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Hamiltonian circle action with

self-indexing moment map

Yunhyung Cho and Min Kyu Kim

Let (M,ω) be a 2n-dimensional closed symplectic manifold
equipped with a Hamiltonian circle action with only isolated fixed
points, and let μ : M → R be a moment map. Then it is well-known
that μ is a Morse function whose critical point set coincides with
the fixed point set MS1

. Let Λ2k be the set of all fixed points of
Morse index 2k. In this paper, we will show that if μ is constant on
Λ2k for each k ≤ n, then (M,ω) satisfies the hard Lefschetz prop-
erty. In particular, if (M,ω) admits a self-indexing moment map,
i.e. μ(z) = 2k for every k ≤ n and z ∈ Λ2k, then (M,ω) satisfies
the hard Lefschetz property.

1. Introduction

Throughout this paper, we denote by T a compact torus, T k a k-dimensional
compact torus, and S1 the unit circle group. Let (M,ω) be a 2n-dimensional
closed symplectic manifold. We say that ω satisfies the hard Lefschetz prop-
erty if

∧[ω]n−k : Hk(M) −→ H2n−k(M)
α �−→ α ∧ [ω]n−k

is an isomorphism for every k = 0, 1, . . . , n where [ω] is the cohomology class
in H2(M ;R) represented by ω. According to [4], the following question has
been around for many years:

Question 1.1. [4, Problem 4.2] Let (M,ω) be a closed symplectic manifold
with a Hamiltonian circle action. Assume that all fixed points are isolated.
Then does (M,ω) satisfy the hard Lefschetz property?

In this paper, we discuss about conditions under which a Hamiltonian
circle action with isolated fixed points satisfies the hard Lefschetz property.
A leading candidate for these conditions might be ‘semifree’, i.e. the action is
free outside the fixed point set. We note that a Hamiltonian circle action with
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isolated fixed points is semifree if and only if the weights on the normal bun-
dles to the fixed points are all ±1, hence ‘semifree’ is a condition on weights
of tangential S1-representations at fixed points. Actually, any Hamiltonian
semifree circle action with isolated fixed points satisfies the hard Lefschetz
property as R. Sjamaar pointed out in [4]. But there is no other result related
to Question 1.1 as far as the authors know. A motivation of this paper is a
recent result of the authors [2] which says that we can determine whether
a given closed Hamiltonian T -manifold with isolated fixed points satisfies
the hard Lefschetz property just by looking at its moment map image in
some cases. More precisely, the authors studied the hard Lefschetz property
of Hamiltonian GKM-manifolds. A GKM T -manifold, defined by Goresky,
Kottwitz, and MacPherson in [3], is an equivariantly formal T -manifold such
that the fixed point set is finite, and irreducible components of the tangen-
tial T -representation on each fixed point are pairwise linearly independent.
In [2], the authors proved that a six-dimensional closed Hamiltonian GKM
T 2-manifold with index-increasing GKM graph satisfies the hard Lefschetz
property. Hence one might guess that a moment map image, specially the
image of the 1-skeleton determines the hard Lefschetz property. In this point
of view, it is also conceivable to find such conditions on the moment map
image of the fixed point set in the case of a Hamiltonian circle action. An
elementary theory of Hamiltonian group actions says that a moment map
for a Hamiltonian circle action with isolated fixed points is a Morse function.
And, the critical point set of a moment map is equal to the fixed point set,
see [1] for the details. In this paper, we prove the following:

Theorem 1.2. Let (M,ω) be a 2n-dimensional closed symplectic manifold
equipped with a Hamiltonian circle action with only isolated fixed points, and
let μ : M → R be a corresponding moment map. Let Λ2k be the set of all fixed
points of Morse index 2k with respect to μ. If μ is constant on Λ2k for each
k ≤ n, then (M,ω) satisfies the hard Lefschetz property.

Note that the condition ‘constant μ on each Λ2k’ is weaker than the
well-known condition ‘self-indexing’ on Morse functions. A Morse function
f : M → R is called self-indexing if λ(z) = f(z) for every critical point z ∈
M , where λ(z) is a Morse index at z, see [7, p.44, Definition 4.9]. Hence if
(M,ω) admits a self-indexing moment map μ, then it satisfies the condition
in Theorem 1.2 automatically so that we have a corollary as follows:

Corollary 1.3. Let (M,ω) be a 2n-dimensional closed symplectic manifold
equipped with a Hamiltonian circle action with only isolated fixed points, and
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the corresponding moment map μ : M → R is self-indexing. Then (M,ω)
satisfies the hard Lefschetz property.

This paper is organized as follows. In Section 2, we will give a brief in-
troduction to equivariant cohomology theory for Hamiltonian circle actions.
In Section 3, we will prove Theorem 1.2. And in Section 4, we will give
several examples of Hamiltonian circle actions satisfying the condition of
Theorem 1.2.

2. Equivariant symplectic forms and Canonical classes

In this section, we briefly review an elementary equivariant cohomology the-
ory for Hamiltonian circle actions which will be used in the rest of the
paper. Throughout this section, we will assume that every coefficient of any
cohomology theory is R. Let M be an S1-manifold. Then the equivariant
cohomology H∗

S1(M) is defined by

H∗
S1(M) := H∗(M ×S1 ES1)

where ES1 is a contractible space on which S1 acts freely. Note that M ×S1

ES1 has a natural M -bundle structure over the classifying space BS1 :=
ES1/S1 so that H∗

S1(M) admits an H∗(BS1)-module structure. For the
fixed point set MS1

, the inclusion map i : MS1

↪→M induces an H∗(BS1)-
algebra homomorphism

i∗ : H∗
S1(M)→ H∗

S1(MS1

) ∼=
⊕

F⊂MS1

H∗(F )⊗H∗(BS1)

and we call i∗ the restriction map to the fixed point set. Note that for any
fixed component F ⊂MS1

, the inclusion map iF : F ↪→MS1

induces a nat-
ural projection

i∗F : H∗
S1(MS1

)→ H∗
S1(F ) ∼= H∗(F )⊗H∗(BS1).

For every α ∈ H∗
S1(M), we will denote by α|F the image i∗F (i

∗(α)). From now
on, we assume that (M,ω) is a closed symplectic manifold with a Hamil-
tonian circle action with moment map μ : M → R. Choose a Riemannian
metric g on M which is compatible with ω and S1-invariant. For each fixed
component F ⊂MS1

, let νF be a normal bundle of F in M . Then the nega-
tive normal bundle ν−F of F can be defined as a sub-bundle of νF whose fiber
over p ∈ F is a subspace of TpM tangent to an unstable submanifold of M at
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F with respect to g and μ. We denote by e−F ∈ H∗
S1(F ) the equivariant Euler

class of ν−F . In the Hamiltonian case, H∗
S1(M) has remarkable properties as

follows:

Theorem 2.1. [5] Let (M,ω) be a closed symplectic manifold with a Hamil-
tonian circle action. Then the restriction map i∗ :H∗

S1(M)→H∗
S1(MS1

) is
injective.

Theorem 2.2. [1] Let (M,ω) be a closed symplectic manifold with a Hamil-
tonian circle action. For an inclusion f : M ↪→M ×S1 ES1 as a fiber, the
induced map f∗ : H∗

S1(M)→ H∗(M) is surjective. Equivalently, H∗
S1(M) is

a free H∗(BS1)-module, i.e. M is equivariantly formal. Moreover, the ker-
nel of f∗ is given by u ·H∗

S1(M), where u is the degree-two generator of
H∗(BS1) and · is the scalar product as an H∗(BS1)-module.

By Theorem 2.2, the equivariant cohomology H∗
S1(M) is isomorphic to

H∗(M)⊗H∗(BS1) as an H∗(BS1)-module. Note that H∗(BS1) is isomor-
phic to R[u] where −u is the first Chern class of the principal S1-bundle
ES1 → BS1. McDuff and Tolman found a remarkable family of equivariant
cohomology classes as follows:

Theorem 2.3. [6, Lemma 1.12] Let (M,ω) be a closed symplectic manifold
equipped with a Hamiltonian circle action with moment map μ : M → R. For
each fixed component F ⊂MS1

, let kF be the index of F with respect to μ.
Then given any cohomology class Y ∈ H i(F ), there exists a unique class
Ỹ ∈ H i+kF

S1 (M) such that

1) Ỹ |F ′ = 0 for every fixed component F ′ ⊂MS1

with μ(F ′) < μ(F ),

2) Ỹ |F = Y ∪ e−F , and

3) the H∗(BS1)-degree of Ỹ |F ′ ∈ H∗
S1(F ′) is less than the index kF ′ of F ′

for all fixed components F ′ �= F. Here, the H∗(BS1)-degree of Ỹ |F ′ ∈
H∗

S1(F ′) is the smallest integer j such that

Ỹ |F ′ ∈
j⊕

i=0

H i(BS1)⊗H∗(F ′).

Moreover, these classes generate H∗
S1(M) as an H∗(BS1)-module.
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We call such a class Ỹ the canonical class with respect to Y . In the case
when all the fixed points are isolated, Theorem 2.3 implies the following
corollary:

Corollary 2.4. Let (M,ω) be a closed symplectic manifold equipped with
a Hamiltonian circle action with moment map μ : M → R. Assume that all
fixed points are isolated. For each fixed point F ∈MS1

, there exists a unique
class αF ∈ HkF

S1 (M) such that

1) αF |F ′ = 0 for every F ′ ∈MS1

with μ(F ′) < μ(F ),

2) αF |F = e−F =
∏

w−i u, where {w−i }1≤i≤ kF
2

are the negative weights of

the S1-representation on TFM , and

3) αF |F ′ = 0 for every F ′ �= F ∈MS1

with kF ′ ≤ kF .

Moreover, {αF }F∈MS1 is a basis of H∗
S1(M) as an H∗(BS1)-module.

Proof. The first and second statements are straightforward by Theorem 2.3.
For the third one, let F be an isolated fixed point. Since H∗

S1(F ) ∼=
H∗(BS1)⊗H0(F ), the H∗(BS1)-degree of β|F ∈ H∗

S1(F ) is the same as the
degree (as a cohomology class) of β for every β ∈ H∗

S1(M). Therefore, the
H∗(BS1)-degree of αF |F ′ is degαF = kF and kF < kF ′ by Theorem 2.3-(3),
i.e. αF |F ′ = 0 if kF ′ ≤ kF . �

There is another important class, called the equivariant symplectic class
ω̃μ ∈ H2

S1(M) with respect to μ, which satisfies the following:

Proposition 2.5. [1] For a given closed Hamiltonian S1-manifold with
only isolated fixed points with moment map μ, there exists an equivariant
symplectic class ω̃μ such that

1) f∗ω̃μ = ω,

2) ω̃μ|F = −μ(F )u for every F ∈MS1

.

3. Proof of Theorem 1.2

Let (M,ω) be a closed symplectic manifold equipped with a Hamiltonian
circle action with only isolated fixed points. Let μ : M → R be a moment
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map whose minimum is zero, and let

Λ2k = {F 2k
1 , . . . , F 2k

b2k}

be the set of all fixed points of index 2k. Here, b2k := b2k(M) is the 2k-th
Betti number of M . Then F 0

1 is the unique fixed point with μ(F 0
1 ) = 0 by

our assumption on μ. Throughout this section, we assume that μ is constant
on each Λ2k so that

μ(F 2k
1 ) = · · · = μ(F 2k

b2k) = c2k

for every k ≤ n and some c2k ∈ R. Let {αF | F ∈MS1} be the set of all
canonical classes described in Corollary 2.4. To simplify our proof, we will
denote by βF := 1∏

i w
−
i

αF , where {w−i }1≤i≤ kF
2

are the negative weights of

S1-representation on TFM so that βF |F = ukF /2 by Corollary 2.4. To prove
the main theorem, we need the following series of lemmas:

Lemma 3.1. For the equivariant symplectic class ω̃μ ∈ H2
S1(M), we have

ω̃μ = −c2 · (βF 2
1
+ · · ·+ βF 2

b2
).

Proof. Since M is equivariantly formal by Theorem 2.2, the equivariant
cohomology H∗

S1(M) is isomorphic to the free H∗(BS1)-module H∗(M)⊗
H∗(BS1). Hence we have

H2
S1(M) ∼=

(
H0(M)⊗H2(BS1)

)
⊕
(
H2(M)⊗H0(BS1)

)
.

By the last statement of Corollary 2.4, the set

{
uβF 0

1
= u, βF 2

1
, . . . , βF 2

b2

}

forms an R-basis of H2
S1(M). So we may let

ω̃μ = a0 · uβF 0
1
+
(
a1 · βF 2

1
+ · · ·+ ab2 · βF 2

b2

)

for some real constants a0, a1, . . . , ab2 . Since each βF 2
i
vanishes on F 0

1 for
i = 1, . . . , b2 by Corollary 2.4, we have

ω̃μ|F 0
1
= a0 · u = −μ(F 0

1 )u = 0
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by Proposition 2.5 and our assumption on μ. Hence we have a0 = 0. Again
by Corollary 2.4, each βF 2

i
vanishes on F 2

j for every j �= i so that we have

ω̃μ|F 2
i
= ai · u = −μ(F 2

i )u = −c2u.

Therefore, we have a1 = · · · = ab2 = −c2. This finishes the proof. �

Lemma 3.2. Let μ2k := μ− c2k be a new moment map for each k ≤ n.
Then the equivariant symplectic class ω̃μ2k

vanishes on Λ2k.

Proof. By Proposition 2.5, we have ω̃μ2k
|F = −(μ(F )− c2k

)
u for every fixed

point F ∈MS1

. Hence we have

ω̃μ2k
|F 2k

i
= −(μ(F 2k

i )− c2k
)
u = 0

for every i = 1, . . . , b2k. �

Lemma 3.3. The n+ 1 numbers c2k’s are all distinct.

Proof. Assume that c2i = c2j for some i �= j. Then the class

η = ω̃μ0
· ω̃μ2

· · · ̂̃ωμ2i
· · · ω̃μ2n

∈ H2n
S1 (M)

is an equivariant extension of ωn ∈ H2n(M). By Lemma 3.2, η vanishes on
Λ2k for every k = 0, 1, . . . , n so that η vanishes on every fixed point, i.e. η is
a zero class in H∗

S1(M) by Theorem 2.1. Since ωn is nonzero in H2n(M), it
contradicts that η is an extension of ωn. �

Lemma 3.4. If an element γ in H2k
S1(M) vanishes on Λ2i for every i ≤ k,

then γ is zero in H2k
S1(M). Similarly, if γ in H2k

S1(M) vanishes on Λ2i for
every i ≥ n− k, then γ is zero in H2k

S1(M).

Proof. By Corollary 2.4, the set

{
uk−i · βF 2i

j

∣∣ 0 ≤ i ≤ k, 1 ≤ j ≤ b2i
}

is an R-basis of H2k
S1(M) so that γ is uniquely expressed as follows:

(3.1) γ =
∑

0≤i≤k, 1≤j≤b2i
pi,j · uk−i · βF 2i

j

for some real coefficients pi,j ’s. By our assumption, γ vanishes on every fixed
point of index less than or equal to 2k. First, the restriction of γ on the fixed
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point F 0
1 with index zero is zero by our assumption so that

γ|F 0
1
= p0,1 · uk = 0.

Hence we have p0,1 = 0. Next, consider the restriction of γ on index two
fixed points F 2

j for any j. Then we have

γ|F 2
j
= p1,j · uk = 0.

Hence we have p1,j = 0 for every j ≤ b2(M). In this way, every pi,j becomes
zero. So, we obtain a proof for the first statement.

The proof of the second statement is done in exactly the same way with
respect to the moment map −μ. �

Now, we are ready to prove our main theorem.

Proof of Theorem 1.2. For some 2k < n, assume that

∧ωn−2k : H2k(M) −→ H2n−2k(M)
α �−→ α ∧ ωn−2k

has a nonzero kernel γ ∈ H2k(M), i.e. γ ∧ ωn−2k is zero in H2n−2k(M). By
Theorem 2.2, M is equivariantly formal so that there is an equivariant ex-
tension γ̃ ∈ H2k

S1(M) of γ such that f∗(γ̃) = γ where f : M ↪→M ×S1 ES1

is an inclusion as a fiber. Since the kernel of f∗ is the ideal u ·H∗
S1(M) by

Theorem 2.2, we may choose γ̃ such that γ̃ vanishes on Λ2i for every i < k by
arguments similar to the proof of Lemma 3.4. We denote by μ2k a moment
map for the given circle action such that μ2k vanishes on Λ2k. Then the class

δ = γ̃ · (ω̃μ2k
· ω̃μ2k+2

· · · ω̃μ2n−2k−2

) ∈ H2n−2k
S1 (M)

is an equivariant extension of γ ∧ ωn−2k satisfying δ|F = 0 for every fixed
point F of index less than 2n− 2k by the following two reasons:

1) γ̃ vanishes on Λ2i for every i < k by definition,

2) ω̃μ2k
· ω̃μ2k+2

· · · ω̃μ2n−2k−2
vanishes on Λ2i for every k ≤ i ≤ n− k − 1

by Lemma 3.2.
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If we express δ by (3.1) as follows:

δ =
∑

0≤i≤n−k, 1≤j≤b2i
pi,j · un−k−i · βF 2i

j
,

then the vanishing of δ on Λ2i for i < n− k implies pi,j = 0 for every i <
n− k by the same proof of Lemma 3.4. So we have

δ =
∑

1≤j≤b2n−2k

pn−k,j · βF 2n−2k
j

.

But since γ ∧ ωn−2k = 0 by our assumption, we have δ ∈ ker f∗ and therefore
δ ∈ u ·H∗

S1(M) by Theorem 2.2, i.e. pn−k,j = 0 for every j. Consequently,
we have δ = 0 in H2n−2k

S1 (M), i.e. δ|F = 0 for every fixed point F by Theo-
rem 2.1.

Note that if γ̃|F �= 0 for some fixed point F of index greater than or
equal to 2n− 2k, then

δ|F = γ̃|F ·
(
ω̃μ2k

|F · ω̃μ2k+2
|F · · · ω̃μ2n−2k−2

|F
)

= γ̃|F ·
(
c2k − μ(F )

) · · · (c2n−2k−2 − μ(F )
) �= 0

by Proposition 2.5 and Lemma 3.3. Hence γ̃|F = 0 for every fixed point F of
index greater than or equal to 2n− 2k. By Lemma 3.4 again, we have γ̃ = 0
in H2k

S1(M) so that γ = 0 in H2k(M). This finishes the proof. �

4. Examples

In the section, we give the examples that we mentioned in Section 1.

Example 4.1. First, we introduce a well-known example of a six-
dimensional coadjoint orbit of SU(3). The Lie algebra su(3) of SU(3) consists
of all traceless 3× 3 skew-Hermitian matrices. Let T and t be the standard
maximal torus of SU(3) and its Lie algebra, i.e. T and t are subsets of di-
agonal matrices in SU(3) and su(3), respectively. We identify su(3) (resp. t)
with its dual su(3)∗ (resp. t∗) through the Killing form on su(3). Let D0 ∈ t∗

be the diagonal element with entries
√−1, 0, −√−1. The coadjoint orbit

M ⊂ su(3)∗ of SU(3) through the matrix D0 is defined as the orbit of D0 by
the coadjoint action of SU(3) on su(3)∗, i.e. conjugation. The coadjoint orbit
endowed with the Kostant-Kirillov symplectic form is a symplectic manifold
and (trivially) invariant under the coadjoint T -action on su(3)∗, see [1, p.61].
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Figure 4.1: A moment map image of a six-dimensional coadjoint orbit of
SU(3).

The map

μ : M → t∗, (aij)1≤i,j≤3 �−→ (δij · aij)1≤i,j≤3
is a moment map for the T -action on M, where δij is the Kronecker delta
function. Under the identification

t∗ → R
2,

⎛
⎝ x

√−1 0 0
0 y

√−1 0
0 0 −(x+ y)

√−1

⎞
⎠ �−→ (x, y),

the moment map image is depicted in Figure 4.1: the black dots are images
of the six fixed points. The vector ξ = (−1, 1) in the Lie algebra t defines a
circle subgroup in T, and μξ := 〈μ, ξ〉 is a moment map for the circle action,
where 〈 , 〉 is the evaluation pairing between t∗ and t. Then, we have

μξ = −2 on Λ0, μξ = −1 on Λ2,
μξ = 1 on Λ4, μξ = 2 on Λ6.

So, the moment map μξ satisfies the condition of Theorem 1.2.

The coadjoint orbit endowed with the Kostant-Kirillov symplectic form
is Kähler, see [9, p.311]. So, readers might want to see a non-Kähler example.
But, there is no known example of non-Kähler Hamiltonian circle action with
nonempty isolated fixed point set yet. Instead, we give an example such that
we do not know whether it is Kähler.

Example 4.2. In [8] (see also [9]), Tolman constructed a six-dimensional
Hamiltonian T 2-manifold with isolated fixed points. She proved that her
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example does not admit any T 2-invariant Kähler structure. Its moment map
image is Figure 4.2, see [9, Fig. 1.(3)]. The vector ξ = (−1, 1) in the Lie
algebra t of T defines a circle subgroup in T 2, and μξ is a moment map for
the circle action. Then,

μξ = −4 on Λ0, μξ = −1 on Λ2,
μξ = 1 on Λ4, μξ = 4 on Λ6.

The moment map μξ satisfies the condition of the main theorem. But it is
still open whether Tolman’s example might admit a non-invaraint Kähler
structure, see [9, Section 4]. Hence Theorem 1.2 is nontrivial for the circle
action.

Figure 4.2: Tolman’s example.

Next examples are monotone semifree Hamiltonian circle actions.

Example 4.3. Let (M,ω) be a 2n-dimensional closed monotone symplec-
tic manifold, i.e. a symplectic manifold satisfying ω = c1(M), where c1(M)
is the first Chern class of M with respect to some ω-tamed almost com-
plex structure J . Assume that (M,ω) admits a semifree Hamiltonian circle
action with only isolated fixed points. Then there exists a unique moment
map μ : M → R such that ω̃μ = cS

1

1 (M) ∈ H2
S1(M ;R), where cS

1

1 (M) is the
equivariant first Chern class of M . Note that the Morse index λ(F ) is twice
the number of negative weights of the tangential S1-representation at F for
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each fixed point F ∈MS1

. Since we assumed that the action is semifree, we
have

−μ(F )u = ω̃μ|F = cS
1

1 (M)|F = (pF − nF )u = (n− 2nF )u

by Proposition 2.5, where pF (resp. nF ) is the number of positive (resp.
negative) weights of the tangential representation at F . Hence we have (μ+
n)(F ) = 2nF = λ(F ) so that μ̃ := μ+ n is the self-indexing moment map.

Example 4.4. We give a concrete example of a monotone semifree Hamil-
tonian circle action with eight fixed points. Let ω be the Fubini-Study form
divided by π/2 on CP 1. Then, the first Chern class c1(CP

1) of CP 1 is equal
to ω, and CP 1 with ω is a symplectic manifold which is invariant under
the usual action of S1. And, a moment map μ : CP 1 → R1 = L(S1) for the
action takes CP 1 onto [0, 2], where L(S1) is the Lie algebra of S1.

Figure 4.3: A moment map image of (CP 1)3.

Considering the diagonal action of (S1)3 on (CP 1)3, the map

μ : (CP 1)3 −→ R
3, (z1, z2, z3) �−→

(
μ(z1), μ(z2), μ(z3)

)

is a moment map for the action of T = (S1)3, where t∗ = R3. The vector
ξ = (1, 1, 1) in the Lie algebra t defines a circle subgroup in T, and μξ is
a moment map for the circle action. Then, μξ is the self-indexing moment
map.
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