezzo surfaces S and T with K2

S �= K2
T ,

or equivalently K2
S < K2

T . We will show that we must have K2
T � 8 (see

Theorem 1.6). A smooth Del Pezzo surface of degree 8 (respectively, 9) is
isomorphic to P1 × P1 or to P2 blown up at one point (respectively, P2)).
Notice that any projective surface admits a finite morphism of degree > 1
onto P2 by Noether Normalization Lemma. The classification of smooth Del
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Pezzo surfaces which admit a finite morphism of degre > 1 onto P1 × P1

follows easily from Proposition 10.4.

10.1 (Smooth Del Pezzo surfaces). It is well known that a smooth Del
Pezzo surface is either P1 × P1 or the blow up of P2 at 1 � r � 8 points in
general position, namely, no three points on a line, no six points on a conic,
and if r = 8, not all of them on a cubic with one of the point being a singular
point.

We will make use of the following elementary observation.

Lemma 10.2. Let S �∼= P1 × P1 be a smooth Del Pezzo surface, and let
f1 : S → P1 be a conic bundle structure on S. Set r = 9−K2

S. Then there
are r points in general position p1, . . . , pr in P2 such that the following holds.
The surface S is the blow up of P2 in p1, . . . , pr and f1 is induced by the pencil
of lines in P2 passing through p1.

Proof. Notice that ρ(S) = 10−K2
S = r + 1. Let μ : S → S1 be a minimal

model of f1 : S → P1, and denote the exceptional prime curves of μ by
E1, . . . , Er−1. Then S1

∼= Fm for some integer m � 0, and f1 is induced by
the natural morphism Fm → P1. Let σ1 ⊂ S1 be a minimal section, and let
σ be the strict transform of σ1 in S. Then σ2 � σ2

1 = −m, and hence m � 1
since the only curves with negative square on a smooth Del Pezzo surface
are the exceptional ones.

Suppose first that S1
∼= F1. Notice that σ1 ∩ μ(Ei) = ∅ for all 1 � i �

r − 1. Consider the blow down ν : S1 → P2 of σ1, and set μ1 = ν ◦ μ : S → P2.
Then S is obtained by blowing up μ1(E1), . . . , μ1(Er−1), and ν(σ1) in P2,
and f1 is induced by the pencil of lines in P2 passing through ν(σ1).

Suppose now that S1
∼= P1 × P1. Since S �∼= P1 × P1, we must have r � 2.

Let S0 be the blow up of S1 at μ(E1), and let F1, F2 and F3 be the exceptional
curves on S0. Up to renumbering the Fi’s if necessary, we may assume that
F1 is contracted by the natural morphism S0 → S1. Let ν : S0 → P2 be the
blow down of F2 and F3. Denote by μ1 : S → P2 the natural morphism. Then
S is obtained by blowing up μ1(E2), . . . , μ1(Er−1), ν(F2), and ν(F3) in P2.
Moreover, up to renumbering the Fi’s if necessary, f1 is induced by the pencil
of lines in P2 passing through ν(F2). �

Lemma 10.3. Let S be a smooth Del Pezzo surface of degree K2
S = 2, and

let f1 : S → P1 and f2 : S → P1 be two conic bundle structures on S. Suppose
that f = (f1, f2) : S → P1 × P1 is finite. Then there exist 7 points p1, . . . , p7
in general position in P2 such that S is the blow up of P2 at p1, . . . , p7,
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and such that f1 is induced by the pencil of lines in P2 passing through p1.
Moreover, one of the following holds.

• f2 is induced by the pencil of cubics passing through p2, . . . , p7 with a
point of multiplicity 2 at p7, and deg(f) = 3.

• f2 is induced by the pencil of quartics passing through p1, . . . , p7 with
a point of multiplicity 2 at p5, p6, and p7, and deg(f) = 3.

• f2 is induced by the pencil of quintics passing through p1, . . . , p7 with
a point of multiplicity 2 at 6 out of p1, . . . , p7, and either deg(f) = 4
or deg(f) = 3 according to whether or not p1 is a multiple point.

Conversely, given S, f1, and f2 as above, f = (f1, f2) is a finite morphism.

Proof. By Lemma 10.2, there exist 7 points p1, . . . , p7 in general position in
P2 such that S is the blow up of P2 at p1, . . . , p7, and such that f1 is induced
by the pencil of lines in P2 passing through p1. The reducible fibers of f1
are the reducible curves �i ∪ Fi for i = 2, . . . , 7, where �i denotes the strict
transform in S of the line connecting p1 and pi, and F1, . . . , F7 denote the
exceptional curves in S over the pi’s. By [9, 8.7.1, p. 454], up to renumbering
the pi’s if necessary, one of the following holds.

1) f2 is induced by the pencil of lines passing through p2.

2) f2 is induced by the pencil of conics passing through 4 out of p1, . . . , p5.

3) f2 is induced by the pencil of cubics passing through p1, . . . , p6 with a
point of multiplicity 2 at p1 or p2.

4) f2 is induced by the pencil of cubics passing through p2, . . . , p7 with a
point of multiplicity 2 at p7.

5) f2 is induced by the pencil of quartics passing through p1, . . . , p7 with
a point of multiplicity 2 at p1, p2, and p3.

6) f2 is induced by the pencil of quartics passing through p1, . . . , p7 with
a point of multiplicity 2 at p5, p6, and p7.

7) f2 is induced by the pencil of quintics passing through p1, . . . , p7 with
a point of multiplicity 2 at 6 out of p1, . . . , p7.

In cases (1), (3), and (5), f1 and f2 contract �2. This contradicts the fact that
f is finite. In case (2), f1 and f2 contract F6, yielding again a contradiction.
Therefore, f2 satisfies one of the conditions in the statement of the lemma.
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Conversely, let S be the blow-up of P2 in 7 points p1, . . . , p7 in P2 in
general position. Let f1 be the conic bundle structure on S induced by
the pencil of lines in P2 passing through p1, and let f2 be a conic bun-
dle structure on S satisfying any of the conditions in the statement of the
lemma. Set f = (f1, f2) : S → P1 × P1. To prove that f is finite, we have to
check that there is no curve on S contracted by both f1 and f2. Denote by
C(m,mi1pi1 , . . . ,mispis) the strict transform in S of an integral plane curve
of degree m passing through pi1 , . . . , pis with multiplicities mi1 , . . . ,mis re-
spectively, where {i1, . . . , is} ⊂ {1, . . . , 7}.

Suppose first that we are in case (4) in the statement of Lemma 10.3.
Then the reducible fibers of f2 are the curves C(3, p1, . . . , p6, 2p7) ∪ F1 and
C(2, pi, pj , pk, pl, p7) ∪ C(1, pm, p7) where {i, j, k, l,m} = {2, 3, 4, 5, 6}. It fol-
lows that f is finite in this case.

Suppose now that we are in case (6) in the statement of Lemma 10.3.
Then the reducible fibers of f2 are the curves C(3, p1, . . . , p4, 2pi, pj , pk) ∪
C(1, pj , pk) where {i, j, k} = {5, 6, 7}, together with the curves C(2, pi, pj ,
p5, p6, p7) ∪ C(2, pk, pl, p5, p6, p7) where {i, j, k, l} = {1, 2, 3, 4}. We conclude
again that f is finite.

Finally, suppose that we are in case (7) in the statement of Lemma 10.3.
Namely, f2 corresponds to the pencil of quintics passing through p1, . . . , p7
with a point of multiplicity 2 at pi1 , . . . , pi6 where {i1, . . . , i6} ⊂ {1, . . . , 7}.
Then the reducible fibers of f2 are the curves C(3, 2pj1 , pj2 , . . . , pj6 , p7) ∪
C(2, pj2 , . . . , pj6 , p7) where {j1, . . . , j6} = {i1, . . . , i6}. We infer that f is fi-
nite in this case too, proving the lemma. �

Proposition 10.4. Let S be a smooth Del Pezzo surface. Then there exists
a finite morphism S → P1 × P1 if and only if K2

S ∈ {1, 2, 4}, or K2
S = 8 and

S ∼= P1 × P1.

Proof. Suppose first that there exists a finite morphism f : S → P1 × P1.
Denote by f1 : S → P1 and f2 : S → P1 the natural projections. By replacing
fi with its Stein factorization, we may assume that it has connected fibers.
The result then follows from Proposition 7.2.

Conversely, let S be a smooth Del Pezzo surface with K2
S ∈ {1, 2, 4}.

If K2
S = 4, then S is a double cover of P1 × P1 (see proof of Proposi-

tion 8.5).
Suppose that K2

S � 2. By Lemma 10.3, it suffices to consider the case
when K2

S = 1. Recall that S is obtained by blowing up 8 points in general
position p1, . . . , p8 in P2. Denote by F1, . . . , F8 the exceptional curves in
S over the pi’s, and by C(m,mi1pi1 , . . . ,mispis) the strict transform in S
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of an integral plane curve of degree m passing through pi1 , . . . , pis with
multiplicities mi1 , . . . ,mis respectively, where {i1, . . . , is} ⊂ {1, . . . , 8}.

Let f1 be the conic bundle structure on S induced by the pencil of lines
in P2 passing through p1, and let f2 be the conic bundle structure on S
induced by the pencil of plane quartics through p2, . . . , p8 with multiplicity
2 at p6, p7 and p8. Set f = (f1, f2) : S → P1 × P1. To show that f is finite, we
have to check that there is no curve on S contracted by both f1 and f2. The
reducible fibers of f1 are the curves C(1, p1, pi) ∪ Fi where i ∈ {2, . . . , r}. The
reducible fibers of π2 are the curves C(3, p2, . . . , p5, 2pi, pj , pk) ∪ C(1, pj , pk)
where {i, j, k} = {6, 7, 8}, together with the curves C(2, pi, pj , p6, p7, p8) ∪
C(2, pk, pl, p6, p7, p8) where {i, j, k, l} = {2, 3, 4, 5}, and C(4, p1, . . . , p5, 2p6,
2p7, 2p8) ∪ F1. We conclude that f is finite, completing the proof of the
proposition. �

10.5. Let S and T be smooth Del Pezzo surfaces, and let f : S → T be
a finite morphism. Let F be an exceptional curve on T , and consider the
blow down ν : T → N of F . Let μ : S →M be the Stein factorization of the
composite map S → T → N , and let g : M → N be the induced morphism.
Because of the genus formula C2 + C ·KT = 2pa(C)− 2, the only curves
with negative square on T are the exceptional ones. By the Hodge index
theorem, we conclude that f−1(F ) is the (disjoint) union of exceptional
curves. Thus M and N are smooth Del Pezzo surfaces, and g is a finite
morphism with deg(g) = deg(f).

We now classify endomorphisms of smooth Del Pezzo surfaces of de-
gree 7.

Lemma 10.6. Let S be the Del Pezzo surface given by blowing up P1 × P1

at p ∈ P1 × P1, and let f : S → S be an endomorphism. Then there exist a
positive integer m and a choice of coordinates such that p = (0, 1)× (0, 1),
and either f is given by (x1, x2)× (y1, y2) �→ (xm1 , xm2 )× (ym1 , ym2 ), or f is
given by (x1, x2)× (y1, y2) �→ (ym1 , ym2 )× (xm1 , xm2 ).

Proof. Denote by ν : S → P1 × P1 the natural morphism, with exceptional
locus F . By 10.5 and Proposition 10.4, there is a commutative diagram

S
f ��

μ
��

S

ν
��

P1 × P1
g

�� P1 × P1
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where g is a finite morphism. There exist finite morphisms g1 : P
1 → P1

and g2 : P
1 → P1 such that g is given by q = (q1, q2) �→

(
g1(q1), g2(q2)

)
, or

q = (q1, q2) �→
(
g2(q2), g1(q1)

)
.

Recall that there are 3 exceptional curves F , F1 and F2 on S. Moreover,
F1 ∩ F2 = ∅ and F · F1 = F · F2 = 1. This implies that f∗F = δF for some
positive integer δ. In particular, we have g−1(p) = {p}. Therefore, there exist
positive integers l and m and a choice of coordinates such that p = (0, 1)×
(0, 1), and such that g1 and g2 are given by (x1, x2) �→ (xl1, x

l
2) and (y1, y2) �→

(ym1 , ym2 ) respectively. Thus g−1Ip · OP1×P1,p =
(
(x1

x2
)l, (y1

y2
)m

)
OP1×P1,p. But

(g ◦ μ)−1Ip · OS
∼= OS(−δF ) is a line bundle on S. A straightforward com-

putation then shows that we must have l = m. �
We are now ready to prove the main result of this section.

Proof of Theorem 1.6. Let S and T be smooth Del Pezzo surfaces withK2
S <

K2
T , and let f : S → T be a finite morphism. To prove Theorem 1.6, we argue

by contradiction, and assume that K2
T � 7.

Step 1. Suppose first that K2
T = 7. Then T is the blow up of P1 × P1 at

some point p = (p1, p2) ∈ P1 × P1. Denote by ν : S → P1 × P1 the natural
morphism, with exceptional locus F . By 10.5, there is a commutative dia-
gram

S
f ��

μ

��

T

ν
��

M g
�� P1 × P1

where M is a smooth Del Pezzo surface with K2
M > K2

S , and g is a finite
morphism with deg(g) = deg(f). Denote by gi : M → P1 with i ∈ {1, 2} the
natural projections, and denote by hi : M → P1 their Stein factorizations.
There exist endomorphisms ui : P

1 → P1 such that gi = ui ◦ hi. Set u =
(u1, u2) : P

1 × P1 → P1 × P1 and h = (h1, h2) : M → P1 × P1 so that g = h ◦
u.

We show that

(10.1) #u−1
1 (p1) = #u−1

2 (p2) = # g−1(p) = 1

Suppose that #u−1
1 (p1)<# g−1(p). Notice that g−1(p) ⊂ g−1

1 (p1), and hence
h1(g

−1(p)) ⊂ h1(g
−1
1 (p1)) = u−1

1 (p1). Thus, there exist m1 �= m2 on M with
h1(m1) = h1(m2) (and g(m1) = g(m2) = p). The fiber h−1

1 (h1(m1)) is either
a smooth connected curve with self intersection zero or the union of two ex-
ceptional curves on M . Hence, μ−1(h−1

1 (h1(m1))) contains a smooth rational
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curve with self intersection � −2, yielding a contradiction. This proves that
#u−1

1 (p1) � # g−1(p). Similarly, we have #u−1
2 (p2) � # g−1(p), and thus

# g−1(p) � #u−1(p) = #u−1
1 (p1)#u−1

2 (p2) �
(
# g−1(p)

)2
.

This implies that #u−1
1 (p1) = #u−1

2 (p2) = # g−1(p) = 1, proving (10.1).
Set q = g−1(p).

By (10.1), we must have K2
M = K2

S + 1, and hence 2 � K2
M = K2

S +
1 < K2

T + 1 = 8. Thus K2
M ∈ {2, 4} by Proposition 10.4. This implies that

deg(h) � 2.
Since #u−1

1 (p1) = #u−1
2 (p2) = 1, there exist positive integers l and m

and a choice of coordinates such that p1 = (0, 1) and p2 = (0, 1), and such
that u1 and u2 are given by (x1, x2) �→ (xl1, x

l
2) and (y1, y2) �→ (ym1 , ym2 ) re-

spectively. Denote the exceptional prime curve of μ by E. We have f∗F = δE
for some positive integer δ. Taking squares gives deg(f) = δ2. Since g =
h ◦ u, we obtain

(10.2) δ2 = deg(f) = deg(g) = deg(h)lm.

Notice that the multiplicity of x1 ◦ h1 (respectively, y1 ◦ h2) at q is � 2. Since
(g ◦ μ)−1Ip · OS

∼= OS(−δF ), a straightforward computation shows that

(10.3) δ ∈ {l, 2l} ∩ {m, 2m}.

We may assume without loss of generality that l � m. From (10.2) and
(10.3), we obtain that either δ = m = 2l and deg(h) = 2, or δ

2 = m = l and
deg(h) = 4.

Suppose first that K2
M = 4. By Proposition 7.2, we must have deg(h) =

2, and OM (−KM )∼=h∗
(
OP1(1)� OP1(1)

)
. Therefore, δ = m = 2l. A straight-

forward computation gives OS(−mKS)∼=f∗(ν∗(OP1(2)�OP1(1)
)⊗OT (−F )

)
,

yielding a contradiction since ν∗
(
OP1(2)� OP1(1)

)⊗ OT (−F ) is not an am-
ple line bundle.

Suppose now that K2
M = 2. By Lemma 10.3, we must have deg(h) ∈

{3, 4}. Thus, deg(h) = 4 and δ
2 = m = l. Moreover, OM (−2KM ) ∼=

h∗
(
OP1(1)� OP1(1)

)
. A straightforward computation gives OS(−2mKS) ∼=

f∗
(
ν∗

(
OP1(1)� OP1(1)

)⊗ OT (−F )
)
. Again, this yields a contradiction since

ν∗
(
OP1(1)� OP1(1)

)⊗ OT (−F ) is not an ample line bundle.

Step 2. Suppose that K2
T � 6.

LetN be the Del Pezzo surface withK2
N = 7 given by blowing up P1 × P1

at (0, 0) ∈ P1 × P1, and let ν : T → N be any birational morphism. Denote
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the exceptional prime curves of ν by F1, . . . , Fk, and set pi = ν1(Fi). By 10.5,
there is a commutative diagram

S
f ��

μ

��

T

ν
��

M g
�� N

where M is a smooth Del Pezzo surface with K2
M > K2

S , and g is a finite
morphism with deg(g) = deg(f). By Step 1, we must have M ∼= N . Let R
be the ramification divisor of g. By Lemma 10.6, g(R) =

∑4
i=0Ri where

R0 is the exceptional curve of ε : N → P1 × P1, R1 and R2 are the strict
transforms in N of the curves {0} × P1 and P1 × {0} respectively, and R3

and R4 are the strict transforms in N of the curves {∞} × P1 and P1 × {∞}
for some point ∞ �= 0 in P1. Moreover, we have R = g−1

(
g(R)

) ∼= g(R).
Fix i ∈ {1, . . . , k}. We claim that pi ∈

(
N \ Supp(R0 +R1 +R2)

) ∪(
R3 ∩R4). Notice that R0, R1, R2 are exceptional curves on N , and hence
pi ∈ N \ Supp(R0 +R1 +R2). Suppose that pi ∈ R3 \ Supp(R2 +R4) and
let qi ∈ g−1(pi). Then there is a choice of local coordinates at qi and pi such
that qi = (0, 0) and g is given by (x, y) �→ (xm, y) for some integer m � 2.
In particular, g−1Ipi

· OM,qi = (xm, y)OM,qi . A straightforward computation
shows that (g ◦ μ)−1Ipi

· OS is not invertible, yielding a contradiction. Thus
pi �∈ R3 \ Supp(R2 +R4). Similarly, pi �∈ R4 \ Supp(R1 +R3). This proves
the claim. Notice that # g−1(pi) = 1 if pi ∈ R3 ∩R4, while # g−1(pi) = m2

if pi ∈ N \ Supp(g(R)). We have

∑
1�i�k

# g−1(pi) = K2
M −K2

S = 7−K2
S � 6.

Observe that # g−1(pi0) � 2 for some 1 � i0 � k since K2
S < K2

T . It follows
from the above discussion that pi0 ∈ N \ Supp(g(R)). We conclude that m =
2. Let C be the strict transform in N of a ruling of P1 × P1 passing through
ε(pi0). Then g−1(C) is the union of 2 disjoint smooth rational curves with
zero self intersection, and μ blows up 4 points on Supp(g−1(C)), yielding a
contradiction. This completes the proof of the theorem. �

Example 10.7. Set M = P1 × P1, N = P2, and consider the double cover
g : M → N induced by the projection P3 ��� P2 from a general point. Let
T � F1 be the blow up of N a general point p, S the blow up of M along
g−1(p), and f : S → T the induced (finite) morphism. If we denote the excep-
tional curve of ν : T → N by F , then an easy computation gives OS(−KS) �
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f∗(ν∗OP2(2)⊗ OS(−F )
)
, and therefore, −KS is ample. We haveK2

S = 6 and
K2

T = 8.
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