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Fundamental domains for free groups

acting on anti-de Sitter 3-space

Jeffrey Danciger, François Guéritaud, and Fanny Kassel

Crooked planes are piecewise linear surfaces that were introduced
by Drumm in the early 1990s to construct fundamental domains
for properly discontinuous actions of free groups on Minkowski
3-space. In a previous paper, we introduced analogues of these
surfaces, called AdS crooked planes, in the 3-dimensional anti-de
Sitter space AdS3; we showed that many properly discontinuous ac-
tions of free groups on AdS3 admit fundamental domains bounded
by AdS crooked planes. Here we study further the question of which
proper actions on AdS3 admit crooked fundamental domains, and
show that some do not, in contrast to the Minkowski setting.

1. Introduction

This paper concerns the construction of fundamental domains for properly
discontinuous group actions, by isometries, on a Lorentzian space, specifi-
cally the 3-dimensional anti-de Sitter space AdS3. In the setting of group
actions on Riemannian spaces such as the Euclidean or the real hyperbolic
space, there are standard procedures for constructing fundamental domains,
e.g. Dirichlet polyhedra. However, such constructions make crucial use of the
Riemannian metric, and typically cannot be made to work in the Lorentzian
setting (nor in other nonmetric settings). Hence the construction of funda-
mental domains in Lorentzian geometry is often more of an ad hoc endeavor.

In the setting of 3-dimensional flat Lorentzian geometry, or Minkowski
geometry, Drumm [D] introduced piecewise linear surfaces called crooked
planes and used them to build polyhedral fundamental domains for Margulis
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736 J. Danciger, F. Guéritaud, and F. Kassel

spacetimes. These are the quotients of the Minkowski 3-space R2,1 (namely
R3 endowed with a translation-invariant metric of signature (2, 1)) by free
groups acting properly discontinuously by affine isometries. The first such
spacetimes were discovered by Margulis [Ma1, Ma2] in 1983, as counterex-
amples to a possible extension [Mi] of the Auslander Conjecture [A]. Since
then, Margulis spacetimes and their fundamental domains have been the ob-
ject of a rich literature, most prominently by Charette, Drumm, Goldman,
Labourie, and Margulis: see [D, DG1, DG2, ChaG, F, GLM, CDG1, CDG2,
CDG3, ChoG, DGK1]. Recently, we showed in [DGK2, DGK3] that every
Margulis spacetime M comes (in an essentially unique way) from a so-called
infinitesimal strip deformation of a noncompact hyperbolic surface, and that
consequently M admits a fundamental domain bounded by pairwise disjoint
crooked planes. This last result had been conjectured by Drumm and Gold-
man [DG1], and was known as the Crooked Plane Conjecture.

The 3-dimensional anti-de Sitter space AdS3 is a model space for Lorent-
zian geometry of constant negative curvature. There is a close connection
between the theory of complete AdS spacetimes, specifically quotients of
AdS3, and the theory of Margulis spacetimes. In particular, we showed in
[DGK1, DGK3] that any Margulis spacetime is, in a certain sense, a rescaled
limit of collapsing AdS spacetimes. It follows from more recent work [DGK2]
(see Appendix A) that such families of collapsing AdS spacetimes may be
constructed explicitly by deforming a fundamental domain in Minkowski
space, bounded by Drumm’s crooked planes, into fundamental domains in
AdS3. Specifically, the collapsing spacetimes admit collapsing fundamental
domains in AdS3 bounded by piecewise geodesic surfaces, which we call AdS
crooked planes, and the rescaled limit of these fundamental domains is the
fundamental domain for the limiting Margulis spacetime. The construction
actually implies that fundamental domains bounded by AdS crooked planes
exist for a large open set in the moduli space of properly discontinuous
actions of a free group on AdS3. The purpose of the present paper is to
prove the following:

Theorem 1.1. There exist properly discontinuous actions of finitely gen-
erated free groups on AdS3 that do not admit any fundamental domain in
AdS3 bounded by pairwise disjoint AdS crooked planes.

Thus, while the analogy between 3-dimensional Minkowski and anti-de Sitter
geometry is very strong, the analogue of the Crooked Plane Conjecture in
AdS3 is false. The question of which proper actions on AdS3 admit crooked
fundamental domains (Question 5.4) remains open.
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Theorem 1.1 is proved in Section 5. Prior to this, we establish several
useful results about AdS crooked planes:

• Theorems 3.2 and 3.3 give complete disjointness criteria for AdS
crooked planes (see also Theorems B.1 and B.2 in Appendix B). They
should be compared with the disjointness criterion of Drumm–Goldman
[DG2, BCDG] for crooked planes in R2,1.

• Theorem 4.2 gives a necessary and sufficient condition, in terms of 2-
dimensional hyperbolic geometry, for the existence of a fundamental
domain bounded by pairwise disjoint AdS crooked planes.

• Corollary 4.4 is the analogue, in AdS3, of Drumm’s result in R2,1

[D, ChaG] that gluing together a polyhedron R bounded by disjoint
crooked planes yields a proper action (which one could call a Lorentzian
Schottky group) for which R is a fundamental domain.

2. Reminders

We first recall a few basic facts on 3-dimensional anti-de Sitter geometry, as
well as the definition of AdS crooked planes introduced in [DGK2].

2.1. Anti-de Sitter 3-space

The 3-dimensional anti-de Sitter space

AdS3 = PO(2, 2)/O(2, 1)

is a model space for Lorentzian 3-manifolds of constant negative curvature. It
can be realized as the (open) set of negative points in P3(R) with respect to a
quadratic form of signature (2, 2); its isometry group is PO(2, 2). The inter-
section of AdS3 with a suitable affine chart of P3(R) is the region bounded
by a one-sheeted hyperboloid. Let G = PGL2(R) be the group of isome-
tries of the hyperbolic plane H2, with identity component G0 = PSL2(R)
consisting of orientation-preserving isometries. Then AdS3 can be realized
as the group manifold G0 equipped with the biinvariant Lorentzian struc-
ture induced by half the Killing form of g = pgl2(R) = psl2(R); the group of
orientation-preserving isometries of AdS3 then identifies with

(G×G)+ := {(g1, g2) ∈ G×G | g1g2 ∈ G0},
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acting on G0 by right and left multiplication: (g1, g2) · g = g2gg
−1
1 . The

boundary ∂∞AdS3 of AdS3 in P3(R) identifies with the projectivization of
the set of (2× 2)-matrices of rank 1, which itself identifies with P1(R)× P1(R)
by taking the projectivized kernel and the projectivized image. The action
of (G×G)+ on AdS3 induces the natural action of (G×G)+ on

P1(R)× P1(R) � ∂∞H2 × ∂∞H2,

where ∂∞H2 is the boundary at infinity of H2.

2.2. Quotients of AdS3

By [KR], any torsion-free discrete subgroup of (G×G)+ acting properly dis-
continuously on AdS3 is necessarily, up to switching the two factors ofG×G,
of the form

(2.1) Γj,ρ = {(j(γ), ρ(γ)) | γ ∈ Γ} ⊂ G×G

where Γ is a discrete group and j, ρ ∈ Hom(Γ, G) are two representations
with j injective and discrete. Suppose Γ is finitely generated. By [K, GK],
a necessary and sufficient condition for the action of Γj,ρ on AdS3 to be
properly discontinuous is that (up to switching the two factors) j be injective
and discrete and ρ “uniformly shorter” than j, in the sense that there exists
a (j, ρ)-equivariant Lipschitz map H2 → H2 with Lipschitz constant < 1.
When j is convex cocompact or when the group ρ(Γ) does not have a unique
fixed point in ∂∞H2, this property is also equivalent [K], [GK, Th. 1.8] to

(2.2) sup
γ∈Γ, λ(j(γ))>0

λ(ρ(γ))

λ(j(γ))
< 1,

where λ : G → R+ is the translation length function in H2:

(2.3) λ(g) := inf
p∈H2

d(p, g · p).

(We denote by d the hyperbolic metric on H2.) Note that λ(g) is the trans-
lation length of g if g ∈ G is hyperbolic, and 0 otherwise.

If Γ is the fundamental group of a compact surface, and both j and ρ are
injective and discrete, then (2.2) is never satisfied [T]. We are interested here
in the case that Γ is a finitely generated free group and we shall assume this
throughout the remainder of the paper. In this case, there are many pairs
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(j, ρ) satisfying (2.2) with both j and ρ injective and discrete. In [DGK2] we
proved that if (j, ρ) satisfies (2.2) and j and ρ are both convex cocompact,
with j(Γ)\H2 and ρ(Γ)\H2 homeomorphic as marked surfaces, then j is a
strip deformation of ρ, i.e. j(Γ)\H2 is obtained from ρ(Γ)\H2 by adding in
finitely many disjoint hyperbolic strips (regions isometric to a domain of H2

bounded by two disjoint geodesic lines); this realization is essentially unique.
As an application, we showed [DGK2] that in this case the group Γj,ρ admits
a fundamental domain bounded by pairwise disjoint AdS crooked planes.

2.3. AdS crooked planes

Let us recall the definition of AdS crooked planes, introduced in [DGK2]. A
crooked plane in AdS3 � G0 is the union of three pieces:

• a stem, defined to be the union of all causal (i.e. timelike or lightlike)
geodesic lines of a given timelike plane of AdS3 that pass through a
given point, called the center of the AdS crooked plane;

• two wings, defined to be two disjoint open lightlike half-planes of AdS3

whose respective boundaries are the two (lightlike) boundary lines of
the stem.

S(�)

W(v+)

W(v−)

S(�)

W(v+)

W(v−)

Figure 1: The left AdS crooked plane C(�), seen in two different affine charts
of P3(R) ⊃ AdS3. The stem S(�) is a bigon whose closure in P3(R) meets
the boundary of AdS3 in two points, tangentially. On the left, these two
points are at infinity; on the right, the center of the stem is at infinity. Each
wing W(v+) or W(v−) is itself a bigon, bounded by a line contained in the
boundary of AdS3 and a lightlike line of the stem S(�).

An AdS crooked plane centered at the identity element is determined by a
geodesic line � of H2 and a choice of orientation (left or right). We denote by



740 J. Danciger, F. Guéritaud, and F. Kassel

C(�) the left AdS crooked plane centered at e ∈ G0 associated with �, which
is described explicitly as follows (see Figure 1):

• the interior of the stem S(�) of C(�) is the set of elliptic elements h ∈ G0

whose fixed point belongs to �;

• the boundary of the stem S(�) consists of {e} and of all parabolic
elements h ∈ G0 fixing one of the endpoints [v+], [v−] of � in ∂∞H2;

• the wings of C(�) are W(v+) and W(v−), where W(v+) is the set of
hyperbolic elements h ∈ G0 with attracting fixed point [v+], and simi-
larly for v−.

In other words, C(�) is the set of orientation-preserving isometries of H2

(i.e. elements of G0 � AdS3) with a nonrepelling fixed point in �, where �
is the closure of � in H2 ∪ ∂∞H2. A general left AdS crooked plane is a set
of the form g2C(�)g

−1
1 where � is a geodesic line of H2 and g1, g2 ∈ G0. The

image of a left AdS crooked plane under the orientation-reversing isometry
g �→ g−1 of AdS3 is called a right AdS crooked plane. The right AdS crooked
plane centered at e ∈ G0 associated with � will be denoted C∗(�): it is the
inverse of C(�), i.e. the set of orientation-preserving isometries of H2 with
a nonattracting fixed point in �. Note that C∗(�) is obtained from C(�) by
replacing each wing (which is an open lightlike half-plane) with the interior
of the complementary lightlike half-plane.

An AdS crooked plane (unlike a timelike geodesic plane) divides AdS3

into two connected components. Given a transverse orientation of �, we de-
note by H+(�) (resp. H

∗
+(�)) the connected component of AdS3 � C(�) (resp.

AdS3 � C∗(�)) consisting of nontrivial elements g ∈ G0 with a nonrepelling
(resp. nonattracting) fixed point in (H2 ∪ ∂∞H2)� � lying on the positive
side of �. We denote the closures in AdS3 by H+(�) = H+(�) ∪ C(�) and
H∗+(�) = H∗+(�) ∪ C∗(�).

Remark 2.1. For any g ∈ G0 and any geodesic line � of H2,

C(g · �) = g C(�) g−1.

If g takes the transverse orientation of � to the transverse orientation of g · �,
then

H+(g · �) = gH+(�) g
−1.

Remark 2.2. The set ∂∞H+(�) (resp. ∂∞H∗+(�)) of accumulation points in
∂∞AdS3 of H+(�) (resp. H

∗
+(�)) is the projectivization of the set of rank-one



Fundamental domains in anti-de Sitter 3-space 741

matrices whose image (resp. kernel) in R2 projects to a point of P1(R) �
∂∞H2 lying on the positive side of �. For any (g1, g2) ∈ (G×G)+,

∂∞
(
g2H+(�)g

−1
1

)
= ∂∞H+(g2 · �),

∂∞
(
g2H

∗
+(�)g

−1
1

)
= ∂∞H∗+(g1 · �).

We define the stem quadrant SQ(�) ⊂ AdS3 � G0 of the transversely ori-
ented geodesic � to be the set of hyperbolic elements whose axis is orthogonal
to � and that translate towards the positive side of �. It is one of the two
connected components of the complement of the stem S(�) in the timelike
plane containing S(�).

Remarks 2.3. 1) AdS crooked planes were introduced in [DGK2] as
analogues of Drumm’s crooked planes in R2,1; the latter had initially
been defined in [D, DG2]. More precisely, let us view the Minkowski
space R2,1 as the Lie algebra g = psl2(R) of G endowed with half its
Killing form (as in [GM, DGK1, DGK2]), or equivalently as the set of
Killing vector fields on H2 (see [DGK2, § 4.1]). Following [DGK2], the
left crooked plane centered at 0 ∈ g associated with �, denoted C(�), is
by definition the set of Killing fields on H2 with a nonrepelling fixed
point in �. The left crooked planes in R2,1 are the sets of the form
C(�) + v where � is a geodesic of H2 and v ∈ R2,1. The left AdS crooked
plane C(�) ⊂ G0 defined above is just the exponential of C(�) ⊂ g. For
any transverse orientation of �, the AdS stem quadrant SQ(�) ⊂ G0 is
the exponential of the Minkowski stem quadrant SQ(�) ⊂ g, which is
by definition the set of hyperbolic Killing fields whose axis is orthog-
onal to � and that translate towards the positive side of � (this is also
called the cone of allowable translations in [BCDG]).

2) Both R2,1 and the double cover ÂdS3 of AdS3 can be embedded as
dense open sets in the 3-dimensional Einstein universe Ein3. In par-
ticular, one can consider the closures in Ein3 of Minkowski crooked

planes or of lifts to ÂdS3 of AdS crooked planes. By [G], these closures
are crooked surfaces in the sense of Frances [F]. We refer to [CFL] for
a recent construction of examples of fundamental domains bounded
by crooked surfaces in Ein3.

In this paper, Minkowski crooked planes will only be used in Appendix A.
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3. Disjointness criteria for AdS crooked planes

In this section, we establish Theorems 3.2 and 3.3 which are complete dis-
jointness criteria for left and right AdS crooked planes, respectively. These
criteria are stated in terms of the change in distance d(g · x, g′ · x′)− d(x, x′)
under isometries g and g′ ofH2, for points x and x′ ofH2 belonging to the clo-
sures � and �′ of geodesic lines � and �′. In order to state the criteria precisely,
let us first explain how to make sense of the quantity d(g · x, g′ · x′)− d(x, x′)
when x, x′ ∈ ∂∞H2 are ideal points.

3.1. Comparing distances between ideal points

We set H2 := H2 ∪ ∂∞H2.

Lemma 3.1. For any g, g′ ∈ G0, the function

Fg,g′ : (x, x′) �−→ d(g · x, g′ · x′)− d(x, x′)

on H2 ×H2, with values in R, extends continuously to a function Fg,g′ on

Hg,g′ := (H2 ×H2)� {(ξ, ξ′) ∈ ∂∞H2 × ∂∞H2 | ξ = ξ′ and g · ξ = g′ · ξ′}

with values in R ∪ {−∞,+∞}. Concretely, for any ξ, ξ′ ∈ ∂∞H2 with
(ξ, ξ′) ∈ Hg,g′, for any x, x′ ∈ H2, and for any small enough horoballs B,B′

of H2 centered respectively at ξ, ξ′,

(3.1)

⎧⎨
⎩

Fg,g′(ξ, x′) = d(g ·B, g′ · x′)− d(B, x′),
Fg,g′(x, ξ′) = d(g · x, g′ ·B′)− d(x,B′),
Fg,g′(ξ, ξ′) = d(g ·B, g′ ·B′)− d(B,B′).

In (3.1), we define the distance between two disjoint subsets of H2 to be
the infimum of distances between pairs of points in these two subsets; we
write d(·, x) for d(·, {x}). We declare the distance between two concentric
horoballs to be −∞. The horoballs B,B′ must be small enough in the sense
that all distances involved on the right-hand side of (3.1) are either between
disjoint subsets, or between concentric horoballs.

Proof. Let C(H2) be the space of continuous functions from H2 to R, en-
dowed with the topology of uniform convergence on compact sets. Fix a
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basepoint x0 ∈ H2. For x ∈ H2, let bx0,x ∈ C(H2) be given by

bx0,x(y) := d(x, y)− d(x, x0)

for all y ∈ H2. This defines a map bx0
: H2 → C(H2), x �→ bx0,x. It is well

known (see [Ba, Ch. II, § 1] for instance) that bx0
is continuous and injective,

and extends to a continuous and injective map bx0
: H2 → C(H2) sending

any ξ ∈ ∂∞H2 to the Busemann function associated with ξ vanishing at x0.
Define

d : H2 ×H2 −→ R ∪ {−∞}
(x, x′) �−→ infH2(bx0,x + bx0,x′).

Note that d(x, x′) = −∞ if and only if x = x′ ∈ ∂∞H2; otherwise, bx0,x +
bx0,x′ achieves its infimum d(x, x′) ∈ R exactly on the geodesic segment
(or ray, or line) of H2 connecting x to x′. Moreover, d(x, x′) = d(x, x′)−
d(x, x0)− d(x′, x0) for x, x′ ∈ H2. The map d is clearly upper semicontinu-
ous: if (xn, x

′
n) → (x, x′) in H2 ×H2, then lim supn d(xn, x

′
n) ≤ d(x, x′). It is

also lower semicontinuous: indeed, suppose d(x, x′) �= −∞. For large n, the
geodesic segments (or rays, or lines) from xn to x′n (on which bx0,xn

+ bx0,x′
n
=

d(xn, x
′
n)) all visit a fixed compact region of H2; we then use the uniform

convergence of bx0,xn
+ bx0,x′

n
to bx0,x + bx0,x′ on this compact region. Thus

d is continuous on H2 ×H2.
Similarly, for g, g′ ∈ G0, the map

dg,g′ : H2 ×H2 −→ R ∪ {−∞}
(x, x′) �−→ infH2(bg·x0,x + bg′·x0,x′)

is continuous, equal to d(x, x′)− d(g · x0, x)− d(g′ · x0, x′) if x, x′ ∈ H2.
The function Fg,g′ : H2 ×H2 → R given by (x, x′) �→ d(g · x, g′ · x′)−

d(x, x′) extends continuously to a function Fg,g′ : Hg,g′ → R ∪ {±∞} by set-
ting

Fg,g′(x, x′) := dg,g′(g · x, g′ · x′)− d(x, x′).

Indeed, the right-hand side never has the form ∞−∞ if (x, x′) ∈ Hg,g′ .
To check (3.1), consider distinct points ξ, ξ′ ∈ ∂∞H2, disjoint horoballs

B,B′ centered respectively at ξ, ξ′, and points x, x′ ∈ H2 with x /∈ B′ and
x′ /∈ B. Since Fg,g′ does not depend on the choice of the basepoint x0, we
may choose x0 outside B and B′. Then, for any y ∈ H2 �B,

bx0,ξ(y) = d(B, y)− d(B, x0).
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Therefore, for any x′ ∈ H2 �B,

d(ξ, x′) = inf
y∈H2�B

(
bx0,ξ(y) + bx0,x′(y)

)
= d(B, x′)− d(B, x0)− d(x′, x0).

Similarly, d(x, ξ′) = d(x,B′)− d(x, x0)− d(B′, x0) and d(ξ, ξ′) = d(B,B′)−
d(B, x0)− d(B′, x0). We obtain (3.1) by computing similar formulas for
dg,g′(g · ξ, g′ · x′), for dg,g′(g · x, g′ · ξ′), and for dg,g′(g · ξ, g′ · ξ′), and by can-
celling out the terms d(·, x0). �

3.2. The disjointness criteria

With the notation of Lemma 3.1, we can now state the main theorems of
this section.

Theorem 3.2. Let �, �′ be geodesic lines of H2. For g, g′ ∈ G0, the following
conditions are equivalent:

1) the left AdS crooked planes gC(�) and g′C(�′) are disjoint;

2) there exists K > 0 such that for all points x ∈ � and x′ ∈ �′, we have
Fg,g′(x, x′) ≥ K, i.e. d(g · x, g′ · x′) ≥ d(x, x′) +K;

3) for any endpoints ξ of � and ξ′ of �′, we have g · ξ �= g′ · ξ′ and
Fg,g′(ξ, ξ′) > 0.

If these conditions hold, then g ·� and g′ ·�′ have disjoint closures in H2∪∂∞H2.
The closed left AdS crooked half-spaces H+(g · �) g = gH+(�) and

H+(g′ · �′) g′ = g′ H+(�′) are disjoint if and only if (1), (2), (3) hold and
g · � and g′ · �′ are transversely oriented away from each other.

(Here we endow � and �′ with the transverse orientations induced by
those of g · � and g′ · �′ via g and g′; see Remark 2.1.)

Theorem 3.3. Let �, �′ be geodesic lines of H2. For g, g′ ∈ G0, the following
conditions are equivalent:

1) the right AdS crooked planes gC∗(�) and g′C∗(�′) are disjoint;

2) there exists K > 0 such that for all points x ∈ � and x′ ∈ �′, we have
Fg,g′(x, x′) ≤−K, i.e. d(g · x, g′ · x′) ≤ d(x, x′)−K;

3) for any endpoints ξ of � and ξ′ of �′, we have ξ �= ξ′ and Fg,g′(ξ, ξ′) < 0.

If these conditions hold, then � and �′ have disjoint closures in H2 ∪ ∂∞H2.
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The closed right AdS crooked half-spaces gH∗+(�) and g′H∗+(�′) are disjoint
if and only if (1), (2), (3) hold and � and �′ are transversely oriented away
from each other.

Remark 3.4. In Theorem 3.2, the left AdS crooked planes gC(�) and
g′C(�′) can be disjoint in AdS3 without � and �′ being disjoint in H2. For
instance, C(�) ∩ gC(�) = ∅ for all g ∈ SQ(�): see [DGK2, Rem. 8.4]. Similarly,
in Theorem 3.3, the right AdS crooked planes gC∗(�) and g′C∗(�′) can be
disjoint in AdS3 without g · � and g′ · �′ being disjoint in H2. This should be
contrasted with the Minkowski setting: two crooked planes in R2,1 always
intersect if the geodesic lines of H2 corresponding to their stems intersect
(see [BCDG, Prop. 6.3]).

3.3. Proof of Theorems 3.2 and 3.3

By Remark 2.1, the left AdS crooked half-space gH+(�), bounded by gC(�),
is the inverse of the right AdS crooked half-space g−1 H∗+(g · �), bounded
by g−1 C∗(g · �), and similarly for g′ H+(�′) and g′−1 H∗+(g′ · �′). Therefore,
Theorem 3.2 is equivalent to Theorem 3.3. We now prove Theorem 3.3.

Proof of Theorem 3.3. We first observe that if (2) holds, then the closures �
and �′ of � and �′ in H2 = H2 ∪ ∂∞H2 are disjoint: otherwise, by taking x ∈ �
and x′ ∈ �′ close enough to each other, we would obtain d(g · x, g′ · x′) =
Fg,g′(x, x′) + d(x, x′) < 0, a contradiction. In particular, if (2) or (3) holds,
then Fg,g′ is well defined and continuous on �× �′ (Lemma 3.1).

The implication (2) ⇒ (3) follows from the continuity of Fg,g′ .
We prove (3) ⇒ (2) by contraposition. Suppose that � and �′ do not

share any common endpoint at infinity and that Fg,g′(x, x′) ≥ 0 for some
(x, x′) ∈ �× �′. We claim that x and x′ can both be taken in ∂∞H2. Indeed,
given x ∈ �, let Dx ⊂ H2 be the set where Fg,g′(x, ·) is defined (namely, H2

minus at most one ideal point which does not lie in �′). Consider the subset
D′x ⊂ Dx ⊂ H2 consisting of points x′ with Fg,g′(x, x′) ≥ 0.

• If x ∈ H2 and g · x �= g′ · x′, then D′x is the closure in Dx of a half-plane
of H2 (bounded by the bisector of [x, g′−1g · x] and containing x).

• If x ∈ ∂∞H2 and g · x �= g′ · x′, then D′x is still the closure in Dx of a
half-plane of H2 (bounded by the line equidistant from a small horoball
centered at x, and its image under g′−1g, using (3.1)).

• If x ∈ H2 and g · x = g′ · x′, then D′x = Dx.



746 J. Danciger, F. Guéritaud, and F. Kassel

• If x ∈ ∂∞H2 and g · x = g′ · x′, then D′x = ∅ or D′x = Dx, depending
on whether g′−1g is expanding near its fixed point x or not.

In any case, if D′x intersects �′ ⊂ Dx, then D′x contains an endpoint of �′.
Thus we may assume that x′ is ideal, equal to that endpoint. Then, switching
the roles of x and x′, we may assume that x is ideal as well. This proves
(3) ⇒ (2).

To prove (2), (3) ⇒ (1), suppose that � and �′ do not share any common
endpoint at infinity and that Fg,g′ ≤ −K < 0 on �× �′. Consider h ∈ C∗(�)
and h′ ∈ C∗(�′). Recall (see Section 2.3) that C∗(�) is the set of orientation-
preserving isometries of H2 with a nonattracting fixed point in �. Therefore,
we can find a set B ⊂ H2 that is either a singleton of � fixed by h, or
a horoball centered in � which is preserved or expanded by h. Similarly,
we can find a set B′ ⊂ H2 that is either a singleton of �′ fixed by h′, or a
horoball centered in �′ which is preserved or expanded by h′. Up to replacing
horoballs by smaller concentric horoballs, we may assume that B ∩B′ = ∅
and (unless g ·B and g′ ·B′ are concentric horoballs) that g ·B ∩ g′ ·B′ = ∅.
As in Lemma 3.1, we define the distance between two disjoint subsets of H2

to be the infimum of distances between pairs of points in these two subsets,
and declare the distance between two concentric horoballs to be −∞. Since
B ⊂ h ·B and B′ ⊂ h′ ·B′, we have

d(gh ·B, g′h′ ·B′) = d(g ·B, g′ ·B′)− λ(h)− λ(h′) ≤ d(g ·B, g′ ·B′),

where λ : G → R+ is the translation length function of (2.3). By (3.1), since
Fg,g′ < 0 on �× �′, we have

d(g ·B, g′ ·B′) < d(B,B′).

In particular, d(gh ·B, g′h′ ·B′) �= d(B,B′) and so gh �= g′h′. This proves
gC∗(�) ∩ g′C∗(�′) = ∅, that is to say, (1).

We observe that if (1) holds, then � and �′ do not share any endpoint at
infinity. Indeed, by contraposition, suppose that � and �′ share an endpoint
ξ ∈ ∂∞H2. Let B be a horoball centered at ξ. We consider two cases: if g · ξ =
g′ · ξ, then for any hyperbolic isometry h ∈ C∗(�) that fixes ξ and expands B
enough, the isometry g′−1gh also fixes ξ and expands B, hence belongs to
C∗(�′), yielding gh ∈ gC∗(�) ∩ g′C∗(�′) �= ∅. If g · ξ �= g′ · ξ, choose p ∈ � deep
enough inside B so that q := g′−1g · p lies outside B (close to g′−1g · ξ �= ξ).
There exists a rotation h ∈ C∗(�) centered at p such that g′−1gh · ξ = ξ. The
element g′−1gh, which fixes ξ and takes p to q, expands B, hence belongs to
C∗(�′). Again we find gh ∈ gC∗(�) ∩ g′C∗(�′) �= ∅.
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We now prove (1) ⇒ (3) by contraposition. Suppose that Fg,g′(ξ, ξ′) ≥ 0
for some distinct endpoints ξ of � and ξ′ of �′. Let B,B′ be two disjoint
horoballs centered respectively at ξ, ξ′, with g ·B and g′ ·B′ concentric or
disjoint. The inequality Fg,g′(ξ, ξ′) ≥ 0 means, by (3.1), that g ·B and g′ ·B′
are disjoint and g ·B is further away from g′ ·B′ than B is from B′. There-
fore, among all orientation-preserving isometries taking the oriented line
(ξ, ξ′) to (g · ξ, g′ · ξ′), we can find one, let us call it h, such that h ·B ⊃
g ·B and h ·B′ ⊃ g′ ·B′. As a consequence, g−1h ∈ C∗(�) and g′−1h ∈ C∗(�′),
hence h ∈ gC∗(�) ∩ g′C∗(�′) �= ∅. This completes the proof of (1) ⇒ (3).

Suppose that (1), (2), (3) hold. The disjoint crooked planes gC∗(�) and
g′C∗(�′) define disjoint closed crooked half-spaces. In order to make these
the positive ones gH∗+(�) and g′H∗+(�′), we must transversely orient �, �′ away
from each other. Indeed, by Remark 2.2, the set of accumulation points in
∂∞AdS3 of gH∗+(�) (resp. g′H∗+(�′)) is the projectivization of the set of rank-
one matrices whose projectivized kernel lies on the positive side of � (resp.
of �′); the positive half-spaces of � and �′ in H2 must thus be disjoint. �

4. Crooked fundamental domains and local isometries of H2

In this section we give a necessary and sufficient condition for the existence
of a fundamental domain in AdS3 bounded by pairwise disjoint AdS crooked
planes. We may restrict to right crooked planes by the following remark.

Remark 4.1. Let j, ρ ∈ Hom(Γ, G0) be two representations of a discrete
group Γ. The group Γj,ρ (see (2.1)) acts properly discontinuously on AdS3

and admits a fundamental domain bounded by right AdS crooked planes if
and only if the group Γρ,j acts properly discontinuously on AdS3 and admits
a fundamental domain bounded by left AdS crooked planes.

Indeed, switching j and ρ amounts to conjugating the action on AdS3 =
G0 by the orientation-reversing isometry g �→ g−1, which switches left and
right AdS crooked planes.

4.1. A necessary and sufficient condition

Here is our main result.

Theorem 4.2. Let Γ be a finitely generated free group and j, ρ ∈ Hom(Γ, G)
two representations. The group Γj,ρ acts properly discontinuously on AdS3

and admits a fundamental domain in AdS3 bounded by pairwise disjoint right
AdS crooked planes if and only if there exist
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• a j(Γ)-invariant collection A of geodesic lines of H2 with pairwise
disjoint closures in H2 ∪ ∂∞H2, dividing H2 into fundamental domains
for j(Γ),

• a (j, ρ)-equivariant map f :
⋃

α∈A α → H2 which is an isometry in re-
striction to any α ∈ A ,

• a constant K > 0 such that for any α �= α′ in A , any x ∈ α, and any
x′ ∈ α′,

(4.1) d(f(x), f(x′)) ≤ d(x, x′)−K.

In this case, j is convex cocompact and ρ is uniformly shorter than j in
the sense of (2.2); a collection of pairwise disjoint right AdS crooked planes
dividing AdS3 into fundamental domains for Γj,ρ is given by the gαC

∗(α) for
α ∈ A , where gα ∈ G0 is the unique orientation-preserving isometry of H2

whose restriction to α coincides with f .

Remark 4.3. By the triangle inequality, it is sufficient for (4.1) to hold for
any adjacent α �= α′ in A .

Proof of Theorem 4.2. Suppose that Γj,ρ acts properly discontinuously on
AdS3 and admits a fundamental domain in AdS3 bounded by pairwise dis-
joint right AdS crooked planes. Translates of this fundamental domain define
a Γj,ρ-invariant collection (D∗α)α∈A of pairwise disjoint AdS crooked planes
in AdS3. For any α ∈ A , write D∗α = gαC

∗(�α), where gα ∈ G0 and �α is a
geodesic line of H2. Since the D∗α are pairwise disjoint, Theorem 3.3 im-
plies that the �α are distinct, and so we may identify A with a collection
of geodesic lines of H2, writing α for �α. In fact, Theorem 3.3 implies that
the closures in H2 ∪ ∂∞H2 of the geodesics α ∈ A are pairwise disjoint. By
Remark 2.1, for any α ∈ A and γ ∈ Γ,

(4.2) ρ(γ)D∗α j(γ)
−1 = ρ(γ)gαC

∗(�α)j(γ)−1 = ρ(γ)gαj(γ)
−1 C∗

(
j(γ) · α),

and so the collection A is j(Γ)-invariant. In particular, j is convex cocom-
pact (otherwise, lines exiting a cusp would lift to lines of H2 that meet at
infinity), and A divides H2 into fundamental domains for the action of j(Γ).
Let f :

⋃
α∈A α → H2 be the map whose restriction to any α ∈ A coincides

with gα. By (4.2), we have gj(γ)·α = ρ(γ)gαj(γ)
−1 for any γ ∈ Γ and α ∈ A ,

hence f is (j, ρ)-equivariant. By Theorem 3.3, for any α �= α′ in A there
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exists K > 0 such that for any x ∈ α and x′ ∈ α′,

(4.3) d(f(x), f(x′)) = d(gα · x, gα′ · x′) ≤ d(x, x′)−K.

By finiteness of A modulo j(Γ), this K can be taken to be uniform for any
α �= α′ that are adjacent to a common tile, where a tile is by definition a
connected component of H2 �

⋃
α∈A . To see uniformity over all α �= α′, we

apply the triangle inequality to the intersection points of [x, x′] with
⋃

α∈A α
and obtain

(4.4) d(f(x), f(x′)) ≤ d(x, x′)− nx,x′ K

for all x, x′ ∈ ⋃
α∈A α, where nx,x′ ∈ N is the number of tiles meeting the

geodesic segment [x, x′]. We now prove that ρ is uniformly shorter than j.
By compactness of the convex core Ω of j(Γ)\H2, each tile meets the preim-
age Ω̃ ⊂ H2 of Ω in a compact set, of diameter bounded by some uniform
constant K0 > 0. In particular, for any x, x′ ∈ Ω̃ ∩⋃

α∈A α,

d(x, x′) ≤ nx,x′K0.

Using (4.4), we obtain

d(f(x), f(x′)) ≤
(
1− K

K0

)
d(x, x′)

for all x, x′ ∈ Ω̃ ∩⋃
α∈A α. Taking x on the translation axis of j(γ) and

x′ = j(γ) · x, and using the (j, ρ)-equivariance of f , we obtain λ(ρ(γ)) ≤
(1−K/K0)λ(j(γ)) for all γ ∈ Γ. This proves that ρ is uniformly shorter
than j.

Conversely, suppose there exist a j(Γ)-invariant collection A of pairwi-
se disjoint geodesics of H2, a (j, ρ)-equivariant map f : j(Γ) ·⋃α∈A α→ H2

whose restriction to any α ∈ A coincides with some isometry gα ∈ G0 of H
2,

and a constant K > 0 such that for any α �= α′ in A and (x, x′) ∈ α× α′,

d(f(x), f(x′)) ≤ d(x, x′)−K.

By Theorem 3.3, the AdS crooked planes D∗α := gαC
∗(α), for α ∈ A , are

pairwise disjoint. Since f is (j, ρ)-equivariant, D∗j(γ)·α = ρ(γ)D∗αj(γ)−1 for

all γ ∈ Γ and α ∈ A (see (4.2)). Let α1, . . . , αm ∈ A bound a fundamental
domain of H2 for the action of j(Γ), and let R be the closed subset of
AdS3 bounded by D∗α1

, . . . ,D∗αm
. Then Γj,ρ acts properly discontinuously on



750 J. Danciger, F. Guéritaud, and F. Kassel

Γj,ρ · R, and R is a fundamental domain for this action. To prove that Γj,ρ · R
is equal to the whole of AdS3, it is enough to show that D∗α goes to infinity
in AdS3 as α ∈ A goes to infinity in H2. Fix a point p on some geodesic line
α0 ∈ A . Consider an element α ∈ A and a point

gαh ∈ D∗α,

where h ∈ C∗(α). By definition of C∗(α) (see Section 2.3), we can find a
subset B ofH2 that is either a singleton of α fixed by h, or a horoball centered
at an endpoint ξ of α which is preserved or expanded by h and which does
not contain p. The triangle inequality and the inclusion B ⊂ h ·B imply

d(p,B) = d(gαh · p, gαh ·B)

≤ d(gαh · p, gα ·B) = d(gαh · p, f(B))

≤ d(gαh · p, p) + d(p, f(p)) + d(f(p), f(B)).

On the other hand, (4.4) means Fgα0
,gα(p, x) ≤ −nαK for all x ∈ α, where

nα ∈ N is the number of tiles between α0 and α. Using the continuity of
Fgα0 ,gα

(Lemma 3.1) and the interpretation (3.1), we obtain

d(f(p), f(B)) ≤ d(p,B)− nαK,

and so d(gαh · p, p) ≥ nαK − d(p, f(p)). Note that nα ∈ N goes to infinity
as α ∈ A goes to infinity in H2. Therefore, D∗α goes to infinity in AdS3 as
α ∈ A goes to infinity in H2. �

4.2. Disjoint AdS crooked planes lead to proper actions on AdS3

In [D], Drumm proved that gluing together a polyhedron R bounded by
pairwise disjoint crooked planes in the 3-dimensional Minkowski space R2,1

yields a Lorentzian Schottky group, i.e. a free group acting properly discon-
tinuously with R as a fundamental domain. One direction of Theorem 4.2
immediately implies the following analogue of Drumm’s theorem in the AdS
setting. (We denote by Int the interior of a subset of H2.)

Corollary 4.4. Let Γ be a finitely generated free group with free gener-
ating subset {γ1, . . . , γr}. Let L1, L

′
1, . . . , Lr, L

′
r be closed half-planes in H2

with pairwise disjoint closures in H2 ∪ ∂∞H2, and let j ∈ Hom(Γ, G0) be a
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representation such that

j(γi) · Li = H2 � Int(L′i)

for all i. Suppose that for some gi, g
′
i ∈ G0, the 2r right AdS crooked half-

spaces giH∗+(�i) and g′iH∗+(�′i), for 1 ≤ i ≤ r, are all pairwise disjoint, where
�i, �

′
i are the transversely oriented geodesic lines of H2 whose positive half-

planes are Li, L
′
i, respectively. Then the representation ρ ∈ Hom(Γ, G0) de-

fined by

ρ(γi) = g′i j(γi) g
−1
i

for all i is uniformly shorter than j in the sense of (2.2); the group Γj,ρ acts
properly discontinuously on AdS3, and a fundamental domain R is given by
the complement in AdS3 of the union of the AdS crooked half-spaces giH∗+(�i)
and g′iH∗+(�′i).

Proof. Let A be the set of j(Γ)-translates of the �i, for 1 ≤ i ≤ r, and let
f :

⋃
α∈A α → H2 be the (j, ρ)-equivariant map whose restriction to �i co-

incides with gi for all i (in particular, the restriction of f to �′i coincides
with g′i). By Theorem 3.3, there exists K > 0 such that (4.1) holds for any
α �= α′ in {�i, �′i | 1 ≤ i ≤ r}, any x ∈ α, and any x′ ∈ α′. By equivariance,
this is still true for any adjacent α �= α′ in A , any x ∈ α, and any x′ ∈ α′.
We conclude using Theorem 4.2 and Remark 4.3. �

5. Proper actions with no crooked fundamental domain

In this section we use the other direction of Theorem 4.2 to prove Theo-
rem 1.1, which states the existence of proper actions without any crooked
fundamental domain in AdS3. We provide three families of examples.

5.1. Necessity of convex cocompactness

Here is an immediate consequence of Remark 4.1 and Theorem 4.2 — more
precisely, of the fact that in the conclusion of Theorem 4.2 the representation
j is convex cocompact.

Proposition 5.1. Let Γ be a finitely generated free group and let j, ρ ∈
Hom(Γ, G0) be two representations such that the group Γj,ρ acts properly
discontinuously on AdS3. If neither j nor ρ is convex cocompact, then the
group Γj,ρ cannot admit a fundamental domain in AdS3 bounded by pairwise
disjoint AdS crooked planes.



752 J. Danciger, F. Guéritaud, and F. Kassel

More precisely, if Γj,ρ admits a fundamental domain bounded by right
(resp. left) AdS crooked planes, then j (resp. ρ) needs to be convex cocom-
pact and uniformly longer than ρ (resp. j).

Thus for any injective and discrete representation j ∈ Hom(Γ, G0) such
that the group j(Γ) has a parabolic element, and for any uniformly shorter
representation ρ ∈ Hom(Γ, G0) (for instance the constant representation),
the group Γj,ρ acts properly discontinuously on AdS3 (see Section 2.2) but
does not admit any crooked fundamental domain.

Note that the analogue of Proposition 5.1 in the Minkowski space R2,1 is
not true: for any injective and discrete representation j ∈ Hom(Γ, G0) of the
finitely generated free group Γ (even if j(Γ) has parabolic elements), the set
of j-cocycles u : Γ → g such that Γj,u := {(j(γ), u(γ)) | γ ∈ Γ} ⊂ G0 � g acts
properly discontinuously on R2,1 � g by affine transformations is nonempty,
and the corresponding groups Γj,u all admit fundamental domains in R2,1

bounded by pairwise disjoint crooked planes [DGK3].

5.2. Examples with ρ constant

Let us now only consider proper actions of Γj,ρ with j convex cocompact.

Proposition 5.2. Let Γ be a free group and j ∈ Hom(Γ, G0) a convex co-
compact representation such that the convex core Ω of the quotient sur-
face S = j(Γ)\H2 has only one boundary component, of length D > 0. Let
ρ ∈ Hom(Γ, G0) be the constant representation. If the action of Γj,ρ on AdS3

admits a fundamental domain bounded by pairwise disjoint AdS crooked
planes, then the action of j(Γ) on H2 admits a fundamental domain F boun-
ded by pairwise disjoint geodesic lines, each meeting the preimage Ω̃ ⊂ H2

of Ω along segments of length ≤ D/2.

Proof. Suppose the action of Γj,ρ on AdS3 admits a fundamental domain
bounded by disjoint AdS crooked planes. By Remark 4.1 and Theorem 4.2,
we can find pairwise disjoint geodesic lines �1, . . . , �r, �

′
1, . . . , �

′
r in H2, bound-

ing a fundamental domain F for the action of j(Γ), and a (j, ρ)-equivariant,
1-Lipschitz map f : j(Γ) ·⋃r

i=1 �i → H2 whose restriction to any �i is an
isometry. For 1 ≤ i ≤ r, let pi, qi be the two intersection points of �i with
the boundary ∂Ω̃ of the lifted convex core Ω̃ ⊂ H2 (see Figure 2). Since ρ is
constant, f(j(Γ) · pi) is a single point Pi and f(j(Γ) · qi) a single point Qi.
We have d(Pi, Qi) ≤ D/2 because some j(γ) · qi is D/2-close to pi along ∂Ω̃
and f is 1-Lipschitz. But d(Pi, Qi) = d(pi, qi) is also the length inside Ω̃ of
an arc bounding F . �
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q2

p1

p′2

q′1 p′1
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q′2
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f(�1) = f(�′1)

f(�2) = f(�′2)

−−−→
f

Figure 2: An illustration of the proof of Proposition 5.2 when S is a one-
holed torus. The boundary of the lifted convex core Ω̃ ⊂ H2 is dashed. We set
p′i := j(γi) · pi and q′i := j(γi) · qi, as well as Pi := f(pi) = f(p′i) and Qi :=
f(qi) = f(q′i).

Proposition 5.2 implies Theorem 1.1. Indeed, Randol’s Collar Lemma
[R, Bu] states that in a hyperbolic surface S, a geodesic boundary compo-
nent of length D always has an embedded uniform neighborhood of radius
ψ(D) for some universal function ψ : R+ → R+ with lim0 ψ = +∞. Any arc
from the boundary component to itself must have length ≥ 2ψ(D), hence
> D/2 if D is small enough. Suppose S is convex cocompact with only
one boundary component, of such small length D. By Proposition 5.2, if
j ∈ Hom(Γ, G0) is the holonomy representation of S and ρ ∈ Hom(Γ, G0)
the constant homomorphism, then the group Γj,ρ does not admit a funda-
mental domain in AdS3 bounded by pairwise disjoint AdS crooked planes.

5.3. An open set of examples

In a related vein, here are examples where j is convex cocompact and the
image of ρ contains an elliptic element.

Proposition 5.3. Let Γ be a finitely generated free group. For any θ ∈ (0, π]
there exists δ > 0 with the following property: if (j, ρ) ∈ Hom(Γ, G0)

2 is a
pair of representations with j convex cocompact and ρ uniformly shorter
than j in the sense of (2.2), and if the group Γj,ρ admits a fundamental
domain bounded by pairwise disjoint AdS crooked planes, then

λ(j(γ)) ≥ δ

for any γ ∈ Γ such that ρ(γ) is a rotation of angle ≥ θ in absolute value.
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Proof. Let (j, ρ) ∈ Hom(Γ, G0)
2 be a pair of representations with j con-

vex cocompact and ρ uniformly shorter than j. By Remark 4.1 and Theo-
rem 4.2, if Γj,ρ admits a fundamental domain bounded by pairwise disjoint
AdS crooked planes, then we can find a collection A of pairwise disjoint
geodesic lines dividing H2 into fundamental domains for the action of j(Γ),
and a (j, ρ)-equivariant, 1-Lipschitz map f :

⋃
α∈A α → H2 whose restriction

to any α ∈ A is an isometry. For any nontrivial γ ∈ Γ, we can find α ∈ A
intersecting the translation axis of j(γ). When λ(j(γ)) is small, the set of
points p ∈ α such that d(p, j(γ) · p) ≤ 1 is a segment I ⊂ α of length at least
2 | log λ(j(γ))|+O(1). On the other hand, if ρ(γ) is a rotation of angle θ,
then the set of points q ∈ H2 such that d(q, ρ(γ) · q) ≤ 1 is a ball centered
at the fixed point of ρ(γ), whose radius depends only on θ. The map f must
take I, isometrically, into this ball: this gives a lower bound on λ(j(γ)). �

Proposition 5.3 also implies Theorem 1.1. Indeed, it is easy to construct
pairs (j, ρ) with j convex cocompact and ρ uniformly shorter than j such that
there exists an element γ ∈ Γ for which j(γ) is a very short translation and
ρ(γ) a fairly large rotation. For instance, consider a free generating subset
{γ1, . . . , γr} of Γ and let j send the γi, for i ≥ 1, to hyperbolic elements
playing ping pong inH2, with λ(j(γ1)) very small. Let ρ send the γi, for i ≥ 1,
to elliptic elements with a common fixed point in H2, with the rotation angle
of ρ(γ1) fairly large. Then ρ is uniformly shorter than j, hence the group Γj,ρ

acts properly discontinuously on AdS3 (see Section 2.2). However, Γj,ρ does
not admit any fundamental domain in AdS3 bounded by pairwise disjoint
AdS crooked planes, by Proposition 5.3.

Note that the existence of an element γ for which j(γ) is a short transla-
tion and ρ(γ) a large rotation is stable under small deformations of (j, ρ). So
is the property that ρ be uniformly shorter than j (see [K], [GK, Prop. 1.5]).
Thus the absence of fundamental domains bounded by AdS crooked planes
is not a local accident. By deforming the examples above, we can construct
examples with ρ(Γ) Zariski-dense in G0.

5.4. A question

To conclude, we ask the following question which, in light of [DGK2, Thm1.8]
on the one hand, and of Theorem 1.1 on the other, seems natural and non-
trivial.
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Question 5.4. Let Γ be a finitely generated free group. For which pairs
(j, ρ) ∈ Hom(Γ, G0)

2 with j injective and discrete, and with (j, ρ) satisfy-
ing the uniform contraction property (2.2), does Γj,ρ admit a fundamental
domain in AdS3 bounded by (right) AdS crooked planes?

Note that by using Theorem 4.2 and analyzing the situation carefully as
in the proof of Proposition 5.2, it is possible to construct (very long) convex
cocompact representations j such that for ρ constant the group Γj,ρ does
admit a fundamental domain bounded by AdS crooked planes.

Appendix A. Convergence of crooked fundamental domains

In [DGK1] we showed that any Margulis spacetime is a rescaled limit, in
projective space, of collapsing AdS 3-manifolds. Here we explain how the
ideas of [DGK2] can be applied to make crooked fundamental domains for
such collapsing AdS manifolds converge in projective space to a fundamen-
tal domain for the Margulis spacetime. Let us assume in this appendix, as
in [DGK2], that the linear holonomy of the Margulis spacetime is convex
cocompact.

A.1. Embedding AdS3 and R2,1 into projective space

Here is a quick review of how a transition from AdS3 to R2,1 may be realized
in real projective geometry. See [DGK1, §7.1] for an expanded treatment.

The map

I :

(
y1 + y4 y2 − y3
y2 + y3 −y1 + y4

)
�−→ [y1 : y2 : y3 : y4]

defines an embedding of AdS3 = G0 = PSL2(R) into P3(R) whose image is
the open set {[y] ∈ P3(R) | y21 + y22 − y23 − y24 < 0} (the interior of a projective
quadric). It induces an injective group homomorphism

I∗ : Isom(AdS3)0 = G0 ×G0 ↪→ PGL4(R),

so that I is I∗-equivariant: I(A · x) = I∗(A) · I(x) for all A ∈ Isom(AdS3)0
and x ∈ AdS3.

As in Remark 2.3.(1), we view the Minkowski space R2,1 as the Lie
algebra g = psl2(R) of G endowed with half its Killing form, or equivalently
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as the set of Killing vector fields on H2 (see [DGK2, § 4.1]). The map

i :

(
z1 z2 − z3

z2 + z3 −z1

)
�−→ [z1 : z2 : z3 : 1]

defines an embedding of R2,1 = g = psl2(R) into P3(R) whose image is the
affine chart {[z] ∈ P3(R) | z4 �= 0} ; it induces an injective group homomor-
phism

i∗ : Isom(R2,1)0 = G0 � g ↪→ PGL4(R),

so that i is i∗-equivariant: i
(
B · w) = i∗(B) · i(w) for all B ∈ Isom(R2,1)0 and

w ∈ R2,1.
For t > 0, consider the projective transformation

rt :=

⎛
⎜⎜⎝
t−1

t−1

t−1

1

⎞
⎟⎟⎠ ∈ PGL4(R).

Then rt · I(AdS3) ⊂ rt′ · I(AdS3) for 0 < t′ < t and

⋃
t>0

rt · I(AdS3) = i(R2,1) ∪H2
∞ ,

where H2∞ := {[y] ∈ P3(R) | y21 + y22 − y23 < 0 = y4} is a copy of the hyper-
bolic plane. The limit as t → 0 of the action of rt is differentiation:

1) for any smooth path t �→ gt ∈ G = AdS3 with g0 = 1,

rt · I(gt) −−→
t→0

i

(
d

dt

∣∣∣
t=0

gt

)
∈ P3(R);

2) for any smooth path t �→ (ht, kt) ∈ G×G = Isom(AdS3)0 with h0 = k0,

rt I∗(ht, kt) r−1t −−→
t→0

i∗
(
h0,

d

dt

∣∣∣
t=0

htk
−1
t

)
∈ PGL4(R).

A.2. Constructing crooked fundamental domains

Let Γ be a free group, j ∈ Hom(Γ, G0) an injective and discrete represen-
tation, and u : Γ → g a j-cocycle (i.e. u(γ1γ2) = u(γ1) + Ad(j(γ1))u(γ2) for
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all γ1, γ2 ∈ Γ). Suppose the group

Γj,u := {(j(γ), u(γ)) | γ ∈ Γ}

acts properly discontinuously on R2,1. Then M = Γj,u\R2,1 is a Margulis
spacetime; conversely, any Margulis spacetime is of this form by [FG]. Sup-
pose j is convex cocompact. By [GLM, DGK1], up to replacing u with −u,
the cocycle u is uniformly contracting, in the sense that

sup
γ∈Γ, λ(j(γ))>0

d

dt

∣∣∣
t=0

λ(etu(γ)j(γ))

λ(j(γ))
< 0,

where λ : G → R+ is the translation length function of (2.3). By [DGK2,
Th. 1.5], the cocycle u is a negative infinitesimal strip deformation of j,
which implies [DGK2, § 7.4] the existence of

• a j(Γ)-invariant collection A of geodesic lines of H2 with pairwise
disjoint closures in H2 ∪ ∂∞H2, dividing H2 into fundamental domains
for j(Γ),

• a (j, u)-equivariant vector field v :
⋃

α∈A α → T (H2) whose restriction
to any α ∈ A is a Killing vector field vα ∈ g with the following prop-
erty: for any adjacent α �= α′ in A ,

(A.1) vα′ − vα ∈ −SQ(α′) + SQ(α),

where SQ(α),SQ(α′) are the respective stem quadrants (see Re-
mark 2.3.(1)) of α, α′ for their transverse orientations away from each
other.

Note that (A.1) implies the existence of a constant k > 0 such that for any
x ∈ α and x′ ∈ α′,

(A.2)
d

dt

∣∣∣
t=0

d
(
expx(tv(x)), expx′(tv(x′))

) ≤ −k

(infinitesimal analogue of (4.1)). Indeed, for any oriented geodesic line �
of H2 and any Killing field X of H2, the signed projection of X(p) to �
does not depend on p ∈ �; we call it the component of X along �. With this
terminology, the left-hand side of (A.2) is equal to the component of vα′ − vα
along the geodesic line through x and x′, oriented from x to x′ [DGK1,
Rem. 3.4]. This component is positive by (A.1), and in fact bounded from
below by some positive constant independent of x, x′ since α and α′ have
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disjoint closures in H2 ∪ ∂∞H2 (see the proof of [DGK2, Lem. 7.3]). Thus
(A.2) holds for some k > 0. Moreover, k can be taken uniform for all pairs
of adjacent α �= α′ in A , since A is finite modulo j(Γ).

For any α ∈ A , let C∗(α) ⊂ R2,1 � g be the right crooked plane centered
at 0 ∈ g associated with α: this is the set of Killing vector fields of H2 with
a nonattracting fixed point in the closure α of α in H2 ∪ ∂∞H2. Note that
the exponential of C∗(α) ⊂ g is the right AdS crooked plane C∗(α) ∈ G0 of
Section 2.3; thus

rt · I(C∗(�)) −−→
t→0

i(C∗(�))

in the topology of Hausdorff convergence on compact subsets (see Sec-
tion A.1). By a result of Drumm [D] (see [DGK2, § 7.4]), the inclusions (A.1)
imply that the right Minkowski crooked planes C∗(α) + vα, for α ∈ A , are
pairwise disjoint and divide R2,1 into fundamental domains for Γj,u. (Com-
pare with Theorem 4.2.)

Now let (jt)t≥0 ⊂ Hom(Γ, G0) be any smooth path of representations
of Γ with j0 = j and d

dt |t=0 jt(γ) j(γ)
−1 = u(γ) ∈ g for all γ ∈ Γ. Then the

action of Γj,jt on AdS3 converges to that of Γj,u on R2,1 in the sense of
Section A.1: for any γ ∈ Γ,

rt I∗
(
j(γ), jt(γ)

)
r−1t −−→

t→0
i∗
(
j(γ), u(γ)

) ∈ PGL4(R).

We use Theorem 4.2 to construct fundamental domains for the Γj,jt ac-
tions in AdS3. Choose a system A ′ ⊂ A of representatives of A modulo
j(Γ), and let ft :

⋃
α∈A α → H2 be the (j, jt)-equivariant map whose re-

striction to any α′ ∈ A ′ coincides with the orientation-preserving isometry
exp(tvα′) ∈ G0 of H2. Then ft converges to the identity of

⋃
α∈A α as t → 0,

uniformly on compact sets, and d
dt

∣∣
t=0

ft = v. It follows from the discussion
two paragraphs above that (A.2) remains true, with k replaced by a smaller
constant, e.g. k/2, when we perturb (α, α′, v) to (fτ (α), fτ (α

′), d
dt

∣∣
t=τ

ft) for
τ sufficiently small. Then by integrating, for any sufficiently small t, we have

d
(
ft(x), ft(x

′)
) ≤ d(x, x′)− k

2
t

for all adjacent α �= α′ in A , all x ∈ α, and all x′ ∈ α′. By Theorem 4.2
and Remark 4.3, for all small enough t > 0, the group Γj,jt acts properly
discontinuously on AdS3; if gα,t ∈ G0 is the unique orientation-preserving
isometry of H2 whose restriction to α coincides with ft, then the right AdS
crooked planes gα,tC

∗(α), for α ∈ A , are pairwise disjoint and divide AdS3
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into fundamental domains for Γj,jt . By construction, using Section A.1, the
following holds.

Proposition A.1. As t → 0, the rtI∗(Γj,jt)r−1t -invariant collection of “re-
scaled” AdS crooked planes {rt · I(gα,tC∗(α))}α∈A converges in P3(R) to the
i∗(Γj,u)-invariant collection of Minkowski crooked planes {i(C∗(α)+vα)}α∈A .

In particular, any choice of finitely many arcs α1, . . . , αm ∈ A bound-
ing a fundamental domain for the action of j(Γ) on H2 determines a path
of collapsing fundamental domains in AdS3 for the actions Γj,jt , bounded
by the AdS crooked planes associated to those arcs. The centers of these
crooked planes all converge to 1 ∈ AdS3. The corresponding, rescaled fun-
damental domains in rt · I(AdS3) for the actions rtI∗(Γj,jt)r−1t converge in
projective space to a fundamental domain, bounded by the crooked planes
i(C∗(α1) + vα1

), . . . , i(C∗(αm) + vαm
), for the action of i∗(Γj,u) on i(R2,1).

Appendix B. Disjointness of AdS crooked planes via
stem quadrants

With the notation of Remark 2.3.(1), Drumm–Goldman’s original disjoint-
ness criterion for crooked planes in R2,1 [DG2] states that for any geodesic
lines �, �′ of H2 and any v, v′ ∈ R2,1, the left crooked planes C(�) + v and
C(�′) + v′ are disjoint in R2,1 if and only if � and �′ do not meet in H2

and v′ − v ∈ SQ(�′)− SQ(�) for the transverse orientations of � and �′ away
from each other (see [BCDG, Th. 6.2]). To push the analogy between R2,1

and AdS3 further, we now establish an analogue of this criterion for AdS
crooked planes, in terms of the AdS stem quadrants SQ(�), SQ(�′) of Sec-
tion 2.3. This is a complement to Theorems 3.2 and 3.3; it is not needed
anywhere in the paper.

Theorem B.1. Let �, �′ be geodesic lines of H2 and let g, g′ ∈ G0. Consider
the following conditions:

(A) the left AdS crooked planes gC(�) and g′C(�′) are disjoint,

(B) the geodesic lines g · � and g′ · �′ are disjoint, and g−1g′ ∈ SQ(�)−1SQ(�′)
for the transverse orientations of � and �′ taken by g and g′ to transverse
orientations of g · � and g′ · �′ away from each other.

Then (A) ⇒ (B) always holds, and (B) ⇒ (A) holds under the assumption
that � and �′ are disjoint and transversely oriented away from each other.
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By Remark 2.1, the left AdS crooked plane gC(�) is the inverse of
the right AdS crooked plane g−1 C∗(g · �), and similarly for g′C(�′) and
g′−1C∗(g′ · �′). Moreover, SQ(g · �)=gSQ(�)g−1 and SQ(g′ · �′)=g′SQ(�′)g′−1

for the transverse orientations of g · � and g′ · �′ induced by that of � and �′

via g and g′. Therefore, Theorem B.1 is equivalent to the following.

Theorem B.2. Let �, �′ be geodesic lines of H2 and let g, g′ ∈ G0. Consider
the following conditions:

(C) the right AdS crooked planes gC∗(�) and g′C∗(�′) are disjoint,

(D) the geodesic lines � and �′ are disjoint, and g−1g′ ∈ SQ(�)SQ(�′)−1 for
the transverse orientations of � and �′ away from each other.

Then (C) ⇒ (D) always holds, and (D) ⇒ (C) holds under the assumption
that g and g′ take � and �′ to disjoint geodesics transversely oriented away
from each other.

Recall from Theorem 3.3 that the right AdS crooked planes gC∗(�) and
g′C∗(�′) are disjoint (i.e. (C) holds) if and only if

(B.1) sup
(x,x′)∈�×�′

Fg,g′(x, x′) = sup
(x,x′)∈�×�′

d(g · x, g′ · x′)− d(x, x′) < 0.

Thus (D) ⇒ (C) is not difficult to prove using hyperbolic trigonometry,
under the assumption that g and g′ take � and �′ to disjoint geodesics
transversely oriented away from each other: see [DGK2, Prop. 8.2]. Note
that (D) ⇒ (C) fails if we remove this assumption: indeed, to see that
g · � ∩ g′ · �′ = ∅ is required, fix (x, x′) ∈ �× �′ and consider a long trans-
lation g ∈ SQ(�)−1 (where � is transversely oriented away from �′) whose
attracting fixed point is an endpoint of �′. If g is long enough, then for all
g′ ∈ SQ(�′)−1 very close to e ∈ G0 the lines g · � and g′ · �′ intersect, and
d(g · x, g′ · x′)− d(x, x′) > 0, hence (B.1) fails. Similarly, if the translation
axis of g ∈ SQ(�)−1 intersects �′, then (B.1) still fails for g long enough and
for g′ ∈ SQ(�′)−1 close to e ∈ G0; the line g · � is then disjoint from g′ · �′ but
its transverse orientation points towards g′ · �′.

We shall now prove (C) ⇒ (D) by direct computations. Before engaging
in those, it may be encouraging to note that if we are in the limit case
of (D) then we are also in the limit case of (C): namely, if (g, g′) ∈ ∂SQ(�)×
∂SQ(�′), then g (resp. g′) is a parabolic element fixing an endpoint ξ of �
(resp. ξ′ of �′), hence Fg,g′(ξ, ξ′) = 0 with the notation of Lemma 3.1. Here,
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and in the whole proof, we denote by ∂SQ(�) ⊂ AdS3 the boundary of SQ(�)
in the timelike plane of AdS3 that contains it, and similarly for ∂SQ(�′).

B.1. Proof of (C) ⇒ (D) in Theorem B.2

If (C) holds, then the geodesic lines � and �′ have disjoint closures in
H2 ∪ ∂∞H2 by Theorem 3.3. Thus, working in the upper half-plane model
of H2, we may assume that � has endpoints (ξ+, ξ−) = (−R−1, R−1) and
�′ has endpoints (ξ′+, ξ′−) = (R,−R), for some R > 1. We endow � and �′

with transverse orientations away from each other, pointing to 0 and ∞ re-
spectively. We write elements of G0 = PSL2(R) ⊂ PGL2(R) = G as square
matrices, whose entries are defined up to a global multiplicative factor.

Claim B.3. An element h ∈ G0 belongs to SQ(�) (resp. SQ(�′)−1) if and
only if it is of the form

h =

[
α −vR−1

vR β

] (
resp. h =

[
α vR

−vR−1 β

])

where α, β, v ∈ R satisfy { |α| < |β|,
2|v| < |α− β|.

Proof. It is enough to prove the claim for SQ(�): the characterization of
SQ(�′)−1 is similar, replacing R with R−1. The elements of SQ(�) are the
hyperbolic elements of G0 whose translation axis is orthogonal to �, ori-
ented downwards (away from ∞). The condition 2|v| < |α− β| expresses
the fact that tr(h)2 > 4 det(h), i.e. h is hyperbolic. The condition that the
ratio of the nondiagonal entries of h be −R−2 expresses the fact that the
fixed points of the Möbius transformation h have product R−2, i.e. are sym-
metric with respect to the line �: this means h ∈ SQ(�) ∪ SQ(�)−1. Finally,
the condition |α| < |β| expresses the fact that the attracting fixed point of
h lies below �, i.e. h ∈ SQ(�). Indeed, to see this, we argue by continuity
and by connectedness of SQ(�). Start from the case v = 0, where h is diago-
nal: in that case, clearly h ∈ SQ(�) if and only if |α| < |β|. As we deform h,
reaching α = β would contradict 2|v| < |α− β|, and reaching α = −β would
contradict the conjunction of 2|v| < |α− β| with the determinant condition
αβ + v2 > 0. Thus |α| < |β| always holds on SQ(�) (and |α| > |β| always
holds on SQ(�)−1). �
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Recall from Theorem 3.3 that Condition (C) of Theorem B.2 is equiva-
lent to the fact that Fg,g′(ξε, ξ

′
ε′) < 0 for all (ε, ε′) ∈ {+,−}2. Let us write

h := g−1g′ =
[
a b
c d

]
∈ PGL2(R),

where a, b, c, d ∈ R satisfy ad− bc = 1.

Claim B.4. For any (ε, ε′) ∈ {+,−}2, the inequality Fg,g′(ξε, ξ
′
ε′) < 0 is

equivalent to

(B.2) |aR+ ε′b+ εc+ εε′dR−1| < |R+ εε′R−1|.

Proof. For t ∈ R, we set

D :=

[
R1/2 0

0 R−1/2

]
and Lt :=

[
cosh(t/2) sinh(t/2)
sinh(t/2) cosh(t/2)

]
,

so that pt := D−1L−1t · √−1 −→
t→ε∞ ξε and p′t′ := DLt′ ·

√−1 −→
t′→ε′∞ ξ′ε′ define

unit-speed parameterizations of � and �′ respectively. Using the identity

2 cosh d(
√−1, u · √−1) = ‖u‖2 := α2 + β2 + γ2 + δ2

αδ − βγ

for all u =

[
α β
γ δ

]
∈ G0, we find that for any t, t′ ∈ R,

2 cosh d(g · pt, g′ · p′t′) = ‖LtDhDLt′‖2
= (R2a2 + b2 + c2 +R−2d2) cosh t cosh t′

+ 2(Rab+R−1cd) cosh t sinh t′

+ 2(Rac+R−1bd) sinh t cosh t′

+ 2(ad+ bc) sinh t sinh t′.

Similarly, replacing h with the identity matrix, we find

2 cosh d(pt, p
′
t′) = (R2 +R−2) cosh t cosh t′ + 2 sinh t sinh t′.
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Taking asymptotics as t → ε∞ and t′ → ε′∞ and using the continuity in
Lemma 3.1, we finally obtain

Fg,g′(ξε, ξ
′
ε′) = lim

t→ε∞
t′→ε′∞

d(g · pt, g′ · p′t′)− d(pt, p
′
t′)

= lim
t→ε∞
t′→ε′∞

log
2 cosh d(g · pt, g′ · p′t′)

2 cosh d(pt, p′t′)

= log
(aR+ ε′b+ εc+ εε′dR−1)2

(R+ εε′R−1)2
,

from which the claim immediately follows. �

Our goal now is to prove that if h satisfies (B.2) for all (ε, ε′) ∈ {+,−}2,
then h ∈ SQ(�)SQ(�′)−1. We begin by proving something very close, namely
that (in the generic case) h belongs to ∂SQ(�) SQ(�′)−1 or SQ(�) ∂SQ(�′)−1.
We shall then pass to SQ(�)SQ(�′)−1 by a small perturbation argument.

For ε ∈ {+,−}, we define one-parameter subgroups Pε = (Pε(t))t∈R and
P ′ε = (P ′ε(t))t∈R of G0 as follows:

Pε(t) :=

[
1− t −εR−1t
εRt 1 + t

]
and P ′ε(t) :=

[
1 + t −εRt
εR−1t 1− t

]
.

The group Pε (resp. P ′ε) consists of parabolic elements fixing ξε (resp. ξ′ε)
and we have

(B.3)

{
∂SQ(�) = (P+(t))t≥0 ∪ (P−(t))t≥0,
∂SQ(�′) = (P ′+(t))t≥0 ∪ (P ′−(t))t≥0.

Claim B.5. Suppose that h satisfies (B.2) for all (ε, ε′) ∈ {+,−}2 and
that it is not a diagonal matrix. Then one of the rays (hP ′+(t))t>0 or
(hP ′−(t))t>0 intersects SQ(�) transversely, or one of the rays (P+(t)

−1h)t>0

or (P−(t)−1h)t>0 intersects SQ(�′)−1 transversely.

Proof. We see AdS3 = G0 = PSL2(R) as an open domain in the set P(M2(R))
of projectivized nonzero 2× 2 real matrices. For any subset X of P(M2(R)),
we denote by X̂ ⊂ P(M2(R)) its projective span:

• ŜQ(�) = ̂SQ(�)−1 (resp. ŜQ(�′) = ̂SQ(�′)−1) is the projective plane char-
acterized by a ratio of nondiagonal entries equal to −R2 (resp. −R−2),
as in Claim B.3;



764 J. Danciger, F. Guéritaud, and F. Kassel

• P̂+ is a projective line, equal to the union of the group P+ and of a sin-
gleton {P+(∞)} in the boundary of AdS3 in P(M2(R)); and similarly

for P̂−, P̂ ′+, P̂ ′−.

We first suppose that h /∈ ŜQ(�) ∪ ŜQ(�′), so that bR+ cR−1 and cR+

bR−1 are nonzero. For ε ∈ {+,−}2, the projective line hP̂ ′ε then intersects

the projective plane ŜQ(�) transversely at a unique point hP ′ε(t′ε), and simi-

larly P̂εh intersects ̂SQ(�′)−1 transversely at a unique point Pε(tε)
−1h, where

t′ε, tε ∈ P1(R)� {0} can both be found by solving a degree-one equation:
namely,

(B.4)

t′ε =
bR+ cR−1

R(εaR+ b)−R−1(c+ εdR−1)
,

tε =
cR+ bR−1

R(εaR+ c)−R−1(b+ εdR−1)
.

Using ad− bc = 1, we find

hP ′ε(t
′
ε) =

[
α −vR−1

vR β

]
∈ ŜQ(�),

Pε(tε)
−1h =

[
α′ v′R

−v′R−1 β′

]
∈ ̂SQ(�′)−1,

where⎧⎨
⎩

α = (εaR+ b)2 −R−2,
β = R2 − (c+ εdR−1)2,
v = acR+ 2εbc+ bdR−1,

⎧⎨
⎩

α′ = (εaR+ c)2 −R−2,
β′ = R2 − (b+ εdR−1)2,
v′ = abR+ 2εbc+ cdR−1.

Note that if t′ε �= ∞, then hP ′ε(t′ε) ∈ ŜQ(�) actually belongs to SQ(�): indeed,
by Claim B.3, this amounts to checking that |α| < |β| and 2|v| < |α− β|.
We use ad− bc = 1 again to compute⎧⎨

⎩
α+ β = R2 −R−2 + (aR+ εb+ εc+ dR−1)(aR+ εb− εc− dR−1),
β − α+ 2εv = (R−R−1)2 − (aR+ εb− εc− dR−1)2,
β − α− 2εv = (R+R−1)2 − (aR+ εb+ εc+ dR−1)2.

These three real numbers are all positive by (B.2), hence hP ′ε(t′ε) ∈ SQ(�).

Similarly, if tε �= ∞, then Pε(tε)
−1h ∈ ̂SQ(�′)−1 actually belongs to SQ(�′)−1

(just exchange b and c). Therefore, the claim reduces to proving that at least
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one of t+, t−, t′+, t′− ∈ P1(R) is a positive real. Since they are all nonzero, they
have well-defined inverses in R. The number

1

t′+
+

1

t′−
= 2

bR− cR−1

bR+ cR−1

is positive if and only if c = 0 or |b/c| > R−2; the number

1

t+
+

1

t−
= 2

cR− bR−1

cR+ bR−1

is positive if and only if c �= 0 and |b/c| < R2. Since R > 1, at least one of
these two numbers must be positive, hence at least one of t+, t−, t′+, t′− is a
positive real.

Suppose now that h ∈ ŜQ(�′)� ŜQ(�). For ε ∈ {+,−}, the projective

line hP̂ ′ε still intersects the projective plane ŜQ(�) transversely at a unique

point hP ′ε(t′ε), where t′ε ∈ P1(R)� {0} is given by (B.4). Since h ∈ ŜQ(�′),
we have b/c = −R2 by Claim B.3; in particular, |b/c| > R−2 since R > 1,
and so one of t′+ or t′− is a positive real by the above calculation. The case

h ∈ ŜQ(�)� ŜQ(�′) is similar. The case h ∈ ŜQ(�) ∩ ŜQ(�′) is ruled out by
assumption, since it corresponds to a diagonal matrix (see Claim B.3). �

Suppose that Condition (C) of Theorem B.2 holds, i.e. h = g−1g′ ∈ G0

satisfies (B.2) for all (ε, ε′) ∈ {+,−}2. If h is a diagonal matrix, then it is by
Claim B.4 a downward translation (of length at most 4 logR) along the axis
(∞, 0), perpendicular to � and �′. We can break up h into two translations
of length twice less, which belong to SQ(�) and SQ(�′)−1, yielding (D).

If h is not a diagonal matrix, then we use Claim B.5: suppose for in-
stance that the ray (hP ′+(t))t>0 intersects SQ(�) transversely. If we perturb
slightly the parabolic semigroup (P ′+(t))t>0 to a hyperbolic semigroup of
SQ(�′) translating along a line close to ξ′+, then the transversality prop-
erty remains true, showing that h ∈ SQ(�)SQ(�′)−1. Similarly, if the ray
(hP ′−(t))t>0 intersects SQ(�) transversely, or if one of the rays (P+(t)

−1h)t>0

or (P−(t)−1h)t>0 intersects SQ(�′)−1 transversely, then h ∈ SQ(�)SQ(�′)−1,
i.e. (D) holds. This completes the proof of Theorem B.2 (hence also of the
equivalent Theorem B.1).

B.2. A consequence of the proof

We now work in the setting of Theorem B.1, i.e. with left instead of right
AdS crooked planes. Here is an interesting consequence of the proof of the
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previous paragraph. Let �, �′ be two geodesic lines ofH2 with disjoint closures
in H2 ∪ ∂∞H2, transversely oriented away from each other. Let

C :=

{
h ∈ G0

∣∣∣ inf
(x,x′)∈�×�′

d(x, h · x′)− d(x, x′) > 0

}

be the set of elements h for which the left AdS crooked planes C(�) and hC(�′)
are disjoint (Theorem 3.2). If h ∈ C , then � and h · �′ have disjoint closures
in H2 ∪ ∂∞H2. Therefore C has four connected components, according to
the configuration of transverse orientations on � and h · �′. The involution
h �→ σ�hσ�′ (where σL denotes the orthogonal reflection in a line L) switches
these components in pairs. Let C0 be the component of elements h such that
the transverse orientations on � and h · �′ induced by those of � and �′ via h
are still away from each other.

Proposition B.6. Let �, �′ be two geodesic lines of H2 with disjoint closures
in H2 ∪ ∂∞H2, transversely oriented away from each other. Then the product
map restricts to homeomorphisms

SQ(�)−1 × ∂SQ(�′) ∼−→ C0 and ∂SQ(�)−1 × SQ(�′) ∼−→ C0.

Recall from (B.3) that ∂SQ(�)� {e} has two connected components,
which we denote by (P+(t))t>0 and (P−(t))t>0; they are lightlike geodesic
rays consisting of parabolic elements fixing an endpoint of �. Similarly,
∂SQ(�′)� {e} has two connected components (P ′+(t))t>0 and (P ′−(t))t>0.
In order to prove Proposition B.6, we first establish the following result,
which refines Claim B.5 in the case that � and h · �′ have disjoint closures
in H2 ∪ ∂∞H2 and are transversely oriented away from each other; it will be
applied to inverses of elements of C0.

Claim B.7. Let �, �′ be two geodesic lines of H2 and let h ∈ G0 satisfy
sup(x,x′)∈�×�′ d(x, h · x′)− d(x, x′) < 0. Suppose �, �′ have disjoint closures in

H2 ∪ ∂∞H2 and are transversely oriented away from each other, and � and
h · �′ also have disjoint closures in H2 ∪ ∂∞H2 and are transversely oriented
away from each other, for the transverse orientation induced by h. Then ei-
ther h ∈ SQ(�), or exactly one of the open rays (hP ′+(t))t>0 or (hP ′−(t))t>0

intersects SQ(�) transversely. Similarly, either h ∈ SQ(�′)−1, or exactly one
of the open rays (P+(t)

−1h)t>0 or (P−(t)−1h)t>0 intersects SQ(�′)−1 trans-
versely.

Proof of Claim B.7. As in Section B.1, we work in the upper half-plane mo-
del ofH2, where we may assume that � has endpoints (ξ+, ξ−) = (−R−1, R−1)
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and �′ has endpoints (ξ′+, ξ′−) = (R,−R), for some R > 1. The transverse ori-
entations of � and �′, away from each other, point to 0 and ∞ respectively.
Write

h =

[
a b
c d

]
∈ G0 ⊂ PGL2(R),

where a, b, c, d ∈ R satisfy ad− bc = 1. Then h satisfies (B.2) for all (ε, ε′) ∈
{+,−}2, by Theorem 3.3 and Claim B.4. Since h · �′ lies on the negative side
of �, we have |h ·R| > R−1 and |h · (−R)| > R−1, i.e.

|aR+ b| > |c+ dR−1| and |aR− b| > |c− dR−1|.

Since h−1 · � lies on the negative side of �′, we have similarly |h−1 ·R−1| < R
and |h−1 · (−R−1)| < R, i.e.

|aR− c| > |b− dR−1| and |aR+ c| > |b+ dR−1|.

Combining the four inequalities above and using the equivalence |x| > |y| ⇔
(x+ y)(x− y) > 0, we see that the four real numbers

(B.5)
aR− b− c+ dR−1, aR+ b+ c+ dR−1,
aR+ b− c− dR−1, aR− b+ c− dR−1

all have the same sign. In particular, since R > 1, the denominators of t′+
and t′− in (B.4) are nonzero and have opposite signs; since the numerators are
the same, we see that either t′+ > 0 > t′−, or t′+ = 0 = t′−, or t′+ < 0 < t′−.
The same holds for t+ and t−. Thus, by Claim B.5 and its proof, either
(hP ′+(t))t>0 intersects SQ(�) transversely (if t′+ > 0), or h ∈ SQ(�) (if t′+ =
t′− = 0), or (hP ′−(t))t>0 intersects SQ(�) transversely (if t′− > 0), and these
three cases are mutually exclusive. Similarly, either (P+(t)

−1h)t>0 intersects
SQ(�′)−1 transversely, or h ∈ SQ(�′)−1, or (P−(t)−1h)t>0 intersects SQ(�′)−1

transversely, and these three cases mutually exclusive. �
Proof of Proposition B.6. Let h ∈ C0. Applying Claim B.7 to (�, h · �′, h−1)
instead of (�, �′, h), and using the fact that ∂SQ(h · �′) = h ∂SQ(�′)h−1 by
compatibility of the transverse orientations, we see that either h ∈ SQ(�)−1

or there is exactly one connected component (P ′t)t>0 of ∂SQ(�′)� {e} such
that (hP ′t

−1)t>0 intersects SQ(�)
−1 transversely. In particular, h can be writ-

ten uniquely as the product of an element of SQ(�)−1 and of an element of
∂SQ(�′). By transversality, this decomposition depends continuously on h,
which shows that the product map SQ(�)−1 × ∂SQ(�′) → C0 is a homeomor-
phism. Similarly, the product map ∂SQ(�)−1 × SQ(�′) → C0 is a homeomor-
phism. �
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