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Inflexibility, Weil-Petersson distance, and

volumes of fibered 3-manifolds

Jeffrey F. Brock and Kenneth W. Bromberg

A recent preprint of S. Kojima and G. McShane [27] observes a
beautiful explicit connection between Teichmüller translation dis-
tance and hyperbolic volume. It relies on a key estimate which we
supply here: using geometric inflexibility of hyperbolic 3-manifolds,
we show that for S a closed surface, and ψ ∈ Mod(S) pseudo-
Anosov, the double iteration Q(ψ−n(X), ψn(X)) has convex core
volume differing from 2n vol(Mψ) by a uniform additive constant,
where Mψ is the hyperbolic mapping torus for ψ. We combine this
estimate with work of Schlenker, and a branched covering argu-
ment to obtain an explicit lower bound on Weil-Petersson transla-
tion distance of a pseudo-Anosov ψ ∈ Mod(S) for general compact
S of genus g with n boundary components: we have

vol(Mψ) ≤ 3

2

√
area(S) ‖ψ‖WP

where area(S) = 2π(2g − 2 + n) is the usual Poincaré area of any
complete finite area hyperbolic structure on int(S). This gives the
first explicit estimates on the lengths of Weil-Petersson systoles of
moduli space, of the minimal distance between nodal surfaces in
the completion of Teichmüller space, and explicit lower bounds to
the Weil-Petersson diameter of the moduli space via [20]. In the
process, we recover the estimates of [27] on Teichmüller translation
distance via a Cauchy-Schwarz estimate (see [29]).

1. Introduction

Let S be a closed surface of genus g > 1. Let ψ : S → S be a pseudo-Anosov
element of Mod(S), Qn = Q(ψ−n(X), ψn(X)) quasi-Fuchsian simultaneous
uniformizations, and Mψ the hyperbolic mapping torus for ψ. Let core(Qn)
denote the convex core of Qn. We will prove the following theorem.
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Theorem 1.1. The quantity

| vol(core(Qn))− 2n vol(Mψ)|

is uniformly bounded.

The possibility of such a result was suggested in [9, §1]. It gives an
alternative, more direct proof of the main result of that paper comparing
hyperbolic volume of Mψ and Weil-Petersson translation distance of ψ as
a direct corollary of a similar comparison in the quasi-Fuchsian case [8]. A
recent preprint of S. Kojima and G. McShane shows how this suggestion
can be used to give sharper bounds between volume of Mψ and normalized
entropy, or the translation distance in the Teichmüller metric of ψ.

In addition to supplying a proof of Theorem 1.1, we focus here on volume
implications for the Weil-Petersson metric on Teichmüller space. Indeed, by
analyzing the renormalized volume, a variant of convex core volume intro-
duced by E. Witten [41], Jean-Marc Schlenker improved the upper bound
in [9], for closed S with genus at least 2.

Theorem 1.2. (Schlenker) Let S be a closed surface of genus g > 1 and
let X, Y lie in Teich(S). There is a constant KS > 0 so that

vol(core(Q(X,Y ))) ≤ 3
√
π(g − 1) dWP(X,Y ) +KS .

(See [35, Cor. 1.4]).
The Weil-Petersson translation length of ψ as an automorphism of

Teich(S) is defined by taking the infimum

‖ψ‖WP = inf
X∈Teich(S)

dWP(X,ψ(X)).

Daskalopoulos and Wentworth [23] showed this infimum is realized by some
X in Teich(S) when ψ is pseudo-Anosov.

When S = Sg,n has genus g and n boundary components and χ(S) < 0,
the Teichmüller space Teich(S) parametrizes finite area marked hyperbolic
structures on int(S) up to marking preserving isometry. We take area(S) to
denote the Poincaré area of any X ∈ Teich(S), namely

area(S) = 2π(2g − 2 + n).

Combining Theorem 1.1, Theorem 1.2, and a branched covering argument,
we obtain the following Theorem.
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Theorem 1.3. Let S be a compact surface with genus g and n boundary
components χ(S) < 0 and let ψ ∈ Mod(S) be pseudo-Anosov. Then we have

vol(Mψ) ≤ 3

2

√
area(S) ‖ψ‖WP.

The case when S is closed readily follows from Theorem 1.1 and Theo-
rem 1.2. When S has boundary, a branched covering argument allows us to
recover the estimates from the closed case; we defer the proof to section 4.

Given X, Y ∈ Teich(S), it is frequently natural to consider the normal-
ized Weil-Petersson distance

dWP∗(X,Y ) =
dWP(X,Y )√

area(S)
.

Passage to finite covers of S yields an isometry of normalized Weil-Petersson
metrics, as is the case with the Teichmüller metric.

Then by an application of the Cauchy-Schwarz inequality (see [29]), we
have for each X, Y in Teich(S) the bound

dWP∗(X,Y ) ≤ dT (X,Y )

from which we conclude

‖ψ‖WP∗ ≤ ‖ψ‖T ,
where ‖ψ‖WP∗ denotes the translation distance of ψ in the normalized Weil-
Petersson metric. As it follows from Theorem 1.3 that

vol(Mψ) ≤ 3

2
area(S) ‖ψ‖WP∗ ≤ 3

2
area(S) ‖ψ‖T ,

we recover the Theorem of [27] concerning volumes and Teichmüller trans-
lation distance for arbitrary compact S.

We note that the study of normalized entropy and dilatation has seen
considerable interest of late, note in particular the papers of [2], and [24]
which have greatly improved our understanding of fibered 3-manifolds of
low dilatation. The work of [27] has been particularly important here, giv-
ing a new proof of a weaker version of the finiteness theorem of [24], specifi-
cally, the statement that all mapping tori arising from pseudo-Anosov mon-
odromy of bounded dilatation arise from Dehn filling of those from a finite
list. We remark that an analogous Theorem where a bound on the normal-
ized Weil-Petersson translation distance replaces a bound on the dilatation is
immediate from [9], by applying Gromov’s theorem that hyperbolic volume
decreases under Dehn-filling [39, Thm. 6.5.6].
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We will focus our attention primarily on implications for Teichmüller
space with the Weil-Petersson metric.

Weil-Petersson geometry. Work of the first author relating Weil-
Petersson geometry to volumes of quasi-Fuchsian and fibered hyperbolic 3-
manifolds [8, 9] factors through relationships with a combinatorial structure
related to each, the pants graph P (S) whose vertices are pants decomposi-
tions of the surfaces S and whose edges connect pants decompositions related
by certain elementary moves.

More direct interrelations between Weil-Petersson geometry and the uni-
formization of hyperbolic 3-manifolds had been developed from a different
point of view by Taktajan, Zograf and Teo, ([37, 38]) in their study of the Li-
ouville action which agrees with renormalized volume. In different contexts,
this renormalized volume plays the role of a potential for the Weil-Petersson
symplectic form. In a related construction, C. McMullen showed that the
difference between Fuchsian and quasi-Fuchsian projective structures yields
a bounded 1-form on moduli space that is a primitive for the Weil-Petersson
metric, showing the Moduli space is Kähler hyerbolic in the sense of Gromov
[32].

Schlenker’s Theorem (Theorem 1.2) was the first to relate the notion of
renormalized volume to the connection between Weil-Petersson distance and
convex core volume (see [28] for a detailed account of renormalized volume
from a geometric perspective). All the above connections raise further ques-
tions about a more direct relationship between these quantities. Indeed, in
[30] Manin and Marcolli raise the expectation of an exact formula relating
the two, but joint work of the first author with Juan Souto [15] shows

Theorem 1.4. ([15]) There is no continuous function f : R→ R so that
given ψ ∈ Mod(S),

f(vol(Mψ)) = ‖ψ‖WP.

Similar results hold for the quasi-Fuchsian case.
Nevertheless, for a given S, the first author and Yair Minsky show the

following further similarity with the distribution of lengths of closed Weil-
Petersson geodesics in the Riemann moduli space M(S) with the set of
hyperbolic volumes of fibered manifolds [14].

Theorem 1.5. [14] (Length Spectrum) The extended Weil-Petersson
geodesic length spectrum of M(S) is a well ordered subset of R, with order
type ωω.
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Here, the extended length spectrum refers to the set of lengths of closed
geodesics together with lengths of extended mapping classes, automorphisms
of a Teichmüller-Coxeter complex introduced by Yamada, where Dehn-twist
iterations can take infinite powers. Such limiting elements behave as billiard
paths on the moduli space with the Weil-Petersson completion, intersecting
the compactification with equal angle of incidence and reflection (see [44],
[46]).

It is natural to speculate regarding the value of the bottom of this spec-
trum, or the length of the Weil-Petersson systole of the moduli spaceM(S):
Theorem 1.3 gives the first explicit estimates on the length of this shortest
closed geodesic. It was shown by Gabai, Meyerhoff, and Milley [25] that the
smallest volume closed orientable hyperbolic 3-manifold is the Weeks mani-
fold W, obtained by (5, 2) and (5, 1) Dehn surgeries on the Whitehead link.
An explicit formula for its volume is given by

vol(W) =
3 · 233/2ζk(2)

4π4
= 0.9427 . . .

where ζk is the Dedekind zeta function of k, where k is a number field Q(θ)
generated by θ, and θ satisfies θ3 − θ + 1 = 0 [21].

Applying Theorem 1.3, we conclude the following lower bound on the
length of the Weil-Petersson systole of M(S) for S a closed surface.

Theorem 1.6. (Weil-Petersson Systole - Closed Case) Let S be
a closed surface with genus g > 1, and let γ be the shortest closed Weil-
Petersson geodesic in the moduli space M(S). Then we have

vol(W)

3
√
π(g − 1)

≤ 	WP(γ).

We remark that a recent result of Agol, Leininger and Margalit [2] pro-
vides an upper bound:

	WP(γ) ≤
2
√
π log(3+

√
5

2 )√
(g − 1)

.

Similarly, Cao and Meyerhoff [19] show that the smallest volume among
orientable cusped hyperbolic 3-manifolds is realized by the figure eight knot
complement and its sibling, obtained by (5, 1) Dehn surgery on the White-
head link complement. Their common volume is 2V3 where V3 is the volume
of the regular ideal hyperbolic tetrahedron. An application of this bound
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yields a similar result for the Weil-Petersson systole of the moduli space of
punctured surfaces.

Theorem 1.7. (Weil-Petersson Systole - Punctured Case) Let
S be a surface of genus g with n > 0 boundary components and χ(S) < 0,
and let γ be the shortest closed Weil-Petersson geodesic in the moduli space
M(S). Then we have

4V3
3
√

area(S)
≤ 	WP(γ).

Known upper bounds require a more involved discussion, which we omit
here.

The Weil-Petersson inradius of Teichmüller space. It is remarkable
that even to estimate the distance between nodal surfaces at infinity in the
Weil-Petersson metric has been an elusive problem. Theorem 1.3 provides
the first explicit means by which to do this, through a limiting process
involving Dehn-twist iterates about a longitude-meridian pair (α, β) on the
punctured torus.

Specifically, letting S be the one-holed torus, we identify the upper-half-
plane H2 with Teich(S). Then Mod(S) = SL2(Z) acts by isometries, and we
consider the family

ψn = τnα ◦ τ−nβ
of composed n-fold Dehn-twists about simple closed curves α and β on S
with i(α, β) = 1 on S. Up to conjugation, we have

ψn =

[
1 n
0 1

] [
1 0
n 1

]

in SL2(Z). Then Theorem 1.3 gives

vol(Mψn
) ≤ 3

√
π

2
‖ψn‖WP.

The manifolds Mψn
converge geometrically to the compelement of the Bor-

romean rings in S3, which has volume 2V8 or twice the volume V8 = 3.6638 . . .
of the regular ideal hyperbolic octahedron, while the right hand side con-
verges to twice the (finite) length of the imaginary axis in the upper half
plane H2 in the Weil-Petersson metric on the Teichmüller space of the one-
holed torus (see [10]).

Then we obtain:
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Theorem 1.8. (Weil-Petersson Inradius) Let S = S1,1 be the one-
holed torus. The Weil-Petersson length of the imaginary axis I satisfies

1

3

√
2

π
V8 ≤ 	WP(I) ≤ 2

√
30π

3

4 .

Numerically this gives

0.9744 . . . ≤ 	WP(I) ≤ 25.8496 . . .

illustrating that there is room for improvement in these estimates. The upper
bound arises from estimates on the length of the systole sys(X) of a hyper-
bolic surface X, together with Wolpert’s upper bound of

√
2π 	X(sys(X))

[45, Cor 4.10] on the distance from X to a nodal surface where a curve of
shortest length 	X(sys(X)) on X is pinched to a cusp (see [20]).

The axis I is isometric to each edge e of the Farey graph F = Γ(I), where
Γ = SL2(Z), joining pairs of rationals (pq ,

r
s) with

∣∣∣∣ p q
r s

∣∣∣∣ = ±1
or the extended distance

∞

−1 1

0

1
2

− 1
2

2−2

Figure 1: The Farey graph under stereographic projection to Δ.

dWP

(
p

q
,
r

s

)
= dWP(0,∞)
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between closest points in the completion

Teich(S) = H2 ∪ (Q ∪∞)

of the Teichmüller space of the punctured torus with the Weil-Petersson
metric (see Figure 1). In section 5, we apply Theorem 1.8 to obtain the first
explicit constants of comparison of distance in the Farey graph with Weil-
Petersson distance between rational points in the completion, first appearing
in [8].

Weil-Petersson diameter of Moduli space. The length 	WP(I) is in-
strumental in the estimation of the Weil-Petersson diameter of moduli space
[20]. Noting that the Weil-Petersson length of I in the Teichmüller space of
the four-holed sphere is twice its length in the Teichmüller space of the
one-holed torus, we may combine Theorem 1.8 with results of [20] relating
this length to the diameter of moduli space to obtain the following explicit
estimates:

Theorem 1.9. Let S = Sg,n have χ(S) < 0, and let Mg,n =M(Sg,n), the
moduli space of genus g Riemann surfaces with n punctures. Then we have
the following:

diamWP(M1,1) ≥ 1

6

√
2

π
V8,

diamWP(M0,4) ≥ 1

3

√
2

π
V8,

and otherwise for 3g − 3 + n ≥ 2,

diamWP(Mg,n) ≥ 1

3
√
π
V8

√
2g + n− 4.

Proof. The imaginary axis in H projects 2-to-1 to a geodesic in M1,1 of
half its original Weil-Petersson length, which is estimated in Theorem 1.8.
The Weil-Petersson metric on M0,4 is isometric to twice that of M1,1. The
general estimate follows from the totally geodesically embedded M0,2g+n

strata in the completion of Mg,n, as observed in [20, Prop. 5.1]. �
We note that dividing by

√
area(S) gives an explicit, positive lower bound

to the normalized Weil-Petersson diameter

diamWP∗(M(S)) = diamWP(M(S))/
√

area(S)

of moduli spaces M(S) that is independent of S (cf. [20, Prop. 5.1]).
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Corollary 1.10. The normalized Weil-Petersson diameter of Mg,n satis-
fies

diamWP∗(Mg,n) ≥ 1

π 3
√
2
V8.

History. The original version of [27] relied without proof on a remark in
[9] suggesting a proof of Theorem 1.1 should be possible using the idea of
geometric inflexibility from [31] and [12]. The present paper supplies such
a proof, as a means toward employing Schlenker’s improvement [35, Cor.
1.4] to the upper bound in [8, Thm. 1.2] to obtain new explicit estimates
on the Weil-Petersson geometry of Teichmüller and moduli space. After
we presented our arguments in Curt McMullen and Martin Bridgeman’s
Informal Seminar at Harvard, a revision to [27] presented an independent
proof of Theorem 1.1 (as well as version of Theorem 1.3 restricted to closed
surfaces) and McMullen provided a succinct argument for a slightly weaker
version of Theorem 1.1 directly from Thurston’s Double Limit Theorem and
the strong convergence of Qn to the fiber Q∞ ([18], see also [12, Thm.
1.2]). His argument appears in his Seminar Notes available on his webpage,
together with other estimates for Lp metrics on Teichmüller space (and
alongside notes from our lecture). We have retained the inflexibility approach
here to illustrate its utility.
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2. Preliminaries

We review background for our results.

Weil-Petersson geometry. The above results give new explicit estimates
on the geometry of Teichmüller space with the Weil-Petersson metric. The
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Weil-Petersson metric arises from the hyperbolic L2-norm on the space of
quadratic differentials Q(X) on a Riemann surface X, given by

‖ϕ‖2WP =

∫
X

|ϕ|2
ρX

with ρX the hyperbolic metric on X. Though known to be geodesically con-
vex [43] it is not complete [22, 42]. It has negative curvature [4], but its
curvatures are bounded away neither from 0 nor negative infinity. In [23],
Daskalopoulos and Wentworth showed that a pseudo-Anosov automorphism
ψ ∈ Mod(S) has an invariant geodesic axis along which ψ translates. A prim-
itive pseudo-Anosov element ψ ∈ Mod(S), therefore, determines a closed
Weil-Petersson geodesic in the quotient moduli space of Riemann surfaces
M(S) whose length is the Weil-Petersson translation distance ‖ψ‖WP of ψ.

The complex of curves. Let S be a compact surface of genus g with n
boundary components. The complex of curves C(S) is a 3g − 4 dimensional
complex, each vertex of which is associated to a simple closed curve on the
surface S up to isotopy, and so that k-simplices span collections of k + 1
vertices whose associated curves are disjoint. Masur and Minsky proved
C1(S) is a δ-hyperbolic metric space with the distance dC(., .) given by the
edge metric.

Given S there is a an LS so that for each X ∈ Teich(S) there is a γ ∈
C(S) so that 	X(γ) < LS . By making such a choice of γ for each X we obtain
a coarsely well-defined projection

πC : Teich(S)→ C0(S).

We refer to the distance between a point X in Teichmüller space and a curve
γ in C0(S) with the notation:

dC(X, γ) = dC(πC(X), γ).

Quasi-Fuchsian manifolds. Each pair (X,Y ) ∈ Teich(S)× Teich(S) de-
termines a quasi-Fuchsian simultaneous uniformization Q(X,Y ) with X and
Y in its conformal boundary. This is the quotient

Q(X,Y ) = H3/ρX,Y (π1(S))

of a quasi-Fuchsian representation of the fundamental group

ρX,Y : π1(S)→ PSL2(C).
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The quasi-Fuchsian representations sit as the interior of the space
AH(S) of all marked hyperbolic 3-manifolds homotopy equivalent to S up
to marking-preserving isometry, with the topology of convergence on gener-
ators of the fundamental group. For more information, see [1, 11, 13, 16, 17].

A complete hyperbolic 3-manifold M , marked by a homotopy equiva-
lence

f : S →M

determines a point in AH(S) up to equivalence - we denote such a marked
hyperbolic 3-manifold by the pair (f,M). Equipping M with a baseframe
(M,ω) determines a specific representation ρ : π1(S)→ PSL2(C) and a
Kleinian surface group

Γ = ρ(π1(S)).

The geometric topology on such based hyperbolic 3-manifolds records
geometric information: a sequence (Mn, ωn) converges to (M,ω∞) if for each
ε, R > 0 there is an N > 0, and for all n > N we have embeddings

ϕn : (BR(ω), ω)→ (Mn, ωn)

from the R-ball around ω toMn, whose derivatives send ω∞ to ωn and whose
bi-Lipschitz constants are at most 1 + ε at all points of BR(ω∞).

The convergent sequence (fn,Mn)→ (f∞,M∞) in AH(S) converges
strongly if there are baseframes ωn in Mn and ω∞ ∈M∞ so that the re-
sulting ρn converge to the resulting ρ∞ on generators, and the manifolds
(Mn, ωn) converge geometrically to (M∞, ω∞).

Convex core width. Given M ∈ AH(S), let dM (U, V ) be the minimal
distance between subsets U and V in M . We prove the following in [12].

Theorem 2.1. Given ε, L > 0, there exist K1 and K2 so that if M ∈
AH(S) and α and β in C0(S) have representatives α′ and β′ with 	M (α′)
and 	M (β′) bounded above by L and below by ε, then

dM (α, β) ≥ K1dC(α, β)−K2

It is due to Bers that

2	X(γ) ≥ 	Q(X,Y )(γ).

Thus Theorem 2.1 serves to bound from below the width of the convex core
of Q(X,Y ) (the distance between its boundary components) in terms of the
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curve complex distance. Such convex core width estimates will be important
to our application of the inflexibility theory outlined in the next section.

3. Geometric Inflexibility

To prove Theorem 1.1, our key tool will be the inflexibility theorem of [12].

Theorem 3.1. (Geometric Inflexibility) Let M0 and M1 be complete
hyperbolic structures on a 3-manifold M so that M1 is a K-quasi-conformal
deformation of M0, π1(M) is finitely generated, and M0 has no rank-one
cusps.

There is a volume preserving K3/2-bi-Lipschitz diffeomorphism

Φ: M0 →M1

whose pointwise bi-Lipschitz constant satisfies

log bilip(Φ, p) ≤ C1e
−C2d(p,M0\core(M0))

for each p∈M≥ε, where C1 and C2 depend only on K, ε, and area(∂ core(M0)).

The existence of a volume preserving, K3/2 bi-Lipschitz diffeomorphism
was established by Reimann [34], using work of Ahlfors [5] and Thurston
[39] (see McMullen [31] for a self-contained account). That the bi-Lipschitz
constant decays exponentially fast with depth in the convex core at points
in the thick part follows from comparing L2 and pointwise bounds on har-
monic strain fields arising from extending a Beltrami isotopy realizing the
deformation. Exponential decay of the L2 norm in the core can be converted
to pointwise bounds via mean value estimates, building on work in the cone-
manifold deformation theory of hyperbolic manifolds due to Hodgson and
Kerckhoff [26] and the second author [16].

Inflexibility was used in [12] to give a new, self-contained proof of
Thurston’s Double Limit Theorem, and the hyperbolization theorem for
closed 3-manifolds that fiber over the circle with pseudo-Anosov monodromy.

Theorem 3.2. (Thurston) Let S be a closed hyperbolic surface. The double
iteration Q(ψ−n(X), ψn(X)) converges algebraically and geometrically to the
limit Q∞, the infinite cyclic cover of the mapping torus Mψ corresponding
to the fiber S.
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The manifolds

Qn = Q(ψ−n(X), ψn(X))

admit volume preserving, uniformly bi-Lipschitz Reimann maps

φn : Qn → Qn+1

as in Theorem 3.1. The key to obtaining Theorem 3.2 from Theorem 3.1 is
an analysis of the growth rate of the convex core diameter in terms of the
curve complex.

We will employ the following key consequence of inflexibility [12, Propo-
sition 9.7].

Proposition 3.3. Given ε, R, L,C > 0 there exist B,C1, C2 > 0 such that
the following holds. Assume that K is a subset of QN such that diam(K) < R,
injp(K) > ε for each p ∈ K and γ ∈ C0(S) is represented by a closed curve
in K of length at most L satisfying

min{dC(ψN+n(Y ), γ), dC(ψ−N−n(X), γ)} ≥ Kψn+B

for all n ≥ 0. Then we have

log bilip(φN+n, p) ≤ C1e
−C2n

for p in φN+n−1 ◦ · · · ◦ φN (K) and
C1

1− e−C2
< C.

The simple closed curve γ serves to control the depth of the compact set
K in the convex core of QN+n as n→∞ via inflexibility and Theorem 2.1:
if K starts out sufficiently deep, then the geometry freezes around it quickly
enough that Theorem 2.1 guarantees its depth grows linearly, resulting in
the exponential convergence of the bi-Lipschitz constant.

Double Iteration. The pseudo-Anosov double iteration {Qn} converges
strongly to the doubly degenerate manifold Q∞, invariant by the isometry

Ψ: Q∞ → Q∞

the isometric covering translation for Q∞ over the mapping torus Mψ for ψ
(see [12, 18, 31, 40]). Likewise, McMullen showed the iteration Q(X,ψn(X))
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also converges strongly to a limit QX,ψ∞ in the Bers slice

BX = {Q(X,Y ) : Y ∈ Teich(S)}.

Each element τ ∈ Mod(S) acts on AH(S) by remarking, or precomposi-
tion of the representation by the corresponding automorphism of the funda-
mental group. This action is denoted by

τ(f,M) = (f ◦ τ−1,M)

Then by Thurston’s Double Limit Theorem [12, 33, 40], the remarking
of QX,ψ∞ by ψ−n produces a sequence

ψ−n(QX,ψ∞) = Qψ−n(X),ψ∞

converging strongly in AH(S) to Q∞ (see [31]).
Bonahon’s Tameness Theorem [6] provides a homeomorphism

F : S × R→ Q∞

equipping the limit Q∞ with a product structure; indeed, as Q∞ is the cyclic
cover Q∞ →Mψ for the fibered manifold Mψ, we may take this product
structure so that the isometric covering transformation

Ψ: Q∞ → Q∞

in the homotopy class of ψ preserves this product structure and acts by
integer translation Ψ(S, t) = (S, t+ 1) in the second factor. We denote by
Q∞[a, b] the subset F (S × [a, b]).

Proposition 3.4. Let γ ∈ C0(S) satisfy 	X(γ) < LS. Then there exists a >
0 and N1 > 0 so that for each n > N1 the compact subset Q∞[−a, a] contains
γ∗ and admits a marking preserving 2-bi-Lipschitz embedding

ϕn : Q∞[−a, a]→ Qψ−n(X),ψ∞ .

Proof. The Proposition follows from the observation that the geodesic rep-
resentatives of ψn(γ) lie arbitrarily deep in the convex core of QX,ψ∞ , and
the fact that the isometric remarkings ψ−n(QX,ψ∞) = Qψ−n(X),ψ∞ converge
to the fiber Q∞ (see [31, Thm. 3.11]). Choosing an interval [−a, a] so that
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Q∞[−a, a] contains γ∗, the marking preserving bi-Lipschitz embeddings

ϕn : Q∞[−a, a]→ Qψ−n(X),ψ∞

are eventually 2-bi-Lipschitz, giving the desired N1. �

We note that we may argue symmetrically for Qψ−∞,ψn(X), the strong limit
of Q(ψ−m(X), ψn(X)) as m→∞.

4. The Proof

In this section we give the proof of Theorem 1.1.

Proof. The proof is a straightforward application of Proposition 3.3. Making
an initial choice of N , we will find, for each k, a subset Kk of QN+k account-
ing for all but a uniformly bounded amount of the volume of the core of
QN+k. Fixing k, the volume preserving Reimann maps φN+k+n of Proposi-
tion 3.3 applied to Kk produce subsets of QN+k+n that converge as n→∞
to a subset of Q∞ within bounded volume of 2k copies of the fundamental
domain for the action of ψ. This yields the desired comparison.

Step I. Choose constants. As the input for Proposition 3.3, let

R > 4 diam(Q∞[−a, a]),

take L > 4LS , and fix ε < εψ/4, where

εψ = inj(Mψ) = inj(Q∞)

(here inj(M) = infp∈M injp(M)). Finally, taking C = 2, we take B, C1 and
C2 satisfying the conclusion of Proposition 3.3. Recall that γ ∈ C0(S) satis-
fies 	X(γ) < LS . Then applying [12, Thm. 8.1] there is an N0 > 0 so that

min{dC(ψ−N0−n(X), γ), dC(ψN0+n(X), γ)} ≥ Kψn+B

for all n ≥ 0.

Step II. Geometric convergence. Applying Proposition 3.4, we may take
N1 > N0 so that for eachN > N1 there are marking preserving 2-bi-Lipschitz
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embeddings

ϕ−N : Q∞[−a, a]→ core(Qψ−N (X),ψ∞)

ϕ+
N : Q∞[−a, a]→ core(Qψ−∞,ψN (X)).

Applying strong convergence of

Q(Y, ψn(X))→ QY,ψ∞ and Q(ψ−n(X), Y )→ Qψ−∞,Y ,

we take N2 > N1 so that for each δ > 0, D > 0, and N > N2, we have k0 so
that for k > k0 there are diffeomorphisms

η−N,k : Qψ−N (X),ψ∞ → Q(ψ−N (X), ψN+2k(X))

and

η+N,k : Qψ−∞,ψN (X) → Q(ψ−N−2k(X), ψN (X))

so that η−N,k has bi-Lipschitz constant satisfying log bilip(η−N,k, p) < δ for all

points in the D-neighborhood of ϕ−N (Q∞[−a, a]), and likewise for η+N,k.
It follows that if we fix N satisfying N > N2 for the remainder of the

argument, the images ϕ−N (Q∞[−a, a]) and ϕ+
N (Q∞[−a, a]) determine prod-

uct regions in core(Qψ−N (X),ψ∞) and core(Qψ−∞,ψN (X)) whose complements
contain one product region of volume bounded by V > 0.

Noting that the action by ψ±k on AH(S) gives

ψ−k(Q(ψ−N (X), ψN+2k(X))) = QN+k = ψk(Q(ψ−N−2k(X), ψN (X))),

we let, for each k > 0, the subsets K−k and K+
k in QN+k be given by

ψ−k(η−N,k ◦ ϕ−N (Q∞[−a, a])) and ψk(η+N,k ◦ ϕ+
N (Q∞[−a, a]))

by following the embeddings of Q∞[−a, a] from geometric convergence with
the isometric remarkings ψ−k and ψk. Then geometric convergence implies
that for each k > k0 the component of QN+k \ K−k facing ψ−N−k(X) has
intersection with the convex core bounded by 2V for k large, and likewise
for K+

k .

Step III. Apply Inflexiblility (Proposition 3.3). We take B as in Proposi-
tion 3.3 given the above choices for ε, L, R and C.

For our choice of N , we know K+
k and K−k each have diameter at most

R, injectivity radius at least ε, and as L = 4LS , K+
k and K−k contain rep-

resentatives γ−k of ψ−k(γ) and γ+k of ψk(γ) of length less than L. As B is
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chosen as in the output of Proposition 3.3 and N is chosen as above we have

min{dC(ψ−N−k−n(X), γ−k ), dC(ψ
N+k+n(X), γ−k )} ≥ Kψn+B

is satisfied for all n ≥ 0 and likewise for γ+k .
Let φN : QN → QN+1 denote the (marking preserving) Reimann map

furnished by Proposition 3.3. Then the composition of Reimann maps

Φn = φN+n ◦ · · · ◦ φN : QN → QN+n+1

is globally volume preserving.
Furthermore, since K+

k and K−k each satisfy the hypotheses of Proposi-
tion 3.3 the compositions are uniformly bi-Lipschitz as n→∞. It follows
from Arzela-Ascoli that we may extract a limit limit Φ∞ on K+

k and that Φ∞
sends γ+k to a curve of length at most 8L and likewise for K−k and γ−k . Since
Φ∞ is 2-bi-Lipschitz on K−k and K+

k , it follows that Φ∞(K−k ) has diameter
8R, and contains a representative of ψ−k(γ) of length 8LS and likewise for
Φ∞(K+

k ) and ψ
k(γ). There is thus a d > 0 depending only on R and LS and

εψ so that we have

Φ∞(K−k ) ⊂ Q∞[−k − d,−k + d] and Φ∞(K+
k ) ⊂ Q∞[k − d, k + d].

Furthermore, if we take k large enough, we may apply Theorem 2.1 to
conclude that

dQN+k+n
(γ−k , γ

+
k ) > 16R

which ensures that Φn+k(K−k ) and Φn+k(K+
k ) are disjoint for all n ≥ 0. The

complement QN+k \ K−k ∪ K+
k contains one subset ON+k with compact clo-

sure ‘between’ the product regions K−k and K+
k .

Letting

Kk = K−k ∪ON+k ∪ K+
k ,

the images Φk+n(Kk) satisfy

vol(Kk) = vol(Φk+n(Kk))

since Φk+n is the composition of volume preserving maps.
But strong convergence of QN+k+n to Q∞ as n→∞ guarantees that

for large n there are nearly isometric marking-preserving embeddings

Gn : Q∞[−k − d, k + d]→ QN+k+n

that are surjective onto Φk+n(Kk) for n sufficiently large.
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We conclude that

(2k − 2d) vol(Mψ) ≤ vol(Φ∞(Kk)) ≤ (2k + 2d) vol(Mψ)

and that

vol(core(QN+k))− 4V ≤ vol(Kk) ≤ vol(core(QN+k)

for all k sufficiently large. Thus we conclude

| vol(core(QN+k))− 2(N + k) vol(Mψ)| < 2(d+N) vol(Mψ) + 4V

completing the proof. �

To complete the proof of Theorem 1.3, we conclude the section by ad-
dressing the case when S has boundary.

Proof of Theorem 1.3. We now complete the proof of Theorem 1.3. It re-
mains to treat the case when S has boundary. We thank Ian Agol for sug-
gesting such an argument applies in the setting of the Teichmüller metric; we
employ a similar line of reasoning for the Weil-Petersson metric, recovering
the Teichmüller case as a consequence.

We note the following: by Ahlfors Lemma [3], for a surface S = Sg,n with
genus g > 1 and n > 0 boundary components, the natural forgetful map

Teich(Sg,n)→ Teich(Sg,0)

obtained by filling in the n punctures on a surface X ∈ Teich(Sg,n) is a con-
traction of Poincaré metrics and thus of Weil-Petersson metrics (see e.g.
[36]). Assuming an even number of punctures, we may branch at the punc-
tures to obtain degree-k covers S̃k.

Lifting to finite covers of S induces natural maps between Teichmüller
spaces that are local isometries with respect to the normalized Weil-
Petersson distance dWP∗(., .), obtained by taking

dWP∗(., .) =
dWP(., .)√
area(S)

.

Given ψ pseudo-Anosov, let ‖ψ‖WP∗ denote its translation length in the
normalized Weil-Petersson metric.

Letting ψ ∈ Mod(S), then, we let ψ̃k denote the lift to Mod(S̃k), and
ψ̂k ∈ Mod(Ŝk) obtained by filling in the punctures of S̃k to obtain Ŝk.
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Then we have

‖ψ‖WP∗ = ‖ψ̃k‖WP∗ ≥ Ck · ‖ψ̂k‖WP∗

where Ck =

√
area(Ŝk)/ area(S̃k)→ 1 as k →∞. Applying Theorem 1.3 in

the closed case we obtain,

‖ψ‖WP∗ ≥ Ck
2

3

vol(Mψ̂k
)

area(Ŝk)
.

AsMψ̂k
admits an order-k isometry corresponding to the k-fold branched

covering, it covers a fibered orbifold with n order-k orbifold loci, which
converges geometrically to the fibered 3-manifold Mψ as k →∞. Likewise,

Ŝk covers an orbifold with n cone points with cone-angle 2π/k, whose area
is area(Ŝk)/k, which converges to area(S) as k →∞.

Thus, dividing the top and the bottom by k, the right hand side of the
inequality tends to

2

3

vol(Mψ)

area(S)

as k →∞, and the estimate holds.
Since any S = Sg,n with n > 0 is finitely covered by Sg′,n′ with g′ > 1

and n′ even, the proof is complete. �

5. Applications

We note the following applications to the Weil-Petersson geometry of
Teich(S) and its quotient M(S) by the isometric action of the mapping
class group Mod(S).

When α and β are a longitude and meridian pair on the punctured torus,
the estimate of Theorem 1.8 gives a lower bound

V8
3
√
π/2

≤ 	WP(e)

to any edge e in the Farey graph F. We remark that this estimate has
implications for effective combinatorial models for Teich(S).
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In particular, the main result of [8] guarantees the existence of K1, K2

depending only on S so that

dP (P1, P2)

K1
−K2 ≤ dWP(N(P1), N(P2)) ≤ K1dP (P1, P2) +K2.

Here, the distance dP is taken in the pants graph P (S) whose vertices are
associated to pants decompositions of S and whose edges are associated
to prescribed elementary moves (see [8], or [7] for an expository account)
and N(Pi) denotes the unique maximally noded Riemann surface in the
boundary of Teichmüller space for which the curves in Pi have been pinched
to cusps. To date, effective estimates on K1 and K2 have been elusive.

Theorem 1.3 gives the following estimate in the case of the punctured
torus S, on which each pants decomposition is represented by a single non-
peripheral simple closed curve.

Theorem 5.1. Let S be a one-holed torus and let α and β denote essential
simple closed curves on S. If dP (α, β) = 1 then

V8
3
√
π/2

≤ dWP(N(α), N(β)) ≤ 2
√
30π

3

4

and if dP (α, β) > 1 then we have

V3
3
√
π/2

dP (α, β) ≤ dWP(N(α), N(β)) ≤ 2
√
30π

3

4dP (α, β).

Remark: The first double inequality recapitulates of that of Theorem 1.8.
Numerically, the second double inequality can be expressed as

(.2375 . . .)dP (α, β) ≤ dWP(N(α), N(β)) ≤ (25.8496 . . .)dP (α, β).

Proof. The space Teich(S) is naturally the unit disk Δ, and edges of the
usual Farey graph are geodesics in theWeil-Petersson (as well as Teichmüller)
metric. Once dP (α, β) is at least 2, the completed Weil-Petersson geodesic
g in Teich(S) joining N(α) to N(β) joins the endpoints of a Farey sequence,
or a sequence e1, . . . , en in F that joins α to β. Each pair of successive edges
ei and ei+1 determines a pivot, where they meet, and emanating from each
pivot is a bisector bi that meets the opposite edge of the ideal triangle deter-
mined by ei and ei+1 perpendicularly (see Figure 2). For a Farey sequence
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e1 e2 e3

b1

b2

α

β

Figure 2: Bisectors of the Farey pivots have separation at least 1
2‖ψfig8‖WP.

that determines exactly one Farey triangle per pivot, these bisectors are per-
pendicular to the axis determined by a conjugate of the monodromy of the
figure-8 knot complement, the mapping class

ψfig8 =

[
2 1
1 1

]
=

[
1 1
0 1

] [
1 0
1 1

]
,

and the intersections occur every half-period along the axis.
Thus, in this minimal case, successive bisectors have separation at least

half the translation distance of ψfig8 or at least

V3
3
√
π/2

by Theorem 1.7. When there are more triangles per pivot, the successive
bisectors are further apart. Thus, the bisectors determined by the Farey
sequence have at least the separation of the minimal case, as do the initial
and terminal vertices α and β from the first and last bisector. The lower
bound follows.

The upper bound follows from the triangle inequality, and the fact that
each Farey edge has length bounded by 2

√
30π

3

4 by Theorem 1.8. �
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In the language of the introduction, if p/q has continued fraction expan-
sion

p

q
= [a1, a2, . . . , an]

then p/q has distance n from 0 in the Farey graph F; we say p/q has Farey
depth n, or depthF(p/q) = n.

Then we have

V3 depthF(p/q)

3
√
π/2

≤ dWP (0, p/q) ≤ 2
√
30π

3

4 depthF(p/q).

We conclude by noting that genus independent upper bounds are ob-
tained in [20] on the extended Weil-Petersson distance between maximally
noded surfaces in terms of the cubical pants graph CP (S), a modification of
the usual pants graph obtained by adding diagonals of standard Euclidean
n-cubes corresponding to commuting families of elementary moves, as in [20,
§4].

As a direct consequence of [20, Lemma 4.1] explicit constants can be
given here in terms of the bounds on the length 	WP(I), giving

dWP(N(P1), N(P2)) ≤
√

2	WP(I)dCP (P1, P2) ≤ 2
4
√
30π

3

8dCP (P1, P2)

where N(P ) represents the point in the Weil-Petersson completion corre-
sponding to the maximal noded surface pinched along P , and dCP (., .) de-
notes the distance in the cubical pants graph.

The upper bounds on Weil-Petersson distance between noded surfaces
in the above cases arise from a Lipschitz map of the pants graph (and cu-
bical pants graph) into the completion of the Weil-Petersson metric on Te-
ichmüller space. The lower bound in Theorem 5.1, however, makes use of
separation properties for this Lipschitz embedding in the 2-dimensional am-
bient space, while the higher dimensional cases of the lower bound rely on
compactness arguments in moduli space. It is interesting to imagine how
one might attempt more explicit lower bounds in the general case without
making use of the separation properties present in the cases of the one-holed
torus and four-holed sphere.
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