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On Saito’s vanishing theorem

CHRISTIAN SCHNELL

We reprove Saito’s vanishing theorem for mixed Hodge modules by
the method of Esnault and Viehweg. The main idea is to exploit
the strictness of direct images on certain branched coverings.

A. Overview
1. Introduction

The Kodaira vanishing theorem is one of the most useful results in algebraic
geometry. Besides the original differential-geometric proof by Kodaira [5]
and the famous algebraic proof by Deligne and Illusie [1], there are at least
two other proofs that are based on Hodge theory. One is due to Ramanujam
[7], and uses the weak Lefschetz theorem; the other is due to Esnault and
Viehweg [3], and uses branched coverings and the degeneration of the Hodge-
de Rham spectral sequence.

Saito’s vanishing theorem [9, §2.g] is a generalization of Kodaira’s the-
orem to mixed Hodge modules; it contains as special cases several other
results, such as Kollar’s vanishing theorem for higher direct images of du-
alizing sheaves. More precisely, Saito uses Artin’s vanishing theorem for
perverse sheaves on affine varieties to obtain a vanishing theorem for the
graded quotients of the de Rham complex of any graded-polarizable mixed
Hodge module; his proof is therefore a distant cousin of Ramanujam’s. In
this paper, we show that Saito’s theorem can also be proved by the method
of Esnault and Viehweg: the key point is to exploit the strictness of direct
images on certain branched coverings. The argument is perhaps less elegant
than Saito’s, but it has two advantages:

1) The vanishing theorem follows from results about polarizable Hodge
modules, without appealing to vanishing theorems for perverse sheaves.

2) The result can be stated and proved entirely in terms of pure Hodge
modules, without the need for using mixed Hodge modules.
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500 Christian Schnell

Since mixed Hodge modules are more complicated than pure ones, the sec-
ond point may be useful to someone who is trying to understand Saito’s
vanishing theorem with a minimum of theoretical background. Those who
are interested in the original proof can also consult Popa’s expository paper

[6].
2. Statement of the result

We will first state the vanishing theorem for mixed Hodge modules, because
this is the version that Saito gives; but in fact, the general case follows very
easily from the special case of pure Hodge modules.

Let Z be a reduced projective algebraic variety. We denote by MHM(Z)
the abelian category of graded-polarizable mixed Hodge modules on Z. It
is defined by embedding Z into a complex manifold X, for example into
complex projective space, and then looking at all graded-polarizable mixed
Hodge modules on X whose support is contained in Z. One can show that
this definition is independent of the choice of embedding; for the convenience
of the reader, an outline of the proof is included in §6 below. Given M €
MHM(Z), we write (M, Fe M) for the underlying filtered Z-module: here M
is a regular holonomic left Z-module on X whose support is contained in Z,
and Fe M is a good filtration by coherent &'x-modules. We set n = dim X,
and denote by

DR(M) = [MHQ&@M%-~-%Q}®M}M

the de Rham complex of M; by a theorem of Kashiwara, it is a perverse
sheaf on X with support in Z. The complex DR(M) is naturally filtered by
the family of subcomplexes

FyDR(M) = |F,M = Q% @ Fya M = -+ = Q% @ Fpen M| ],
and one can use the properties of mixed Hodge modules to show that each
grfDR(M) = [grgM — Q% ®gr§+1/\/l — = Q% ®gr£+n/\/l} [n]

is a well-defined complex of coherent &’z-modules, whose isomorphism class
in the derived category D’;oh(ﬁ 7) does not depend on the choice of ambient
complex manifold X. For the convenience of the reader, the argument is
recalled in Lemma 7.3.

As one of the first applications of his theory of mixed Hodge modules,

Saito proved the following vanishing theorem for those complexes [9, §2.g].



On Saito’s vanishing theorem 501

Theorem 2.1 (Saito). Let M € MHM(Z) be a graded-polarizable mized
Hodge module on a reduced projective variety Z. If L is an ample line bundle
on Z, one has

H'(Z,gr] DRIM)® L) =0 fori>0 andp € Z,
H'(Z,grf DRIM)@ L) =0 fori<0 andp € Z.

Note that Kodaira’s vanishing theorem is a special case: the pair (Oy,
F,0x), with grg Ox =0 for p # 0, is part of a polarizable Hodge module,
and one has

wy = gr’, DR(Ox) and Ox[n] = grf DR(O).

Although Theorem 2.1 is stated in terms of mixed Hodge modules, it is
really a result about pure ones; we will see below that the same is true for
the proof.

3. Reduction to the pure case

We now explain how to obtain Theorem 2.1 from a statement about pure
Hodge modules. For a reduced and irreducible projective variety Z, we de-
note by HMz(Z,w) the abelian category of polarizable Hodge modules of
weight w with strict support Z; the precise definition is

HMZ(Za IU) = HMZ(X,U)),

where X is a complex manifold containing Z, and where M € HM(X, w)
belongs to HM z (X, w) iff the support of every nonzero subobject or quotient
object of M is equal to Z. As before, one can show that this category does
not depend on the choice of embedding — in fact, an important result by
Saito [9, Theorem 3.21] says that HMz(Z, w) is equivalent to the category
of generically defined polarizable variations of Hodge structure of weight
w—dim Z.

Theorem 3.1 (Saito). Let Z be a reduced and irreducible projective va-
riety, and let M € HMy(Z,w) be a polarizable Hodge module with strict
support Z. Then one has

H%Z,griDR(M)@L):O fori>0andp€Z,
Hi(Z,grg DR(M) ®L71) =0 fori<O0andp€Z,
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where L is any ample line bundle on Z.

It is easy to deduce Theorem 2.1 from this special case. Suppose first
that Z is a reduced projective variety, and that M € HM(Z, w) is a polariz-
able Hodge module of weight w. Then M admits a decomposition by strict
support, and because the vanishing theorem is true for each summand by
Theorem 3.1, it is true for M as well. To deal with the general case, re-
call that every M € MHM(Z) has a finite weight filtration WeM with the
property that gr’V M € HM(Z, w); because the functor grf: DR is exact, we
obtain the vanishing theorem for arbitrary graded-polarizable mixed Hodge
modules.

4. Idea of the proof

To prove Theorem 3.1, we shall use a method invented by Esnault and
Viehweg. The general idea, explained for example in [4, §1], is to deduce
vanishing theorems from the E7j-degeneration of certain spectral sequences.

As a motivation for what follows, let us briefly recall how Esnault and
Viehweg prove the Kodaira vanishing theorem. Let L be an ample line bundle
on a smooth projective variety X. For sufficiently large N, the line bundle
LY becomes very ample, and we can find a smooth divisor D C X with
LY ~ 0x (D). Such a divisor determines a branched covering 7: Y — X
(see §9), and one can show that

N-1 N-1
Oy ~Ox o @ L™ and w05 ~ 0k o P Ak (logD) @ L.
i=1 =1

Now Y is again a smooth projective variety, and so its Hodge-de Rham spec-
tral sequence degenerates at E1; in particular, the mapping d: H (Y, Oy) —
H'(Y,Q},) is equal to zero. From this, one can deduce that the restriction
mapping

HY(X,L ™ - H(D,0p ® L")
is also equal to zero: the key point is that d: Oy — Q%, induces a C-linear
mapping L~ — QY (log D) ® L~!, whose composition with the residue map-

ping is, up to a constant factor, equal to the ¢x-linear mapping L~ —
Op ® L™, Consequently,

HY(X, L7V Y - H(X, L™
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must be surjective; because of Serre duality,
H (X, wx ® L) - H(X,wx @ LVt

must be injective. But now we can kill the right-hand side by taking N > 0,
and so we get the vanishing of H*(X,wx ® L) for i > 0.

The proof of Theorem 3.1 follows the same path. Since Z may be sin-
gular, we first extend the line bundle L to a small open neighborhood X in
some projective embedding of Z. We then take a sufficiently generic branched
covering m: Y — X, and use the strictness of direct images for polarizable
Hodge modules to prove that

H(Z Logl DR(M)) S H (Z, LN @ grF DR(M))

must be injective for ¢ > 0. Because the complex grg DR(M) is concentrated
in non-positive degrees, we can again kill the right-hand side by taking
N > 0. This proves half of Theorem 3.1; the other half follows by Serre
duality, because the de Rham complex is compatible with the duality functor
(see Lemma 7.4).

5. Note to the reader

I wrote this paper for those who already know the definitions and basic re-
sults from the theory of polarizable Hodge modules [8]. If you are not familiar
with Saito’s theory, but nevertheless interested in the proof of the vanishing
theorem, I would recommend taking a look at Saito’s nicely-written sur-
vey article [12] or at the more recent [13]. Two of the results that we need
— about Hodge modules on singular varieties and about non-characteristic
inverse images — are distributed among several of Saito’s papers; in the in-
terest of readability, I therefore decided to include an outline of their proof.

Please note that I chose to use left Z-modules throughout: this is more
convenient when working with inverse images and simplifies certain argu-
ments with differential forms. However, because Saito uses right Z-modules,
a little bit of translation is needed when looking up results in [8, 9]. The rules
for this are as follows. Suppose that (M, Fe M) is a filtered left Z-module
on an n-dimensional complex manifold X. Then the associated filtered right
Z-module is

<(.UX ®ﬁx M, wx ®ﬁx Fo—l—nM)v
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with Z-module structure given by (w®@m) - =(w-&) @m —w® (£-m),
where w, m, and £ are sections of wyx, M, and the tangent sheaf I, re-
spectively.

The conventions for indexing the V-filtration for left and right Z-modules
are also different. For the left Z-module M, the rational V-filtration along
t =0 is a decreasing filtration V°*M with the property that t0; — « acts
nilpotently on gr{; M. The corresponding filtration on wyx ® M [8, Défini-
tion 3.1.1] is the increasing filtration

Ve(wx ®g, M) =wx @4, V7 7IM;

the change is needed to keep the (right) action of td; — a on gr) (wx ® M)
nilpotent.

B. Some background
6. Mixed Hodge modules on singular varieties

Since Theorem 2.1 is stated for mixed Hodge modules on projective varieties,
it may be helpful to review the definition of the category MHM(Z) in the
case where Z is a possibly singular projective algebraic variety. The idea is
to embed Z into a complex manifold X (such as projective space), and then
to define

MHM(Z) € MHM(X)

as the full subcategory of all graded-polarizable mixed Hodge modules on
X whose support is contained in Z. To make this definition meaningful, one
has to show that the resulting category does not depend on the embedding;
we shall explain below how this is done.

Note. The same definition works for any analytic space that can be em-
bedded into a complex manifold. On an arbitrary analytic space Z, such
embeddings may only exist locally, and so one has to cover Z by embed-
dable open subsets and work with collections of mixed Hodge modules on
the open sets that are compatible on intersections. This idea is developed in
[10].

From now on, let Z be a reduced projective algebraic variety. Given an
embedding i: Z — X into a complex manifold, we consider the full subcat-
egory

MHM(X,i) € MHM(X)
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of all graded-polarizable mixed Hodge modules on X whose support is con-
tained in the image of Z. Obviously, we can always take X to be projective
space of some dimension; but for the proof of Theorem 2.1, it will be useful
to allow other complex manifolds, too. It is easy to see that MHM(X,1) is
an abelian category. The main result is that this category does not depend
on the choice of embedding.

Proposition 6.1. Given two embeddings i: Z < X and j: Z <Y, one
has a canonical equivalence of categories between MHM(X, 1) and MHM(Y 7).

The tool for proving this is the following version of Kashiwara’s equiva-
lence for mixed Hodge modules.

Proposition 6.2. Let f: X — Y be a closed embedding between two com-
plex manifolds. For any closed analytic subspace i: Z — X, the direct image
functor

f«: MHM(X) — MHM(Y)
induces an equivalence of categories between MHM (X, i) and MHM(Y, f o).

Proof. This is proved in [8, Lemme 5.1.9] for pure Hodge modules, and
asserted in [9, 2.17.5] for mixed ones. The essential point is to show that the
underlying filtered Z-module (M, Fe M) of a mixed Hodge module M €
MHM(Y, f oi) comes from X. For M, this follows from a more general
result for coherent Z-modules in Kashiwara’s thesis; in order to deal with
the filtration Fy M, one has to use one of the axioms characterizing mixed
Hodge modules [8, Proposition 3.2.2]. O

Now let us prove Proposition 6.1. Since we cannot directly compare X
and Y, we use the product embedding (i,7): Z < X x Y, as in the following
diagram:

(6.3)

Because the situation is symmetric, it suffices to show that the direct image
functor

pe: MHM(X X Y, (i, 7)) — MHM(X, i)
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is an equivalence of categories. Note that p, is obviously faithful: in fact,
this is true for the underlying perverse sheaves because p is an isomorphism
on the image of Z, and the functor from mixed Hodge modules to perverse
sheaves is faithful. So the issue is to show that p, is essentially surjective.

Let M € MHM(X) be a graded-polarizable mixed Hodge module whose
support is contained in i(Z). To construct from M an object on X x Y,
we use the existence of good local sections for p. More precisely, for every
point of Z, there is an open neighborhood U C X and a holomorphic map-
ping f: U — Y such that f o¢ = j; this follows from the basic properties of
holomorphic functions. Now

(id, f): U UxY

is a closed embedding with the property that (id, f)oi = (i,7), and so
(id, f)«M is a graded-polarizable mixed Hodge module on U x Y whose
support is contained in the image of (4, ). If we choose a different holomor-
phic mapping f': U =Y, then (id, f).M and (id, f').M are canonically
isomorphic by virtue of Proposition 6.2. This fact allows us to glue the local
objects together into a well-defined object of MHM (X XY, (i,j)); it is clear
from the construction that its image under p, is isomorphic to the original
mixed Hodge module M.

Note. Another consequence of the above proof is that Saito’s direct im-
age theorem [8, Théoréeme 5.3.1] holds for an arbitrary holomorphic map-
ping f: X — Y between two complex manifolds, as long as the support of
the Hodge module M € HM(X, w) is projective over Y. The reason is that
Supp M can be embedded into a complex manifold that is projective over Y;
now the argument from above shows that the direct image of the resulting
Hodge module under this projective morphism is isomorphic to that of M
under f.

7. Subquotients of the de Rham complex

In this section, we collect a few general results about the graded quotients
of the de Rham complex. Let X be a complex manifold, and let (M, Fe M)
be a filtered Z-module on X. We begin with a more careful local description
of the differentials in the complex

DR(M) = [M—>Q§(®M—>---—>Q}®M}[n].
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Let z1,..., 2, belocal holomorphic coordinates on X. Then the differentials
V: 0k o M=o oM

in the de Rham complex are given by the formula

n

(7.1) Via@m)=(-1)"da@m+ (=1)" Y (dz; Aa) @
=1

m.
81‘@

The extra factor of (—1)" is due to the shift in the definition of DR(M);
it is part of a consistent set of sign conventions. Because Fo M is a good
filtration, it is obvious from this description that each

(7.2)  F,DR(M) = [Fp./\/l S QL @ Fpp M — - — Q% @ FyonM| 1]

is a subcomplex. When we go to one of the graded quotients grsz DR(M),
we obtain the following formula for the differentials:

Q];( ® grg_,_k M — Q]§(+1 ® gr5+k+1 M,
n

a®@m— (—=1)" Z(dl‘z Aa)® aim.
i=1 !

Now let us consider the case where (M, Fe M) is part of a mixed Hodge
module on X. In the case where the support of M is contained in an an-
alytic subset Z, the properties of mixed Hodge modules imply that each
gry DR(M) is actually a complex of coherent @'z-modules.

Lemma 7.3. Let M € MHM(X) be a mized Hodge module on a complex
manifold X . If the support of M is contained in an analytic subset Z C X,
then each

grgDR(./\/l) = [grg./\/l — 0k ®gr5+1./\/l —>---—>Q"X®gr5+n./\/l} [n]

is a well-defined complex of coherent €z-modules; its isomorphism class in
Dgoh(ﬁz) is independent of the embedding of Z into a complex manifold.

Proof. We first prove that each grg M is a coherent sheaf on Z. Let f be
an arbitrary local section of the ideal sheaf .Zz; by the definition of mixed
Hodge modules, (M, Fe M) is quasi-unipotent and regular along f = 0. By
[8, Lemme 4.2.6], this implies that f - F, M C F},_; M, which means that f
annihilates grg M.
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The independence of the choice of embedding follows from Proposi-
tion 6.1 and the compatibility of the de Rham complex with direct images.
Suppose we have another embedding j: Z — Y into a complex manifold. As
in (6.3), we consider the product embedding (i,7): Z <— X x Y. By Propo-
sition 6.1, we have M ~ p,M’ for a graded-polarizable mixed Hodge module
M’ € MHM(X x Y') whose support is contained in (i, 7)(Z); as the situation
is symmetric, it suffices to prove that

D+ (gr{,T DR(M’)) ~ Rp. (grg DR(M')) ~ gri DR(M).

But because p is an isomorphism over the image of Z, this follows from the
definition of the direct image functor for filtered Z-modules [8, §2.3.7]. O

Another very useful result is the compatibility of the de Rham complex
with the duality functor. In combination with Serre duality, it can be used to
show that the two assertions for L and L~! in Theorem 2.1 are equivalent.

Lemma 7.4. Let M € HM(X,w) be a polarizable Hodge module on an n-
dimensional complex manifold X. Then any polarization on M induces an
isomorphism

RHomg, (gréP DR(M),wx [n]) o~ grlip_w DR(M).

Proof. Recall that a polarization of M induces an isomorphism M (w) ~
DM with the dual Hodge module; in particular, the filtered Z-module un-
derlying DM is isomorphic to (M, Fe_,,M). The assertion therefore follows
from the compatibility of the filtered de Rham complex with the duality
functor [8, §2.4.3]. Since the result is not explicitly stated there, we shall
quickly sketch the proof.

The main tool is the equivalence, on the level of derived categories, be-
tween filtered Z-modules and filtered differential complexes [8, §2.2]; under
this equivalence, the pair (M, Fe M) goes to the de Rham complex DR(M),
endowed with the filtration in (7.2). Now choose an injective resolution

0wy - K"—=- =K t=K"=0
by right Zx-modules that are injective as &x-modules; such a resolution

exists because the injective dimension of wx is equal to n. As explained in [8,
§2.4.11], the de Rham complex of DM is isomorphic, as a filtered differential
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complex, to the simple complex associated with the double complex
Hom g, (DR(M),K*®).
Here the filtration on the double complex is given by the rule

FyHome, (QT)L(_Z ® M, /Cj)
= {¢: T @M =K | 9(U @ FrmipaiM) =01,

due to the fact that gr}ﬂp K7 =0 for p # 0. In particular, we have
grg Home, (%" @ M, K7) ~ Homg, (Vs ® grg_i_p M, K7).

This gives us a canonical isomorphism in the derived category between the
associated graded of the de Rham complex of DM and

RHome, (grﬁ. DR(M), wx [n]>7

using that K® is quasi-isomorphic to wx [n]. Together with the remark about
the polarization from above, this implies the asserted isomorphism. O

This result also bounds the range in which the graded quotients of the
de Rham complex are nontrivial. Since F M = 0 for p < 0, it makes sense
to define

(7.5) p(M)=min{p e Z | grg DR(M) # 0 }.

By definition, we have grf DR(M) =0 for p < p(M); Lemma 7.4 shows
that the complex grg DR(M) is also exact for p > —p(M) — w. Another
consequence is that the Grothendieck dual of the coherent sheaf

is isomorphic to the complex grf p(M)—w DR(M).

8. Non-characteristic inverse images

In this section, we review the construction of inverse images for polariz-
able Hodge modules under sufficiently generic morphisms. Let f: Y — X
be a holomorphic mapping between complex manifolds, and let r = dimY —
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dim X denote its relative dimension. In this situation, we have the following
morphisms between the cotangent bundles of X and Y:

Y xx T*X —% 5 oy

I

X

Let M be a regular holonomic left Z-module on X, and F,,M a good
filtration by coherent &x-modules. Recall that the characteristic variety
Ch(M) C T*X is the support of the coherent sheaf determined by the co-
herent grf’ Zx-module grf” M. The following definition is a slightly modified
version of [8, §3.5.1].

Definition 8.1. We say that the morphism f is non-characteristic for
(M, Fe M) if the following two conditions are satisfied:

(a) The restriction of df to p;* Ch(M) is a finite mapping.
(b) We have L"f*(grfoJ M) =0 for every i < 0 and every p € Z.

The first condition is a transversality property. Since M is regular holo-
nomic, one can find a Whitney stratification adapted to it; note that every
irreducible component of Ch(M) is the conormal variety of the closure of a
stratum. Given a point y € Y, let S C X be the stratum containing f(y);
then we are asking that

Tf(y)S + f+ (TyY) = Tf(y)X'

In the case where Y is a subvariety of X, for example, this is saying that Y
is transverse to every stratum. The second condition, on the other hand, is
a kind of flatness property: we are asking that the higher derived functors
are trivial when we pull back the &'x-modules grg M.

Example 8.2. Smooth morphisms are always non-characteristic.

The point of the two conditions is that the naive pullback f*M is
again a regular holonomic Z-module on Y, and that the filtration Fe f*M =
f*FeM is again a good filtration. Except for regularity, this is proved in [8,
Lemme 3.5.5]; the point is that f* grl’ M is coherent over grf’ %y, because
pushing forward by finite morphisms preserves coherence.
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From now on, we consider the case of a polarizable Hodge module M €
HM(X,w). We say that f: Y — X is non-characteristic for M if it is non-
characteristic for the underlying filtered Z-module (M, Fy M). The following
result shows that the naive inverse image of M is then again a polarizable
Hodge module.

Theorem 8.3. Let M € HMz(X,w) be a polarizable Hodge module on X,
with strict support Z. If f: Y — X is non-characteristic for M, then we
have

ffM=My and [TFoM ~ F My
for a polarizable Hodge module My € HM g1z (Y, w + 7).

This can be proved in several ways, but perhaps the cleanest one is
to use the relationship between polarizable Hodge modules and polarizable
variations of Hodge structure. According to [9, Theorem 3.21], the Hodge
module M comes from a polarizable variation of Hodge structure of weight
w — dim Z on a Zariski-open subset of the smooth locus of Z. We may clearly
assume that f(Y') intersects Z; the transversality condition implies that the
preimage of the smooth locus of Z is dense in f~1(Z), and that dim f~!(Z) =
dim Z + r. We can therefore pull the variation of Hodge structure back to
a Zariski-open subset of f~1(Z), and use Saito’s result again to extend it
to a polarizable Hodge module My € HM-1(z) (Y,w + r); this procedure
explains why the weight changes by the relative dimension r. We denote the
underlying filtered Z-module by (My, FeMy).

It remains to show that My ~ f*M and that FoMy ~ f*Fe M. By
construction, this is true on the Zariski-open subset to which we pulled back
the variation of Hodge structure; what we have to prove is that both sides
are extended to Y in the same way. Here the strategy is to use some of the
conditions in the definition of Hodge modules, in particular the compatibility
between the Hodge filtration and the V-filtration.

We observe first that f factors through its graph as

f

N

Y 5 vy xXx 25X,

because both ps and ¢ are again non-characteristic for M, it suffices to deal
separately with the case of a smooth morphism and the case of a closed
embedding.
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Lemma 8.4. When f: Y — X is a smooth morphism, Theorem 8.3 is true.

Proof. The question is local on X, and so we may assume that there is
a holomorphic function g: X — C such that Zy = Z N g~ 1(0) contains the
singular locus of Z, and such that M comes from a polarizable variation
of Hodge structure on Z \ Zy. We now define h = go f, and consider the
following diagram:

(id,h) REONEINTS
lf ifxid
(id,g) L9 v o ¢

Because of Proposition 6.2, it suffices to prove the assertion for the direct
image (id, g).M on X x C; this amounts to replacing (M, Fe M) by

My=P Moo and FMy =@ FeiiM @0},

i>0 i>0

where t denotes the coordinate on C and 9; = 9/0t the corresponding vector
field. After making the obvious replacements, we may therefore assume that
g~ %(0) and A~%(0) are complex manifolds, and that we have holomorphic
vector fields 0, and 0, with the property that [0y, g] =1 and [0y, h] = 1.
We will first prove that My ~ f*M. Let V*M and V°*My denote the
rational V-filtrations along g = 0 and h = 0, respectively; for left Z-modules,
the conventions are that g: VM — VM and 9,: VOM — VolM,
and that the operator gd; — a acts nilpotently on griy M = V*M/V=M.
Now the point is that M has strict support Z, which is not contained in
g~ 1(0); this implies that d,: gr, M — gr‘_/l M is surjective, and hence that

M=x -VIM=Y 0i(V>"'M).
i=0
Recall that V> ~' M only depends on the restriction of M to Z \ Zy, which is

the flat bundle underlying our variation of Hodge structure. By construction,
V>"IMy ~ f*V>"1 M, and so we obtain

FM2D 0 (FVTIM) =Y 0, (V7T My) ~ My
=0 =0

To get the corresponding statement for the filtrations, we will use the fact
that M and My are Hodge modules. One of the conditions in the definition
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is that the mapping 9,: F) gr{'}“ M — Fpyqgrfy M is surjective for every

p € Z and every a < —1; because M has strict support Z, this is also true
when a = —1. According to [8, Remarque 3.2.3], we therefore have

FoM =00 (V2T M0 juj* Fy M),
1=0

where j: X \ Xo < X denotes the open embedding; the right-hand side is
again determined by the variation of Hodge structure on Z \ Zy. Now the
flatness condition in the definition of being non-characteristic implies that

FEM=Y 04 (f VMO j* f* FpeiM)
=0

~ Zaﬁ (V>71My ﬂj*j*Fp_iMy) = F,My,
=0

which is the result we were after. U
Lemma 8.5. When f: Y — X is a closed embedding, Theorem 8.3 is true.

Proof. The problem is again local on X, and so we may assume that f is
a complete intersection. If we factor f into a composition of closed embed-
dings of codimension 1, then each step is again non-characteristic by |8,
Lemme 3.5.4]; in this way, we reduce the problem to the case where Y is
defined by a single holomorphic function g: X — C. Because the embedding
is non-characteristic, it is not hard to show that V*M is the g-adic filtration
[8, Lemme 3.5.6], and hence that

g% M~ f*M and gr(/l M ~0;

moreover, the flatness condition implies that F, gr?/ M ~ f*F M. In partic-
ular, the action of N = gd, on gr?/ M is trivial; according to the definition
of Hodge modules, this means that the pair (f*M, f*Fe M) is part of a
polarizable Hodge module of weight w — 1 on Y. Because f*M has strict
support f~1(Z), the uniqueness statement in [9, Theorem 3.21] implies that
this polarizable Hodge module must be isomorphic to My, as asserted. [l
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9. Branched coverings

The proof of Theorem 3.1 makes use of certain branched coverings. We
briefly review the construction in the special case that we need; for a more
complete discussion, including proofs, see [4, §3].

Let X be a complex manifold, and let L be a holomorphic line bundle
on X. Suppose that for some integer N > 1, there is a global section s €
HY(X, LN) whose zero scheme is a smooth divisor D C X. In this situation,
one can construct another complex manifold Y and a branched covering

Y — X

in the following way. Let p: L — X denote the projection from the line
bundle, now considered as a complex manifold. Then p* L has a tautological
section sy, and we may define Y as the zero scheme of the section SJLV —p*s.
It is easy to see that Y is a complex manifold: over any open subset U C X
where L is trivial, the section s is represented by a holomorphic function
f: U — C, and 77 1(U) is the submanifold of U x C defined by the equation
tV = f. The local description can be used to prove that

N-1
T Oy ~ Ox ® @ L_i,
i=1

and, more generally, that

N-1
b ~ Ok @ @ Q% (log D) @ L™

i=1

for k=1,...,dim X; here Q’)“((log D) is the sheaf of logarithmic differen-
tial forms. For instance, the summand L~! in the decomposition of 7,0y
corresponds to t - Ox, and the summand Q% (log D) ® L' corresponds to

d
t-Q’§<+dt/\Q’§(_1:t~<Q’§(+J{/\Q’;{1>,

remembering that df/f = Ndt/t. In both formulas, the N summands on
the right-hand side are in one-to-one correspondence with the characters of
the group of N-th roots of unity, which acts on Y in the obvious way.
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C. Proof of the theorem
10. Extending line bundles

We now begin with the preparations for the proof of Theorem 3.1. Let Z
be a reduced and irreducible projective variety, and let L be an ample line
bundle on Z. Fix an integer N > 2 such that LY is very ample; then Z
embeds into the projective space P = IP’(HO(Z, LN)), and the restriction of
Op(1) is isomorphic to LY. The purpose of this section is to extend L to a
small open neighborhood of Z in P; this will allow us to work with branched
coverings that are again complex manifolds.

Lemma 10.1. [t is possible to extend L to a holomorphic line bundle Lx
on an open neighborhood X 2 Z, in such a way that LY ~ Ox(1).

Proof. According to a result by Durfee [2, Proposition 1.6 and §2], we can
find an open set X C P containing Z, with the property that the inclusion
Z — X is a homotopy equivalence. From the exponential sequence — which
is also valid on Z by definition of the sheaf &7 — we obtain a commutative
diagram

HY(X,Z(1)) —— H'Y(X,0x) =2 HY(X, 0%) — H?*(X,Z(1))

| ! ! |

HY(2,2(1)) —— HYZ,07) —2» HY(Z,0}) —— H?*(Z,Z(1))

with exact rows. By construction, the first Chern class ¢;(€0x(1)) €
H?(X,Z(1)) maps to ¢1(L") = N - ¢;(L), and is therefore divisible by N.
This means that we can find a holomorphic line bundle Mx with the prop-
erty that

N -ci(Mx) =c¢1(0x(1)) and cl(MX)}Z:cl(L).

Consequently, there are two elements o € H'(X,0x) and € HY(Z, 0)
such that

exp(a) - [Mx]V =[0x(1)] and exp(B) - [Mx]|, = [L];

square brackets mean the isomorphism class of the corresponding line bun-
dle. The element oz!z — NJ3 belongs to the image of H'(Z,Z(1)); by adjust-
ing a,, we can arrange that [ is equal to the restriction of a/N. Now let Lx
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be any holomorphic line bundle on X with
[Lx] = exp(a/N) - [Mx].

The formulas above show that [Lx]V = [0x(1)] and [LXHZ = [L], and so
we have found the desired extension of L. O

11. Hodge modules and strictness

For the remainder of the argument, we may assume that Z is embedded into
a complex manifold X, in such a way that the given ample line bundle on
Z is the restriction of a holomorphic line bundle L on X. We may also as-
sume that M € HMz (X, w) is a polarizable Hodge module on X with strict
support Z; this is because the graded quotients of the de Rham complex do
not depend on the embedding (by Lemma 7.3). It is important to keep in
mind that the underlying filtered Z-module (M, Fe M) lives on X.

Now let D C X be the divisor of a sufficiently general section s €
HO(X, LN) or, more concretely, the intersection of X with a sufficiently gen-
eral hyperplane H C P. Then D is non-characteristic for M, and so we ob-
tain from Theorem 8.3 a polarizable Hodge module Mp € HMpnz(D,w — 1)
with the property that

Mp ~ ./\/l‘D and FMp ~ FpM|D.
By construction, we have LY ~ @x (D), and we denote by
Y —- X

the resulting branched covering of X; since D is smooth, Y is again a complex
manifold. It is easy to see that 7 is also non-characteristic for M this gives
us another polarizable Hodge module My € HM;-1 () (Y, w) with

My ~7*M and F,My ~ 7" F,M.

Both My and Mp will play a role in the proof of Theorem 3.1.

We begin by deducing the vanishing of certain morphisms from the fact
that My is a polarizable Hodge module. By construction, the support of
My is equal to the projective variety 7~ '(Z); as we noted at the end of
§6, Saito’s direct image theorem [8, Théoréme 5.3.1] therefore holds for the
direct image of (My, Fe My ) under the morphism from Y to a point. In
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particular, the direct image in question is strict; concretely, this means that
the spectral sequence

(11.1) EPT = HPYI(Y, gr” DR(My)) = HP™(Y,DR(My))
degenerates at . Since the spectral sequence comes from a filtered complex,
it is easy to describe the Fj-differentials in terms of DR(My ). For each
p € Z, we have a short exact sequence of complexes

0 — gry_; DR(My) = F, DR(My)/F,—2 DR(My) — gri DR(My) — 0.

In the derived category of complexes of sheaves of C-vector spaces, it is part
of a distinguished triangle; the third morphism in this triangle is

grg DR(My) — grfj,l DR(My)[1].
As in the case of d: Oy — O3, this morphism is in general not Oy-linear.
The degeneration of the spectral sequence in (11.1) has the following conse-
quence.
Lemma 11.2. For every i,p € 7, the induced morphism on cohomology
H'(Y,gry DR(My)) — H"' (Y, gr]_ DR(My))

is equal to zero.

12. Comparison with the original complex

The purpose of this section is to obtain information about the complex
gry DR(M) from Lemma 11.2. The first step is to take the direct image of
DR(My) by the finite morphism 7: Y — X.

Lemma 12.1. The complex 7. DR(My) has a direct summand isomorphic
to

[L—l @M — Q(logD) @ L @M — - — Q% (log D) ® L~ @M} in],

compatible with the filtration . Fe DR(My).
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Proof. Note that the functor m, is exact because 7 is a finite morphism; the
isomorphism My ~ 7* M and the projection formula therefore imply that

T DR(My) =~ [W*ﬁy®M—>7r*Q%/®M—>--'—>7T* v @ M|[n].

We now take the summand with L~! in the decomposition of each term
(see §9). To show that this leads to a subcomplex, we can exploit the group
action: the group of N-th roots of unity acts on the entire complex, and we
are taking the summand corresponding to the standard character. That the
decomposition respects the filtration is obvious. O

We shall give a second proof in local coordinates in §14 below. To simplify
the notation, let us denote by

K C m.DR(My) and F,K C m,F,DR(My)

the subcomplex in Lemma 12.1, together with the induced filtration. As
before, we have a collection of C-linear connecting morphisms

Op: grfj[}’ — grﬁll K|[1]

in the derived category; because K is a direct summand, the degeneration
of the spectral sequence in (11.1) means that the induced morphisms

H'(X,gr) K) — H™ (X, gr) | K)

are also equal to zero. To exploit this fact, we are now going to relate the
graded quotients grf’ K to the two complexes grf DR(M) and grf DR(Mp).

Proposition 12.2. Let Lp denote the restriction of L to the divisor D.

(a) We have a morphism of complexes
frrL7'® gr;)P DR(M) — grg K,
induced by the natural inclusions Q% — Q% (log D).
(b) We have a morphism of complexes

p: grgf( — Ly ® grz}:Jrl DR(Mp),

induced by the residue mappings Resp: Q% (log D) — Q’Z{l.
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The proof requires a small calculation in local coordinates; we postpone
it until §14 and first state the main result.

Proposition 12.3. Up to a constant factor of (—1)"N, the composition

L' ® grf DR(M) ELEN grl K

Sp o p—1 —
— gl K1) 5 L' @ grl DR(Mp)|1]

1s equal to the restriction mapping.

The proof can be found in §14. The point is of course that, because of
the above factorization, the induced morphism on cohomology

(124) H (X, L werl DR(M)) g <D,L51 ® gl DR(MD)>

is equal to zero. Once this is known, Theorem 3.1 can be proved very easily
by using Serre’s vanishing theorem and induction on the dimension.

13. Proof of Saito’s theorem

We are now ready to prove Theorem 3.1. We first observe that the two
assertions

(13.1) H'(Z,grf DRIM)® L) =0 fori>0andp € Z,
(13.2) H'(Z,gr] DRIM)®@ L") =0 for i <0 and p € Z,
are equivalent to each other by virtue of Lemma 7.4; it is therefore enough
to prove the second one. This will be done by induction on the dimension.

Since D C X is a smooth divisor with LY ~ &x (D), we have a short exact
sequence

0— LY = k|, = Qp — 0.
As shown in §14 below, it induces a short exact sequence of complexes

(13.3) 0—LyV® grgﬂ DR(Mp) — grg DR(M)!D
— grg DR(Mp)[1] — 0.
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By induction, we can assume that the i-th cohomology of LE)N 1
grg 1 DR(Mp) vanishes for every i < 0; it follows that

(13.4) H <D, Ly @ e DR(M)\D> s g (D, Ly ek DR(MD)>

is injective. Because we already know that the morphism in (12.4) is equal
to zero, the injectivity of (13.4) means that the morphism

i (X, L ogl DR(M)) " (D, Ly @er! DR(M)|D)
is also equal to zero. This obviously implies the surjectivity of
g <X, LN e gk DR(M)) — H (X, L egrl DR(M))
for i < 0; note that the morphism is nothing but multiplication by the global
section s € H°(X, L") that we chose at the beginning of the proof.
Now we can easily complete the proof of Theorem 3.1 with the help
of Serre’s vanishing theorem. Recall that gl”g DR(M) € D® , (07) does not

depend on the choice of embedding; what we have shown above is that the
multiplication morphism

(13.5) H(Z LN @k DR(M)) - H(Z L @ark DR(M))

is surjective for every i <0 and every sufficiently general section s &
HY(Z,LN). By Lemma 7.4 and Verdier duality, we have

dim H(Z LN @l DR(M)) — dim H~ (Z, Meat DR(M)).

This becomes equal to zero for N > 0, because gr”’ _, DR(M) is concen-

p—w
trated in non-positive degrees. The surjectivity of (13.5) therefore implies
the desired vanishing for gr)’ DR(M).

Note. The proof becomes simpler in the case of the lowest graded quotient
grhan DRIM) = wx @ Fyan)inM

of the de Rham complex. This amounts to taking p = —p(M) — w in the
argument above; the point is that the complex grg +1 DR(Mp) is now exact,
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because
p+t1=1-pM)—-w=1-pMp)—(w-1).

Consequently, (13.4) is automatically injective, and so we do not need any
vanishing on D to conclude that (13.5) is surjective. Many other interesting
results about the coherent ¢z-module grg( M) DR(M) can be found in [11].

14. Computations in local coordinates

We now prove Proposition 12.2 and Proposition 12.3, as well as the exactness
of the sequence of complexes in (13.3). Since it is easiest to do this by
a calculation in local coordinates, we shall first give a description of the
complex K in a neighborhood of the divisor D.

Let z1,..., 2, be local holomorphic coordinates on X, with the property
that the divisor D is defined by the equation x,, = 0. On Y, we can choose
local holomorphic coordinates ¥i,...,%, in such a way that 7: Y — X is
represented by

(.fCl, tt 7‘T7’L—17xn) = (y17 e 7yn—1ay7]lv)‘

In particular, the line bundle L is trivial on the open set in question; note
that the summand L~ in the decomposition of 7, &y corresponds to y,, - Ox.

The Z-module structure on My ~ 7* M comes from the natural mor-
phism %y — 1" Px. As in §7, the differentials Vy : Qé“/ R My — Q];H ®
My in the de Rham complex of My are therefore given in local coordi-
nates by

n
0
_ n n * ) v
Vy(a@m) = (—1)"da @ m + (—1) ;(w dz; A a) ® 5™
Since L is trivial on the open set in question, the induced differentials

m.Vy: Q% (log D) @ M — Q%+ (log D) @ M

are represented by the formula

n

d(yn
(14.1) mVy(a®@m) = (—1)"(304) @m+ (—1D)" )Y (dz; Na) ® 9™
" i=1 !
1 dzy,
= (—1)”—i Na@m+ V(ae®m),

N z,
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where V is defined as in (7.1). With this description, Proposition 12.2 is
easy.

Proof of Proposition 12.2. The formula in (14.1) shows that the morphisms
QoL @grf, M- Qx(logD)® L™ @ gr) , M

are compatible with the differentials in L™! @ gr/ DR(M) and gr}’ K; this
proves the first assertion. Our definition of the residue mapping is

_ d
Resp: Q% (log D) — Q]B 1 Resp (ff A a) = O[}D

where f is an arbitrary local defining equation for D; it interacts better with
the sign conventions for the de Rham complex than the usual definition. The
residue mapping induces morphisms

rp: Q% (logD)® L' @ grf;rk M=ol e Lt e grzﬂrk Mp,
and we have to check that they are compatible with the differentials in both

complexes. This is straightforward: the residue of

n

(=" Z(dzz Aa)® 8iim

=1

is evidently
(=" iResD(dzi Aa)® im‘
i=1 Oy 1P

n—1
0
n—1
=(-1) ;:1 dz; ANResp(a) ® %m}D,

hence equal to what we get when we apply Vp to Resp(a) ® m! D O
Now we can prove the main technical result, namely Proposition 12.3.
Proof of Proposition 12.3. 1t suffices to check this in a neighborhood of any

given point of D. After choosing local coordinates as above, the line bundle
L becomes trivial on the open set in question, and the differentials in the
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complex K are given by the formula in (14.1). To simplify the notation, we
define

K =DR(M) and F,K = FeDR(M),
and denote by 9,: grg K — gr;,’l1 K[1] the connecting morphisms in the
derived category. Since we have trivialized L, the morphisms Q’;( M —
Q% (log D) ® M give rise to a commutative diagram

0 — grf | K —— F,K/F) 2K —— grf] K —— 0

[ s

0—— grf:flf( — pr(/Fp_Qf( — grg.f( — 0

where both rows are exact and the solid arrows are morphisms of complexes
(by Proposition 12.2); the dashed arrow is not a morphism of complexes.
In the derived category, we now consider the following square, which is in
general not commutative:

Sp
grl K —"— gri’l1 K1)

lfp ifp—l
5 ~

grgf( —— gri | K[1]
According to Lemma 15.1 below, the difference
Spfp — fp—10p: grgK — grg_l K[1]

can be computed by comparing the differential in K and the differential in
K; going back to (14.1), the result is that 0, f, — fp—10, equals

0k @ grzﬂrk M — Q];(H(log D)® gr]f;k M,
1 dxz,,

a®mr—>(—1)"ﬁz/\a®m.

If we compose this with the residue mapping, we find that the morphism
Tp—10pfp = Tp—1(Opfp — fp—10p) is equal to
1
Ok ®gr§+k./\/l — Ok ®gr§+k/\/lp, a®@m — (—1)“NO(‘D ®m‘D,

and therefore agrees with the restriction mapping up to a factor of (—1)"N.
O
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It remains to say a few words about the sequence of complexes in (13.3).
Starting from the short exact sequence of locally free sheaves

0— LY = k|, = Qp =0,
we can take exterior powers to obtain a family of short exact sequences

0= LNt = ok|, = Q) =0

for k=0,1,...,n. Since Q'B is locally free, the resulting sequences

0= Ly @0 el Mp
= (B @grh M), = el Mp—0

are still short exact. Using the formulas in §7, it is an easy exercise to show
that both morphisms are compatible with the differentials.

15. Connecting morphisms

In this section, we prove a small lemma about connecting morphisms in
short exact sequences of complexes. Let By and By be two complexes in an
abelian category, and suppose that we have a family of morphisms

f": B — BY

that do not necessarily commute with the differentials; this is of course pre-
cisely the situation that we encountered during the proof of Proposition 12.3.
If we define

" = [ty —dy f": By — Byt
then ¢: By — Bsg[l] is a morphism of complexes; here it is necessary to re-
member that the n-th differential in the shifted complex Bs[1] is equal to

—dg“. Suppose in addition that we have the following commutative dia-
gram:

0 y AL " B 2 oy > 0
[
0 y Ay —2 é; 2, 0y > 0
In this diagram, all solid arrows are morphisms of complexes; both squares

commute; and both rows are exact. Because e and g commute with the differ-
entials, it is easy to see that ¢ = i29)p; for a unique morphism of complexes
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1: C1 — Asll]. Note that although ¢ is homotopy equivalent to zero, this is
no longer the case for ¢; in particular, viewed as a morphism in the derived
category, 1 is typically nonzero.

In the derived category, each row of the diagram is part of a distinguished
triangle, and we denote the third morphism in this triangle by d;: Cyp —
Ag[1]. We can now consider the following square of morphisms:

2 A

ook

Cy —2 A1)

Unless f is a morphism of complexes, the square is not commutative. The
following lemma relates the failure of commutativity to the morphism
from above.

Lemma 15.1. In the derived category, we have §og — edy = 1.
Proof. We begin by describing the morphism dy. Let
M. = B ® Ak[l]
denote the mapping cone of ix: A — By, with differential given by the
matrix
di ik
0 —dp)’

There are two obvious morphisms pg: My — Cj and qx: My — Ag[l]; the
first one is a quasi-isomorphism, and d;pr = qi. Next, we observe that

() D= 65
0 —dy) \Wp1 e \wp1 e/ \0 —di)’

which means exactly that

h:(w'il 2>2M1—)M2

is a morphism of complexes with poh = gp1 and goh = ¥p1 + eq1. But then

(029 — €01)p1 = bap2h — eq1 = q@2h — eq1 = Ypu,

which proves the assertion because p; is a quasi-isomorphism. Il



526 Christian Schnell

Acknowledgements

I thank Mihnea Popa for many useful conversations about mixed Hodge
modules and vanishing theorems, and an anonymous referee for valuable
comments about the paper. During the preparation of this paper, I have
been supported in part by NSF-grants DMS-1331641 and DMS-1404947.

References

[1] P. Deligne and L. Illusie, Relévements modulo p? et décomposition du
compleze de de Rham, Invent. Math., 89 (1987), no. 2, 247-270.

[2] A. Durfee, Neighborhoods of algebraic sets, Trans. Amer. Math. Soc.,
276 (1983), no. 2, 517-530.

[3] H. Esnault and E. Viehweg, Logarithmic de Rham complezes and van-
ishing theorems, Invent. Math., 86 (1986), no. 1, 161-194.

[4] H. Esnault and E. Viehweg, Lectures on vanishing theorems, Vol. 20 of
DMV Seminar, Birkhduser Verlag, Basel (1992), ISBN 3-7643-2822-3.

[5] K. Kodaira, On a differential-geometric method in the theory of analytic
stacks, Proc. Nat. Acad. Sci. U. S. A., 39 (1953) 1268-1273.

[6] M. Popa, Kodaira-Saito vanishing and applications, (2014).

[7] C. Ramanujam, Remarks on the Kodaira vanishing theorem, J. Indian
Math. Soc. (N.S.), 36 (1972) 41-51.

[8] M. Saito, Modules de Hodge polarisables, Publ. Res. Inst. Math. Sci.,
24 (1988), no. 6, 849995 (1989).

[9] M. Saito, Mized Hodge modules, Publ. Res. Inst. Math. Sci., 26 (1990),
no. 2, 221-333.

[10] M. Saito, D-modules on analytic spaces, Publ. Res. Inst. Math. Sci., 27
(1991), no. 2, 291-332.

[11] M. Saito, On Kolldr’s conjecture, in: Several complex variables and com-
plex geometry, Part 2 (Santa Cruz, CA, 1989), Vol. 52 of Proc. Sympos.
Pure Math., 509-517, Amer. Math. Soc., Providence, RI (1991).

[12] M. Saito, On the theory of mized Hodge modules, in: Selected papers on
number theory, algebraic geometry, and differential geometry, Vol. 160
of Amer. Math. Soc. Transl. Ser. 2, 47-61, Amer. Math. Soc., Provi-
dence, RI (1994).



On Saito’s vanishing theorem 527

[13] Ch. Schnell, An overview of Morihiko Saito’s theory of mized Hodge
modules, (2014). To appear in Tsinghua-Sanya International Mathe-
matics Forum.

DEPARTMENT OF MATHEMATICS, STONY BROOK UNIVERSITY
STONY BrROOK, NY 11794-3651, USA
E-mail address: cschnell@math.sunysb.edu

RECEIVED AUGUST 26, 2014






