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Sharp lower bounds for Coulomb energy

Jacopo Bellazzini, Marco Ghimenti, and Tohru Ozawa

We prove Lp lower bounds for Coulomb energy for radially sym-
metric functions in Ḣs(R3) with 1

2 < s < 3
2 . In case 1

2 < s ≤ 1 we
show that the lower bounds are sharp.

1. Introduction

In this paper we prove lower bounds for the Coulomb energy

∫∫
R3×R3

|ϕ(x)|2|ϕ(y)|2
|x− y| dxdy

if radial symmetry of ϕ is assumed.
In the general case, without restricting to radial functions, the upper

bound for the Coulomb energy is given by the well known Hardy-Littlewood-
Sobolev inequality while lower bounds have been proved only very recently.
In particular if one can control suitable homogeneous Sobolev space Ḣs(R3)
the Lp lower bound for the Coulomb energy is given by the following in-
equalities

(1.1) ‖ϕ‖Lp(R3) ≤ C(p, s)‖ϕ‖
θ

2−θ

Ḣs(R3)

(∫∫
R3×R3

|ϕ(x)|2|ϕ(y)|2
|x− y| dxdy

) 1−θ

4−2θ
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with θ =
6− 5

2
p

3−ps−p . Here the parameters s > 0 and 1 < p ≤ ∞ satisfy

p ∈
[

6

3− 2s
,
2 + 4s

1 + s

]
if 0 < s < 1/4 ,

p =
6

3− 2s
=

2 + 4s

1 + s
if s = 1/4 ,

p ∈
[
2 + 4s

1 + s
,

6

3− 2s

]
if 1/4 < s < 3/2 ,

p ∈
[
2 + 4s

1 + s
,∞

)
if s = 3/2 ,

p ∈
[
2 + 4s

1 + s
,∞

]
if s > 3/2 .

These bounds have been proved in [3] while the case s = 1
2 has been first

considered in [4]. These bounds follows from a suitable Gagliardo-Nirenberg
inequality, see Theorem 2.44 of [1], together with the following well known
identity ∫∫

R3×R3

|ϕ(x)|2|ϕ(y)|2
|x− y| dxdy = c‖ϕ2‖2

Ḣ−1(R3)
.

We shall underline that in many physical applications involving Sobolev
norms and Coulomb energy the radially symmetric assumption of ϕ is nat-
ural due to the rotational invariance of energy functionals (see e.g [9] in
the context of stability of matter). Our purpose is to see if it is possible to
control lower Lp norms if one assumes radial symmetry of ϕ. In the sequel
we use two theorems that are crucial for our improvement in case of radial
symmetry. The first is the following pointwise decay for radial functions in
Ḣs(Rd) ∩ Lq

a(Rd), see [6], where Lq
a(Rd) is the weighted Lebesgue space with

the norm

‖u‖Lq
a(Rd) =

(∫
Rd

|x|a|u|qdx
) 1

q

Theorem 1.1 (De Nápoli [6]). Let ϕ be a radial function in Ḣs(Rd) ∩
Lq
a(Rd) with s > 1

2 and −(d− 1) < a < d(q − 1), then

|ϕ(x)| ≤ C(d, s, q, a)|x|−σ‖(−Δ)
s

2ϕ‖θL2(Rd)‖ϕ‖|1−θ
Lq

a(Rd)

where θ = 2
2sq+2−q , σ = 2as+2ds−a−2s

2sq+2−q .

Remark 1.1. The strategy of the proof of Theorem 1.1 is based on Fourier
representation for radial functions in R

d (identifying the function with its
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profile)

ϕ(x) = (2π)
d

2 |x|− d−2

2

∫ ∞

0
J d−2

2
(|x|ρ)ϕ̂(ρ)ρ d

2 dρ

where J d−2

2
is the Bessel function of order d−2

2 . The argument is similar to

the one developed in [5] for the pointwise decay of radial function in Ḣs(Rd),
i.e to split ϕ into low and high frequency parts. The pointwise decay of the
high frequency part of ϕ is controlled by the boundness of Sobolev norm
while the decay of low frequency part by the boundness of the weighted
Lebesgue norm.

The second theorem is the following lower bound for the Coulomb energy
by Ruiz, see [11].

Theorem 1.2 (Ruiz [11]). Given α > 1
2 , there exists c = c(α) > 0 such

that for any measurable ϕ : Rd → R we have

∫∫
Rd×Rd

|ϕ(x)|2|ϕ(y)|2
|x− y|d−2

dxdy ≥ c

(∫
Rd

|ϕ(x)|2
|x| d−2

2 (1 + | log |x||)α
dx

)2

.

Let us define

Es = {ϕ ∈ Ḣs
rad(R

3) s.t

∫∫
R3×R3

|ϕ(x)|2|ϕ(y)|2
|x− y| dxdy <∞}

with

‖ϕ‖Es =

(
‖ϕ‖2

Ḣs(R3)
+

(∫∫
R3×R3

|ϕ(x)|2|ϕ(y)|2
|x− y| dxdy

) 1

2

) 1

2

.

Following the argument of Ruiz [11] it is easy to show that ‖ · ‖Es is a norm
and C∞

0 (R3) is dense in Es. In [11] Ruiz proved that for E1 the following
continuous embedding

E1 ↪→ Lp p ∈
(
18

7
, 6

]
.

The result by Ruiz follows from two steps: first, Theorem 1.2 proves that
E1 ⊂ Ḣ1

rad(R
3) ∩ L2(R3, V (x)dx) where V (x) = 1

(1+|x|)γ with γ > 1
2 , second,

a weighted Sobolev embedding for radial function proved by Su, Wang and
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Willem [12] gives the inclusion

Ḣ1
rad(R

3) ∩ L2(R3, V (x)dx) ⊂ Lq(R3) q ∈
[
2(4 + γ)

4− γ
, 6

]

2. Main results

The aim of our paper is to find continuous embeddings and hence better
lower bounds for the Coulomb energy assuming radial symmetry when 1

2 <
s < 3

2 . As a particular case we recover the left end-point exponent found by
Ruiz [11] when s = 1.

Theorem 2.1. Es ↪→ Lp(R3) continuously for

p ∈
(
16s+ 2

6s+ 1
,

6

3− 2s

]
if 1/2 < s < 3/2.

The above result is sharp when 1
2 < s ≤ 1 as shown by the following

Theorem 2.2. Let 1
2 < s ≤ 1, then the space Es is not embedded in Lp for

p < 16s+2
6s+1 .

From the continuous embedding for Es in the radial case it is elementary
to derive the scaling invariant lower bounds for the Coulomb energy given
by (1.1) for p ∈ (

16s+2
6s+1 ,

6
3−2s

]
and 1

2 < s < 3
2 . Moreover, the best constants

in the lower bounds for radially symmetric functions are achieved.

Corollary 2.1. Let ϕ be radially symmetric, then the following scaling in-
variant inequality holds

(2.1) ‖ϕ‖Lp(R3) ≤ C(p, s)‖ϕ‖
θ

2−θ

Ḣs(R3)

(∫∫
R3×R3

|ϕ(x)|2|ϕ(y)|2
|x− y| dxdy

) 1−θ

4−2θ

with θ =
6− 5

2
p

3−ps−p . Here the parameters s and p satisfy

p ∈
(
16s+ 2

6s+ 1
,

6

3− 2s

]
if 1/2 < s < 3/2.

Moreover the best constants in these lower bounds are achieved.
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Figure 1: Left endpoint exponent for p in (1.1) and in Theorem 2.1, as a
function of s: without radial symmetry the lower bound is 2+4s

1+s (dotted) and

for the radially symmetric case is 16s+2
6s+1 (dash-dotted). The bold line plots

the right endpoint exponent for p in (1.1) and Theorem 2.1 given by the
Sobolev embedding exponent.

Remark 2.1. Notice that for the right endpoint exponent, p = 6
3−2s , our

inequality is nothing but Sobolev inequality. The existence of maximizers
for Sobolev inequality has been proved by Lieb, see e.g. [8].

Remark 2.2. Since our approach is based on Theorem 1.1 and Theo-
rem 1.2, there are no obstructions to study lower bounds for the Coulomb
energy with potential |x− y|−(d−2) in dimensions d > 3 in the radial case.
Here we decided to consider only the physically relevant case. We quote [10]
for a systematic study in this direction when s = 1.

In Figure 1 the left endpoint exponent for p in (1.1) and in Theorem 2.1
as a function of s is plotted.

Funding. J.B. is supported by FIRB2012 “Dinamiche dispersive: analisi di
Fourier e metodi variazionali”, J.B and M.G by GNAMPA2014 “Equazioni
di campo non-lineari: solitoni e dispersione”.

3. Proof of Theorem 2.1

Proposition 3.1. Let γ > 1
2 and γ

2 < s < 3
2 then exists c(γ, s) > 0 such

that for any ϕ ∈ Es (∫
R3

|x|−γ |ϕ|2dx
)
≤ c(γ, s)‖ϕ‖2Es .
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Proof. By elementary computation we notice that if 2s > γ then

(∫
R3

|x|−γ |ϕ|2dx
)
≤ R2s−γ

(∫
B(0,R)

|ϕ|2
|x|2sdx

)

+
(1 +R)γ

Rγ

(∫
B(0,R)c

|ϕ|2
(1 + |x|)γ dx

)
.

Notice that, if 0 < s < 3
2 , the Pitt’s inequality [2] states that

(∫
R3

|ϕ|2
|x|2sdξ

)
≤ cs

(∫
R3

|ϕ̂|2|ξ|2sdξ
)

= cs‖ϕ‖2Ḣs(R3)

where cs = π2s
[
Γ( 3−2s

4
)

Γ( 3+2s

4
)

]2
. Moreover, taking γ > 1

2 , by means of the elemen-

tary inequality for x 
= 0

1

(1 + |x|)γ ≤
c(γ)

|x| 12 (1 + | log |x||)γ
,

and by Ruiz’s Theorem 1.2 we have that

(∫
R3

|ϕ|2
(1 + |x|)γ dx

)
≤ c(γ)

(∫∫
R3×R3

|ϕ(x)|2|ϕ(y)|2
|x− y| dxdy

) 1

2

and therefore the desired inequality. �

Proof of Theorem 2.1. By Proposition 3.1 we have that Es ⊂ L2(R3, V (x)dx)
where V (x) = |x|−γ , γ > 1

2 . Let us call p∗ = 2+4s
1+s , the left end-point expo-

nent for (1.1). Hölder’s inequality assures that for p < p∗

∫
B(0,1)

|ϕ|pdx < μ(B(0, 1))
p∗−p

p

(∫
B(0,1)

|ϕ|p∗dx
) p

p∗

≤ C‖ϕ‖(
θ

2−θ
)p

Ḣs(R3)

(∫∫
R3×R3

|ϕ(x)|2|ϕ(y)|2
|x− y| dxdy

)( 1−θ

4−2θ
)p
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with θ =
6− 5

2
p∗

3−p∗s−p∗ . On the other hand by Proposition 3.1 and the radial
decay given by Theorem 1.1 choosing a = −γ, q = 2 and d = 3,∫

B(0,1)c
|ϕ|pdx =

∫
B(0,1)c

|ϕ(x)|2|ϕ(x)|p−2dx(3.1)

≤ C‖ϕ‖θ(p−2)

Ḣs(R3)
‖ϕ‖|(1−θ)(p−2)

L2
−γ(R

3)

∫
B(0,1)c

|x|−σ(p−2)|ϕ(x)|2dx

where θ = 1
2s , σ = −2γs+4s+γ

4s . Now

lim
γ→ 1

2

−2γs+ 4s+ γ

4s
(p− 2) =

(
3s+ 1

2

4s

)
(p− 2)

and this implies again by Proposition 3.1 that∫
B(0,1)c

|ϕ|pdx < +∞

provided that
(3s+ 1

2

4s

)
(p− 2) > 1

2 , i.e if p > 16s+2
6s+1 . �

4. Proof of Theorem 2.2

The proof of Theorem 2.2 is obtained constructing a counterexample, i.e a
function u such that

‖u‖2
Ḣs(R3)

� 1∫∫
R3×R3

|u(x)|2|u(y)|2
|x− y| dxdy � 1(4.1)

‖u‖pLp(R3) → +∞

Proof of Theorem 2.2.

The case s = 1 has been proved by Ruiz [11]. Set u : R3 → R
+

(4.2) u(x) =

⎧⎪⎪⎨
⎪⎪⎩
ε
S−

∣∣|x|−R
∣∣

S for
∣∣|x| −R

∣∣ < S

0 elsewhere

where R > S � 1� ε > 0 will be precised in the sequel.
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We recall, by Ruiz [11, Section 4], that

∫∫
R3×R3

|u(x)|2|u(y)|2
|x− y| dxdy ≤ Cε4S2R3

and

‖u‖pLp(R3) ≥ CεpSR2.

Moreover we have

(4.3) ‖u‖2
Ḣs(R3)

≤ C
ε2R2

S2s−1
.

The proof of (4.3) is not difficult and it will postponed to Lemma 4.1.

In order to have ‖u‖2
Ḣs(R3)

� 1 we choose S = ε
2

2s−1R
2

2s−1 . At this point

we have

∫∫
R3×R3

|u(x)|2|u(y)|2
|x− y| dxdy ≤ Cε4ε

4

2s−1R
4

2s−1R3 = Cε
8s

2s−1R
6s+1

2s−1

and we choose R = ε−
8s

6s+1 to have the Coulomb norm bounded, so

S = ε
2

2s−1R
2

2s−1 = ε
2

2s−1 ε−
8s

6s+1

2

2s−1 = ε
2−4s

(6s+1)(2s−1) = ε−
2

6s+1 .

We remark that, since s > 1/2, then 8s > 2 and R > S, as required in the
definition of u(x).

Concluding, we have

‖u‖pLp(R3) ≥ CεpSR2 � εp−
16s+2

6s+1

that diverges for p < 16s+2
6s+1 when ε→ 0. The claim follows immediately. �

Lemma 4.1. Let u be defined in (4.2). Then

‖u‖2
Ḣs(R3)

≤ C
ε2R2

S2s−1
.



Sharp lower bounds for Coulomb energy 629

Proof. We want to compute the Ḣs norm of u for s < 1, that is

‖u‖2
Ḣs(R3)

= C(s)

∫
R3

∫
R3

|u(x)− u(y)|2
|x− y|3+2s

dxdy.

where C(s) = 22s−1π− 3

2
Γ( 3+2s

2
)

Γ(−s) . We observe that the set where u(x)− u(y) 
=
0 is contained in the following five subsets of R3 × R

3:

A1 = {R− S ≤ |y| ≤ R+ S, |x| ≤ R− S}
A2 = {R− S ≤ |y| ≤ R+ S, |x| ≥ R+ S}
A3 = {R− S ≤ |x| ≤ R+ S, |y| ≤ R− S}
A4 = {R− S ≤ |x| ≤ R+ S, |y| ≥ R+ S}
A5 = {R− S ≤ |x| ≤ R+ S, R− S ≤ |y| ≤ R+ S}

and, by symmetry, we obtain

‖u‖2
Ḣs(R3)

C(s)
=

∫
R3

∫
R3

|u(x)− u(y)|2
|x− y|3+2s

dxdy = 2

∫∫
A1

|u(x)− u(y)|2
|x− y|3+2s

dxdy

+ 2

∫∫
A2

|u(x)− u(y)|2
|x− y|3+2s

dxdy +

∫∫
A5

|u(x)− u(y)|2
|x− y|3+2s

dxdy

≤ 2

∫
R−S≤|y|≤R+S

∫
R3

|u(x)− u(y)|2
|x− y|3+2s

dxdy.

Therefore,

‖u‖2
Ḣs(R3)

≤ C

∫
R−S≤|y|≤R+S

∫
|x−y|≤S

|u(x)− u(y)|2
|x− y|3+2s

dxdy

+ C

∫
R−S≤|y|≤R+S

∫
|x−y|≥S

|u(x)− u(y)|2
|x− y|3+2s

dxdy

≤ C

∫
R−S≤|y|≤R+S

∫
|x−y|≤S

ε2

S2

|x− y|2
|x− y|3+2s

dxdy

+ C

∫
R−S≤|y|≤R+S

∫
|x−y|≥S

ε2

|x− y|3+2s
dxdy



630 J. Bellazzini, M. Ghimenti, and T. Ozawa

using that |u(x)− u(y)| ≤ supξ |∇u(ξ)||x− y| ≤ ε
S |x− y| in the first term

and that |u(x)| ≤ ε in the second term. At this point, with the change of
variable t = x− y we get

‖u‖2
Ḣs(R3)

≤ Cε2
∫

R−S≤|y|≤R+S

⎡
⎢⎣ ∫
|t|≤S

1

S2

1

|t|1+2s
dt+

∫
|t|≥S

1

|t|3+2s
dt

⎤
⎥⎦ dy

≤ Cε2
∫

R−S≤|y|≤R+S

⎡
⎣ S∫

0

1

S2

r2

r1+2s
dr +

∞∫
S

r2

r3+2s
dr

⎤
⎦ dy

≤ Cε2R2S

⎡
⎣ S∫

0

1

S2
r1−2sdr +

∞∫
S

r−1−2sdr

⎤
⎦

� ε2R2S

[
S2−2s

S2
+ S−2s

]
� ε2R2

S2s−1 �

Proof of Corollary (2.1). Let us consider the following scaling

ϕλ = λ
3

pϕ(λx),

such that ‖ϕλ‖Lp(R3) = ‖ϕ‖Lp(R3) for all λ > 0. From Theorem 2.1 it follows
that

‖ϕλ‖2Lp(R3) ≤ C

(
‖ϕλ‖2Ḣs(R3)

+

(∫∫
R3×R3

|ϕλ(x)|2|ϕλ(y)|2
|x− y| dxdy

) 1

2

)

if p ∈ (
16s+2
6s+1 ,

6
3−2s

]
and if 1/2 < s < 3/2. By elementary computation one

gets

‖ϕ‖2Lp(R3) ≤ C

(
λ

6

p
−(3−2s)‖ϕ‖2

Ḣs(R3)

+ λ
6

p
− 5

2

(∫∫
R3×R3

|ϕ(x)|2|ϕ(y)|2
|x− y| dxdy

) 1

2

)
.

and minimizing the right hand side we get the desired inequality.
The argument to show the existence of maximizers is identical to the one
used to show Theorem 2.2 in [3]. We just give a sketch of the proof for
reader’s convenience. Let us fix p in the set

(
16s+2
6s+1 ,

6
3−2s

)
. By homogeneity
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and scaling we can assume that an optimizing sequence ϕn ∈ Es satisfies

‖ϕn‖Ḣs =

∫∫
R3×R3

|ϕn(x)|2 |ϕn(y)|2
|x− y| dx dy = 1

and

‖ϕn‖Lp = C(p, s) + o(1) .

Thanks to inequality (2.1) we can find uniform upper bound on ‖ϕn‖Lp1 and
‖ϕn‖Lp2 for some p1 < p < p2. Therefore, by the well known pqr-Lemma (see
e.g. Lemma 2.1 in [7])

inf
n
|{|ϕn| > η}| > 0 .

Now by Lieb’s compactness lemma in Ḣs, see Lemma 2.1 in [3], there ex-
ists ϕ 
= 0 such that ϕn ⇀ ϕ ∈ Ḣs(R3) ∩ Lp(R3). Finally, by the non-local
Brezis–Lieb lemma for the Coulomb term (see Lemma 2.2 in [3]), and by
the Hilbert structure of Ḣs(R3), i.e that

‖ϕn − ϕ‖2
Ḣs(R3)

+ ‖ϕ‖2
Ḣs(R3)

= ‖ϕn‖2Ḣs(R3)
+ o(1),

we prove the existence of a maximizer. �
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