
Math. Res. Lett.
Volume 23, Number 2, 545–563, 2016

Torsion points on the cohomology jump

loci of compact Kähler manifolds

Botong Wang

We prove that each irreducible component of the cohomology jump
loci of rank one local systems over a compact Kähler manifold
contains at least one torsion point. This generalizes a theorem of
Simpson for smooth complex projective varieties. An immediate
consequence is the positive answer to a conjecture of Beauville
and Catanese for compact Kähler manifolds. We also provide an
example of a compact Kähler manifold, whose cohomology jump
loci can not be realized by any smooth complex projective variety.

1. Introduction

The cohomology jump loci of a topological space X capture the geometry
of X. There is a series of results in the rank one case obtained by Beauville,
Green-Lazarsfeld, Arapura, Simpson and many others. In this note, we gen-
eralize a result of Simpson about smooth complex projective varieties to
compact Kähler manifolds.

We recall some definitions first. Let X be a topological space, which
is homotopy equivalent to a finite CW complex. Define Char(X) =
Hom(π1(X),C∗) to be the variety of rank one characters of π1(X). For
each point ρ ∈ Char(X), there exists a unique rank one local system Lρ,
whose monodromy representation is isomorphic to ρ. We can also regard
Char(X) as the moduli space of rank one local systems on X. Char(X) is
determined by the homology group H1(X,Z), and Char(X) is isomorphic
to the direct product of (C∗)b1(X) and a finite abelian group. We generalize
some definitions from [Sc1] as follows.

Definition 1.1. Let X be any compact Käbler manifold, and let a : X →
Alb(X) be its Albanese map. Given any morphism of complex tori f :

Alb(X)→ T , denote the composition X
a−→ Alb(X)

f−→ T by g. Let g� :
Char(T )→ Char(X) be the map induced by g∗ : π1(X)→ π1(T ). Then
Im(g�) is an algebraic subgroup in Char(X). A linear subvariety of

545



546 Botong Wang

Char(X) is of the form ρ · Im(g�), for some g as above and some ρ ∈ Char(X).
Such a linear subvariety of Char(X) is called arithmetic, if ρ can be chosen
to be a torsion point in Char(X).

Convention. In contrast to [BW], here by a complex torus, we always
mean a connected compact complex Lie group. Its underlying topological
space is a real torus.

Remark 1.2. The notion of a linear subvariety is slightly stronger than a
translate of an algebraic subgroup. For example, when X is a simple abelian
variety, all proper linear subvarieties are points in Char(X).

The cohomology jump loci Σi
k(X) = {ρ ∈ Char(X) | dimH i(X,Lρ) ≥

k} are canonically defined Zariski closed subsets of Char(X). It is known in
many examples that these cohomology jump loci reflect the geometry of the
topological space X. We give a brief list of the known results.

• When X is a compact Kähler manifold, each Σi
k(X) is a finite union

of linear subvarieties of Char(X) ([GL], [A]).

• When X is a smooth projective variety, each Σi
k(X) is a finite union of

arithmetic subvarieties of Char(X). This was first proved by Simpson
[Si2] using Gelfond-Schneider theorem. Later different proofs appeared
using characteristic p method [PR] and using D-module theory [Sc1].
This result was generalized to the case when X is a smooth quasi-
projective variety in [BW].

• Campana [C] showed when X is a compact Kähler manifold, Σ1
k(X)

is a finite union of arithmetic subvarieties of Char(X).

The main result of this note is the following.

Theorem 1.3. Suppose X is a compact Kähler manifold. Then for any
i, k ∈ N, Σi

k(X) is a finite union of arithmetic subvarieties.

An immediate consequence of the theorem is the positive answer to a
conjecture of Beauville and Catanese. For a compact complex manifold X,
the Dolbeault cohomology jump loci are defined to be

Σpq
k (X) = {E ∈ Picτ (X) | dimHq(X,Ωp

X ⊗ E) ≥ k}.

Here Picτ (X) is the torsion Picard group and Ωp
X is the sheaf of holomorphic

p-forms on X.
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Green and Lazarsfeld [GL] showed that when X is a compact Kähler
manifold, each Σpq

k (X) is a finite union of translates of subtori. Beauville
and Catanese [B] conjectured that these translates are always by torsion
points. When X is a smooth complex projective variety, this is proved by
Simpson [Si2]. As a corollary of Theorem 1.3, we know it is true for any
compact Kähler manifold.

Corollary 1.4. When X is a compact Kähler manifold, each Σpq
k (X) is a

finite union of torsion translates of subtori.

Proof. There is a natural real Lie group isomorphism between the torsion Pi-
card group Picτ (X) and the group of unitary rank one characters Charu(X)
of π1(X). In fact, given any holomorphic line bundle L on X, one can
construct a unitary flat metric on it. This follows from the Donaldson-
Uhlenbeck-Yau Theorem [UY], but one can also give an elementary con-
struction. Take any hermitian metric h on L. Since c1(L) = 0 in H2(X,R),
the curvature of the chern connection 1

2πi(∂̄ + ∂h)
2 equals an exact (1,1)-

form. By ∂∂̄-lemma, there exists a real valued function φ on X, such that
(∂̄ + ∂h)

2 = 2πi∂∂̄φ. Define a new metric h′ = e−2πiφh. Then the chern con-
nection with respect to h′ is flat.

Now, the corollary follows from the Hodge decomposition for unitary
local systems [Si1] and the argument in the proof of Lemma 3.1. The same
proof appeared in [Si2, Section 5] and [Sc1, Theorem 1.6]. We shall not give
all the details here. �

Our approach to prove Theorem 1.3 is to extend a theorem of Schnell
[Sc1] from abelian varieties to complex tori. Recall that the cohomology
jump loci can be defined relative to a constructible complex on X. Let M
be a bounded constructible complex of C-modules on X, the cohomology
jump loci of M are

Σi
k(X,M) = {ρ ∈ Char(X) | dimHi(X,Lρ ⊗C M) ≥ k}.

It is proved in [Sc2] that Σi
k(X,M) is an algebraic set for any constructible

complex M and any i ∈ Z, k ∈ N. A constructible complex M admits a Z-
structure if there exists a constructible complex of Z-modules MZ on X such
that M ∼= MZ ⊗Z C. For the definition of a constructible complex, we refer
to [D, Definition 4.1.1].

It is a well-known fact that Theorem 1.3 follows from the next theorem.
For the completeness of the paper, we also include a proof at the end of
Section 4.
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Theorem 1.5. Let T be a compact complex torus, and let M be a perverse
sheaf that underlies a polarizable Hodge module. Assume that M admits a
Z-structure, and assume that M is of geometric origin1. Then for any i ∈ Z
and k ∈ N, Σi

k(T,M) is a finite union of arithmetic subvarieties in Char(T ).

Essentially, we will show that there is an abelian variety Talg, and a
morphism of complex tori f : T → Talg, such that up to an isogeny, M (or
better, a direct summand of M) is the pull back of a perverse sheaf M ′

on Talg underlying a polarizable Hodge module. Then by applying Schnell’s
result to M ′, we can deduce Theorem 1.5. Recently, in [PPS] Pareschi, Popa
and Schnell generalized this result to the case when M is a polarizable
real Hodge module. Using this generalization, they extended the generic
vanishing theorems to complex Kähler manifolds.

In the last section, we revisit a result of Voisin [V], that is, there exist
compact Kähler manifolds that are not of the homotopy type of any smooth
projective variety. We will provide some examples similar to the ones of
Voisin, but we prove they are not of the homotopy type of any smooth
projective variety by studying its cohomology jump loci.

2. Subvarieties of a complex torus

In this section, we prove some classification results of subvarieties of complex
tori. These results will be useful to relate Hodge modules on a complex torus
to Hodge modules on an abelian variety.

We first recall some notations and results from [U], with some modifica-
tions. Let X be a compact analytic variety. A weak algebraic reduction of
X is a morphism ψ : X ′ → Xalg such that:

1) X ′ is bimeromorphically equivalent to X;

2) Xalg is a projective variety;

3) ψ∗ induces an isomorphism between C(X) and C(Xalg), the field of
meromorphic functions.

A weak algebraic reduction is called an algebraic reduction, if both X ′ and
Xalg are smooth.

1By of geometric origin, we mean up to a shift, M is a direct summand of
Rf∗(CX) for some proper holomorphic map f : X → T in the derived category.
Here, we restrict to polarizable Hodge modules of geometric origin, because we
need to use the decomposition theorem for compact Kähler manifolds in Proposi-
tion 4.1.
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An algebraic reduction always exists and the birational class of Xalg is
uniquely determined. The following theorem is proved in [U, Section 12].

Theorem 2.1 ([U]). Let ψ : X ′ → Xalg be an algebraic reduction of an
analytic variety X. For any Cartier divisor D on X ′, and for a very general
point u ∈ Xalg, the fibre X ′

u = ψ−1(u) is connected and smooth. Moreover,
the Kodaira-Iitaka dimension κ(Du, X

′
u) ≤ 0, where Du is the restriction

of D to the fibre X ′
u. In particular, for a very general point u ∈ Xalg,

κ(X ′
u) ≤ 0.

If ψ : X ′ → Xalg is only a weak algebraic reduction, and if a general fibre
X ′

u of ψ is smooth, then we can obtain the same conclusion as in the theorem
using resolution of singularity.

Lemma 2.2. Let B be a complex torus and let X ⊂ B be an irreducible an-
alytic subvariety. Suppose X is a Moishezon space and X generates B, i.e.,
there does not exist a proper subtorus of B containing {x1 − x2 |x1, x2 ∈ X}.
Then B is an abelian variety. In particular, if a Moishezon space is isomor-
phic to an analytic subvariety of a complex torus, then it is a projective
variety.

Proof. According to [Mo], there exist a smooth projective variety X ′ and a
bimeromorphic morphism X ′ → X. The composition X ′ → X → B induces
a map on the Albanese γ : Alb(X ′)→ Alb(B) = B. Since X generates B, γ
is surjective. Since X ′ is a smooth projective variety, Alb(X ′) is an abelian
variety, and hence B is also an abelian variety. �
In the rest of this section, we assume T to be a complex torus, and Y to
be an irreducible analytic subvariety of T . The following proposition is an
analog of [U, Theorem 10.9].

Proposition 2.3. There is a subtorus S of T , such that the action of S
on T preserves Y and the quotient map pY : Y → Y/S is a weak algebraic
reduction of Y .

Proof. Let ψ : Y ′ → Yalg be an algebraic reduction of Y . By Theorem 2.1,
a very general fibre Y ′

u of ψ : Y ′ → Yalg has κ(Y ′
u) ≤ 0. It is also proved in

[U, Section 10] that if Z is an analytic subvariety of T with κ(Z) ≤ 0, then
Z is a translate of a subtorus. Thus a very general fibre of ψ : Y ′ → Yalg is
bimeromorphically equivalent to a subtorus of T .

Let U be the open subset of Yalg, where ψ is smooth. Since the Al-
banese map can be defined for a smooth family of analytic varieties, and
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since the Albanese dimension is a topological invariant (see [LP]), a small
deformation of an analytic variety bimeromorphic to a complex torus is also
bimeromorphic to a complex torus. Thus every fibre Y ′

u of ψ : Y ′ → Yalg for
u ∈ U is bimeromorphic to a subtorus of T . Since there are only countably
many subtori in T , all Y ′

u for u ∈ U are isomorphic to some subtorus S
of T . Therefore, the algebraic reduction ψ : Y ′ → Yalg is bimeromorphically
equivalent to the quotient map Y → Y/S. Hence Y/S is a Moishezon space.
Since Y/S is an analytic subvariety of a complex torus T/S, by Lemma 2.2,
Y/S is a projective variety. �

Remark 2.4. Under the assumption of the proposition, Ueno [U, Theorem
10.9] proved that there exists a subtorus S of T , such that the action of S
preserves Y and the quotient Y/S is of general type. In general, our S in
the proposition will be a subtorus of the S of Ueno.

Proposition 2.5. Let S be the subtorus of T as in Proposition 2.3. Any
Cartier divisor D on Y is the pullback of a Cartier divisor on Y/S by pY :
Y → Y/S.

Proof. When dimS = 0, the statement is trivial. So we can assume dimS ≥
1. Without loss of generality, we can also assumeD is nontrivial and effective.
Suppose D is not the pullback of any divisor on Y/S. Then for a general
point u ∈ Y/S, Du is a nontrivial effective Cartier divisor of Yu, where Yu
is the fibre of pY : Y → Y/S and Du is the restriction of D to Yu.

According to Theorem 2.1, it suffices to show κ(Du, S) ≥ 1 for a nontriv-
ial effective Cartier divisor Du in S. By the theorem of square, for any t ∈ S,
(Du + t) + (Du − t) is linearly equivalent to 2Du. Therefore,H

0(S,OS(2Du))
has dimension at least two. In other words, κ(Du, S) ≥ 1. �

3. Cohomology jump loci

In this section, we review some basic results about cohomology jump loci.

Lemma 3.1. Given any complex torus T and a constructible complex E on
T , suppose E =

⊕
1≤j≤tEj. Then the following statements are equivalent for

a fixed i ∈ N,

1) Σi
k(T,E) is a finite union of arithmetic subvarieties for every k ∈ N;

2) Σi
k(T,Ej) is a finite union of arithmetic subvarieties for every k ∈ N

and 1 ≤ j ≤ t.
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Proof. Since for any rank one local system L on T ,

H i(T, L⊗C E) ∼=
⊕
1≤j≤t

H i(T, L⊗C Ej)

we have

Σi
k(T,E) =

⋃
μ

⋂
1≤j≤t

Σi
μ(j)(T,Ej)

where the union is over all functions μ : {1, 2, . . . , t} → N satisfying

∑
1≤j≤t

μ(j) = k.

Therefore, (2)⇒(1).
Conversely, assuming that (1) is true, without loss of generality, we only

need to prove Σi
k(T,E1) is a finite union of arithmetic subvarieties. Let C be

an irreducible component of Σi
k(T,E1). Take a general point ρ0 ∈ C. Here

by ρ0 being a general point, we require that

dimH i(T, Lρ0
⊗C Ej) = min{dimH i(T, Lρ ⊗C Ej) | ρ ∈ C}

for every 1 ≤ j ≤ t. Then C is an irreducible component of Σi
k0
(T,E), where

k0 =
∑

1≤j≤t

dimH i(T, Lρ0
⊗C Ej).

Therefore, C is an arithmetic subvariety, and hence Σi
k(T,E1) is a finite

union of arithmetic subvarieties. �

Lemma 3.2. Let T̂ and T be two complex tori, and let α : T̂ → T be an
isogeny. We denote the induced map between the character varieties by α� :
Char(T )→ Char(T̂ ). Let E be a constructible complex on T . The following
statements are equivalent for a fixed i ∈ N,

1) Σi
k(T,E) is a finite union of arithmetic subvarieties for every k ∈ N;

2) Σi
k(T̂ , α

∗(E)) is a finite union of arithmetic subvarieties for every k ∈
N.
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Proof. Since for any rank one local system L on T , we have

H i(T̂ , α∗(L)⊗C α∗(E)) ∼= H i(T, L⊗C α∗α∗(E)).

Therefore,

Σi
k

(
T̂ , α∗(E)

)
= α�

(
Σi
k (T, α∗α∗(E))

)
.

By definition, ker(α�) consists of all rank one local systems on T , whose
pull-back to T̂ are isomorphic to the trivial local system. Since α∗α∗(CT̂ )

∼=⊕
ρ∈ker(α�) Lρ, by projection formula [I, page 320],

α∗α∗(E) ∼=
⊕

ρ∈ker(α�)

Lρ ⊗C E.

Moreover, since the cohomology of a local system can be computed using
the derived push-forward to a point,

H i(T̂ , α∗(E)) ∼= H i(T, α∗α∗(E)).

Therefore, we have

(α�)−1
(
Σi
k

(
T̂ , α∗(E)

))
= Σi

k

⎛
⎝T,

⊕
ρ∈ker(α�)

Lρ ⊗C E

⎞
⎠ .

Now, Σi
k(T̂ , α

∗(E)) is a finite union of arithmetic subvarieties if and only if

Σi
k

(
T,

⊕
ρ∈ker(α�) Lρ ⊗C E

)
is a finite union of arithmetic subvarieties. Hence

by Lemma 3.1, Σi
k(T̂ , α

∗(E)) is a finite union of arithmetic subvarieties if
and only if Σi

k(T, Lρ ⊗C E) is a finite union of arithmetic subvarieties for
any ρ ∈ ker(α�). Thus, (2)⇒(1). Conversely, notice that any ρ ∈ ker(α�) is
a torsion point in Char(T ). Since Σi

k(T,E) is a finite union of arithmetic
subvarieties, Σi

k(T, Lρ ⊗C E) is also a finite union of arithmetic subvarieties
for any ρ ∈ ker(α�). Thus, (1)⇒(2). �

4. Polarizable Hodge module

In this section, we first prove the following proposition, which is slightly
weaker than Theorem 1.5. Then we will use it to deduce Theorem 1.5.

Proposition 4.1. Let T be a complex torus, and let M be a perverse sheaf
that underlies a polarizable Hodge module of geometric origin. Suppose every
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direct summand of M is strictly supported on an irreducible subvariety Y of
T , and suppose M admits a Z-structure. Then Σi

k(T,M) is a finite union
of arithmetic subvarieties, for any i ∈ Z and k ∈ N.

Since Y is an irreducible analytic subvariety of T , by Proposition 2.3,
there exists a subtorus S of T such that Y is preserved by the action of S
and the quotient map Y → Y/S is a weak algebraic reduction.

Lemma 4.2. Under the above notations, there exists an open subset U of
the smooth locus of Y such that the restriction of M to U is isomorphic to
a shift of a polarizable variation of Hodge structure H, and U is preserved
by the action of S.

Proof. Denote the smooth loci of Y and Y/S by Yreg and (Y/S)reg respec-
tively. Since the quotient map Y → Y/S is a principal S bundle, Yreg is
preserved by the action of S and (Y/S)reg = Yreg/S as subvarieties of Y/S.

Since Y is the support of every direct summand of M , by [Sa1, Theorem
3.21] we can assume that M is obtained from the intermediate extension
of a polarizable variation of Hodge structure H on U , where U is a Zariski
open subset of Yreg. In other words, M |V ∼= H[dimY ]. According to [Sc,
Proposition 4.1], the polarizable variation of Hodge structure H extends to
all irreducible components of Yreg \ U of codimension at least two. Therefore,
by possibly extending U , we can assume that every irreducible component
of Yreg \ U has codimension one. Now, U is preserved by the action of S by
Proposition 2.5. �

To prove Theorem 1.5, we can assume that Y generates T without loss
of generality.

Lemma 4.3. Let U and H be defined as in the preceding lemma. Denote
the natural quotient maps by pU : U → U/S and pT : T → T/S. There exists
a finite cover α : T̂ → T , satisfying the following,

1) α−1(S) is connected;

2) the restriction of α∗
U (H) to any fibre of pU ◦ αU : Û → U/S has trivial

monodromy actions,

where Û = α−1(U), and αU is the restriction of α to Û .

Proof. Let F be any fibre of pU : U → U/S. SinceH is a polarizable variation
of Hodge structure with coefficients in Z, so is its restriction to F . It is proved
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in Lemma 4.1 of [Sc1] that the underlying local system of a polarizable
variation of Hodge structure with coefficients in Z on an abelian variety is
torsion (the direct sum of rank one local systems whose monodromy actions
are all torsion). When the abelian variety is replaced by a complex torus,
the proof works the same. Thus, H|F is a direct sum of rank one local
systems whose monodromy actions are torsion. Therefore, there exists some
finite covering map β : F̂ → F , such that β∗(H|F ) is a trivial rank n local
system. Notice that by choosing an origin, F is isomorphic to the complex
torus S. Hence, after choosing an origin, F̂ becomes a complex torus, which
we denote by Ŝ. Moreover, by identifying F with S and F̂ with Ŝ, we can
assume β : Ŝ → S is a morphism of complex tori.

As topological spaces or real Lie groups, T ∼= S × T/S. The underlying
topological space of T̂ is defined to be Ŝ × T/S. The composition

T̂ ∼= Ŝ × T/S
β×id−→ S × T/S ∼= T

is a covering map, which we set to be α. We define the complex structure
on T̂ by setting the covering map to be holomorphic.

By construction, the composition pT ◦ α : T̂ → T/S is a principal Ŝ-
fibration, and hence (1) follows. The restriction of α∗

U (H) to some fibre p̂
of the fibration is isomorphic to the local system β∗(H|F ) on F̂ . Here, we
identify the fibre and F̂ by a translation in T̂ . Thus (2) follows from the fact
that β∗(H|F ) is a trivial local system on F̂ . �

Proof of Proposition 4.1. Let T̂ and α : T̂ → T be defined as in Lemma 4.3.
According to Lemma 3.2, it suffixes to prove each Σi

k(T̂ , α
∗(M)) is a finite

union of arithmetic subvarieties. Let Ŷ = α−1(Y ). Since α is a covering map,
α∗(M) underlies a polarizable Hodge module with every direct summand
strictly supported on Ŷ . Moreover, α∗(M) is the intermediate extension of
the polarizable variation of Hodge structure α∗

U (H)[dimY ].
We have the following diagram with all vertical arrows being inclusions.

Û
αU ��

��

U
pU

��

��

U/S

��

Ŷ
αY ��

��

Y
pY

��

��

Y/S

��

T̂
αT �� T

pT
�� T/S
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Denote the composition pU ◦ αU by p̂U , and similarly pT ◦ αY by p̂Y , pT ◦ αT

by p̂T . By Lemma 4.3 (2), the restriction of p̂∗U (H) to any fibre of p̂U : Û →
U/S is a trivial rank n local system. Therefore, p̂∗U (H) is isomorphic to the
pull-back of some local system H0 on U/S. Denote the intermediate ex-
tension of H0[dimY ] to T/S by M0. Since locally the principal Ŝ-fibration
p̂T : T̂ → T/S can be considered as a Cartesian product, and since taking
intermediate extension commutes with taking Cartesian product, in the de-
rived category of bounded constructible complexes Db

c(CX),

(1) α∗(M) ∼= p̂∗T (M0).

By projection formula,

(2) Rp̂T∗(p̂∗T (M0)) ∼= M0

L⊗CT/S
Rp̂T∗(CT̂ ).

Since p̂T : T̂ → T/S is a trivial topological fibration,

Rp̂T∗(CT̂ )
∼=

⊕
0≤i≤2 dimS′

(
CT/S ⊗C H i(S′,C)

)
[i].

Thus,

(3) M0

L⊗CT/S
Rp̂T∗(CT̂ )

∼=
⊕

0≤i≤2 dimS′

(
M0 ⊗C H i(S′,C)

)
[i].

Now, combining (1), (2) and (3), we have

(4) Rp̂T∗(α∗(M)) ∼=
⊕

0≤i≤2 dimS′

(
M0 ⊗C H i(S′,C)

)
[i].

Recall that we have assumed M admits a Z-structure. Since Z-structure
is preserved under the standard operations (see [Sc1]), Rp̂T∗(α∗(M)) also
admits a Z-structure. We have assumed that Y generates T . Therefore,
Y/S generate T/S. By Lemma 2.2, T/S is an abelian variety. Now, by
the decomposition theorem of Saito [Sa2], Rp̂T∗(α∗(M)) is a direct sum
of twists of perverse sheaves that underlie polarizable Hodge modules on
T/S with Z-structures. Theorem 2.2 of [Sc1] and Lemma 3.1 implies that
Σi
k(T/S,Rp̂T∗(α∗(M))) is a finite union of arithmetic subvarieties. Thus,
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by (4),

Σi
k

⎛
⎝T/S,

⊕
0≤i≤2 dimS′

(
M0 ⊗C H i(S′,C)

)
[i]

⎞
⎠

is a finite union of arithmetic subvarieties. By Lemma 3.1, Σi
k(T/S,M0) is

a finite union of arithmetic subvarieties.

Claim. Let p̂�T : Char(T/S)→ Char(T̂ ) be the morphism on the character
varieties induced by p̂T : T̂ → T/S. Denote by M1 the direct sum⊕

0≤i≤2 dimS′

(M0 ⊗C H i(S′,C))[i].

Then,

Σi
k

(
T̂ , α∗(M)

)
= p̂�T

(
Σi
k(T/S,M1)

)
.

Proof of Claim. Let L be any rank one local system on T̂ . SinceH i(T̂ , L⊗CT̂

α∗(M)) can be computed as the i-th derived push forward of L⊗CT̂
α∗(M)

under the map T̂ → {point}, there is a natural isomorphism

H i
(
T̂ , L⊗CT̂

α∗(M)
) ∼= H i

(
T/S,Rp̂T∗

(
L⊗CT̂

α∗(M)
))

.

On the other hand, α∗(M) ∼= p̂∗T (M0). By projection formula,

(5) Rp̂T∗
(
L⊗CT̂

p̂∗T (M0)
) ∼= Rp̂T∗(L)

L⊗CT/S
M0.

If the restriction of L to the fibre of p̂T : T̂ → T/S is a trivial local
system, or equivalently if there exists a rank one local system L0 on T/S
such that L ∼= p̂∗T (L0), then by projection formula,

(6) Rp̂T∗(L) ∼=
⊕

0≤i≤2 dimS′

L0 ⊗C H i(S′,C)[i].

If the restriction of L to the fibre of p̂T : T̂ → T/S is not trivial, then

(7) Rp̂T∗(L) ∼= 0.

Now a direct computation shows that the claim follows from (1), (5), (6)
and (7). �
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We have shown that Σi
k(T/S,M0) is a finite union of arithmetic subvarieties

for any i ∈ Z and k ∈ N. Since M1 is a direct sum of some twists of M0,
by Lemma 3.1, Σi

k(T/S,M1) is also a finite union of arithmetic subvarieties

for any i ∈ Z and k ∈ N. Since p̂�T : Char(T/S)→ Char(T̂ ) is a morphism
of abelian algebraic groups induced by the morphism of complex tori p̂T ,
p̂�T

(
Σi
k(T/S,M1)

)
is a finite union of arithmetic subvarieties. Hence, the

claim implies that Σi
k(T̂ , α

∗(M)) is a finite union of arithmetic subvarieties.
Thus, by Lemma 3.2, we have completed the proof. �
Proof of Theorem 1.5. LetM be the perverse sheaf as in Theorem 1.5 (with-
out assumption on its support). Since M underlies a polarizable Hodge mod-
ule, it decomposes as M =

⊕
1≤ν≤l Mν , where each Mν is a direct sum of

perverse sheaves that underlie simple polarizable Hodge modules, and each
Mν is strictly supported on an irreducible subvariety Yν of T . This decom-
position is a priori only over Q. We need to show the decomposition is indeed
over Z, to reduce to Proposition 4.1.

Without loss of generality, we can assume that Y1 is not contained in
any other Yν . Let V = Y1 −

⋃
2≤ν≤l Yν . Then M |V = M1|V . Since M1 is a

semisimple perverse sheaf, and since every direct summand of M1 has the
same support Y1, M1 = j!∗(M |V ), where j : V → T is the inclusion. Since
M |V admits a Z-structure,M1 = j!∗(M |V ) admits a Z-structure too. Assume
the Z-structure onM is given byM ∼= MZ ⊗Z C, whereMZ is a constructible
complex defined over Z. Then as the quotient,

M/M1
∼= (MZ/j!∗(MZ|V ))⊗Z C.

Therefore,
⊕

2≤ν≤l Mν
∼= M/M1 admits a Z-structure. By induction, we

can conclude that every Mν admits a Z-structure. By Proposition 4.1,
each Σi

k(T,Mν) is a finite union of arithmetic subvarieties, and hence by
Lemma 3.1, Σi

k(T,M) is a finite union of arithmetic subvarieties for any
i ∈ Z and k ∈ N. �
Proof of Theorem 1.3. Let a : X → Alb(X) be the Albanese map. Denote
the connected component of Char(X) containing the trivial character by
Char0(X). Then a induces an isomorphism between the character varieties
a� : Char(Alb(X))→ Char0(X). For any local system L on Alb(X),

H i(Alb(X),Ra∗(CX)⊗C L) ∼= H i(X,α∗(L)).

Therefore,

a�
(
Σi
k (Alb(X),Ra∗(CX [dimX]))

)
= Σi+dimX

k (X) ∩ Char0(X).
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According to [Sa2] and [PS],

Ra∗(CX [dimX]) ∼=
⊕
|i|≤δ

Pi[−i]

where δ is the defect of semismallness of a, and each Pi is a perverse sheaf
that underlies a polarizable Hodge module of geometric origin. By [Sc1,
Lemma 1.10], each Pi admits a Z-structure. Hence, by Theorem 1.5 and
Lemma 3.1, Σi

k(Alb(X),Ra∗(CX [dimX])) is a finite union of arithmetic
subvarieties for any i ∈ Z, k ∈ N. Therefore, Σi

k(X) ∩ Char0(X) is a finite
union of arithmetic subvarieties for any i, k ∈ N. Suppose H1(X,Z) does
not contain any torsion element. Then Char(X) = Char0(X), and hence the
theorem is proved.

If H1(X,Z) has torsion elements, we can always find a finite cover f :
X̂ → X, such that the image of f∗ : H1(X̂,Z)→ H1(X,Z) does not contain
any torsion element. For such f , the image of the f� : Char(X)→ Char(X̂)
is contained in Char0(X̂). For example, we can always take the cover corre-
sponding to the free part of H1(X,Z). However, we can not guarantee that
f� : Char0(X)→ Char0(X̂) is an isomorphism. By the computation in the
proof of Lemma 3.2,

(8) (f�)−1
(
Σi
k(X̂) ∩ Im(f�)

)
= Σi

k

⎛
⎝X,

⊕
τ∈ker(f�)

Lτ

⎞
⎠ .

Since the finite cover X̂ of X is also a compact Kähler manifold, Σi
k(X̂) ∩

Char0(X̂) is a finite union of arithmetic subvarieties for any i, k ∈ N. More-
over, Im(f�) ⊂ Char0(X̂). Therefore, Σi

k(X̂) ∩ Im(f�) is a finite union of

arithmetic subvarieties. f being a finite covering map implies f∗ : H1(X̂,C)→
H1(X,C) is surjective, and hence f� is a finite covering map from Char(X)

to Im(f�). Therefore, Σi
k

(
X,

⊕
τ∈ker(f∗) Lτ

)
is also a finite union of arith-

metic subvarieties for any i, k ∈ N. By Lemma 3.1, for any τ ∈ ker(f∗),
Σi
k(X,Lτ ) is a finite union of arithmetic subvarieties. Since the trivial char-

acter 1 ∈ Char(X) is in ker(f∗), Σi
k(X,L1) = Σi

k(X) is a finite union of
arithmetic subvarieties for any i, k ∈ N. �

5. Topology of compact Kähler manifolds and smooth
complex projective varieties

According to a beautiful result Voisin [V], there exists a compact Kähler
manifold that is not of the (real) homotopy type of any smooth complex
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projective variety. We will construct such a compact Kähler manifold X
that is similar to the one of Voisin. Using the same method as Voisin, we
will construct subtori in Pic0(X), which force Pic0(X) not to be an abelian
variety. The construction uses cohomology jump loci, and is homotopy in-
variant. Hence we can conclude that any compact Kähler manifold of the
same homotopy type as X is not projective.

Proposition 5.1. There exists a compact Kähler manifold X, satisfying
the following. If X ′ is another compact Kähler manifold, and if there exists
an isomorphism f : Char(X)→ Char(X ′), which induces an isomorphism
between Σ2

1(X) and Σ2
1(X

′), then X ′ is not projective.

The example of X will be quite similar to the one of Voisin [V]. We recall
a lemma there.

Lemma 5.2 ([V]). Let T be a complex torus of dimension at least two,
and let φ be an endomorphism of T . Suppose the characteristic polynomial
f of φ∗ : H1(T,Z)→ H1(T,Z) satisfies the property that the Galois group
of its splitting field acts as the symmetric group on the roots of f . Then T
is not an abelian variety.

Proof of Proposition 5.1. We first construct X. Let T be the complex torus
as in the lemma. Define X0 = T × T ×P1

C. Take four distinct points Pi,
1 ≤ i ≤ 4, in P1

C. We denote by Zi, 1 ≤ i ≤ 4 the following four subvarieties
of T × T , T × {id}, {id} × T , the diagonal in T × T and the graph of φ.
Let X be the blow-up of X0 along

⋃
1≤i≤4 Zi × {Pi}. Recall that Voisin’s

example was to blowup each Zi in T × T . But before these blowups, we
have to blowup their intersections first. We introduce the P1

C to avoid the
blowup of the intersections. This construction makes the later computation
easier.

By our construction, there is a natural isomorphism γ : Alb(X)→ T ×
T . From now on, we will identify Alb(X) and T × T via γ. Denote T × T/Zi

by Bi, and denote the quotient maps by pi : T × T → Bi, 1 ≤ i ≤ 4.

Claim.

Σ2
1(X) =

⋃
1≤i≤4

p�iChar(Bi).

Proof of the Claim. Let M = Ra∗(CX). Since we have identified Alb(X)
with T × T , by projection formula, Σ2

1(X) = Σ2
1(T × T,M).
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Notice that the Albanese map a : X → T × T is equal to the composi-
tion of the blowing up map q : X → X0 and the projection p : X0 → T × T .
Hence, M = Rp∗(Rq∗(CX)). By abuse of notation, we denote the push-
forward of the constant sheaf CZi

under the embedding Zi → T × T by CZi

also. Recall that X0 = T × T ×P1
C and q : X → X0 is the blowup along dis-

joint centers Zi × {Pi}, 1 ≤ i ≤ 4. Let d = dimT . One can easily compute

M =
( ⊕

1≤i≤4
1≤j≤d

CZi
[−2j]

)
⊕ CT×T ⊕ CT×T [−2].

Thus,

Σ2
1(T × T,M) =

( ⋃
1≤i≤4
1≤j≤d

Σ2
1(T × T,CZi

[−2j])
)

∪ Σ2
1(T × T,CT×T ) ∪ Σ2

1(T × T,CT×T [−2])

=

( ⋃
1≤i≤4
1≤j≤d

Σ2−2j
1 (T × T,CZi

)

)

∪ Σ2
1(T × T,CT×T ) ∪ Σ0

1(T × T,CT×T ).

When j > 1, Σ2−2j
1 (T × T,CZi

) = ∅. Σ0
1(T × T,CZi

) = p�iChar(Bi) for 1 ≤
i ≤ 4. Moreover, both Σ2

1(T × T,CT×T ) and Σ0
1(T × T,CT×T ) consist of the

origin only. Hence, the claim follows. �

Back to the proof of the proposition, suppose X ′ satisfies the assumption in
the proposition. Then Σ2

1(X
′) is the union of four arithmetic subvarieties Ci

corresponding to each p�iChar(Bi), 1 ≤ i ≤ 4. Notice Picτ (X ′) = Pic0(X ′),
since Char(X) ∼= Char(X ′) and Char(X) is connected. Recall that as de-
scribed in Corollary 1.4, there is a canonical isomorphism between Pic0(X ′)
and the group of unitary characters Charu(X ′). Under this identification,
Hodge decomposition for unitary local systems implies

Σ0,2
1 (X ′) ∪ Σ1,1

1 (X ′) ∪ Σ2,0
1 (X ′) = Σ2

1(X
′) ∩ Charu(X ′).

Since Σp,q
k (X ′) is always an analytic subvariety of Pic0(X ′) for any p, q, k ∈

N, Pic0(X ′) has four subvarieties corresponding to Ci ∩ Charu(X ′), 1 ≤ i ≤
4. According to the arguments in [V], the presence of these four subvarieties
of Pic0(X ′) induces Pic0(X ′) ∼= T∨ × T∨ and T∨ has an endomorphism φ∨
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whose characteristic polynomial is equal to the characteristic polynomial of
f . By Lemma 5.2, T∨ is not an abelian variety. Thus, Pic0(X ′) is not an
abelian variety, and hence X ′ is not projective. �

Remark 5.3. Since cohomology jump loci are homotopy invariant, Propo-
sition 5.1 implies any compact Kähler manifold that is of the same homotopy
type as X is not projective. In fact, this is still true for any compact Kähler
manifold that is of the same real 2-homotopy type as X. This is because the
germs of Σ2

1(X) at origin are determined only by the real 2-homotopy type
of X (see [DP]). Knowing the germs at the origin is sufficient to recover the
endomorphism in Lemma 5.2, which implies that Pic0(X ′) is not an abelian
variety.
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