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Scale invariant Strichartz estimates on

tori and applications

Rowan Killip and Monica Vişan

We prove scale-invariant Strichartz inequalities for the Schrödinger
equation on rectangular tori (rational or irrational) in all dimen-
sions. We use these estimates to give a simpler treatment of local
well-posedness of the energy-critical nonlinear Schrödinger equa-
tion in dimensions three and four.

1. Introduction

The most general flat torus is formed as the quotient of Rd by a lattice. In
this paper, we will only consider rectangular tori, namely, those of the form
Rd/(L1Z× L2Z× · · · × LdZ) with L1, . . . , Ld ∈ (0,∞). Our goal is to prove
certain space-time estimates for solutions of the linear Schrödinger equation
on such manifolds.

Notationally, it will be simpler to fix the base space to be Td := Rd/Zd

and to incorporate the geometry of the torus into the definition of the Lapla-
cian. Put differently, we use coordinates based on the standard torus and
then use the Laplace–Beltrami operator associated to the induced metric,
that is,

Δ :=

d∑
j=1

θj
∂2

∂x2j
, or equivalently, Δ̂f(k) := −

d∑
j=1

θjk
2
j f̂(k).

Here θj = L−2j and we employ the following convention for the Fourier trans-
form:

f̂(k) =

∫
Td

e−2πikxf(x) dx so that f(x) =
∑
k∈Zd

e2πikxf̂(k).
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With these notations, the solution u(t, x) to the linear Schrödinger equa-
tion with initial data u0(x) is given by

u(t, x) = eitΔu0 =
∑
k∈Zd

exp
{
2πi

[
kx− t

∑d
j=1θjk

2
j

]}
û0(k).(1.1)

Note that by making a change of variables in time, there is no loss of gen-
erality to assume that θ1, . . . , θd ∈ (0, 1].

The main result of this paper is the following:

Theorem 1.1 (Scale-invariant Strichartz estimates). Fix d ≥ 1, θ1,

. . . , θd ∈ (0, 1], 1 ≤ N ∈ 2Z, and p > 2(d+2)
d . Then

(1.2) ‖eitΔP≤Nf‖Lp
t,x([0,1]×Td) � N

d

2
− d+2

p ‖f‖L2
x
,

where Δ := θ1∂
2
x1

+ · · ·+ θd∂
2
xd
.

Unlike Rd, the torus Td does not admit a true scaling symmetry; how-
ever, for very short times, the linear evolution of highly concentrated initial
data will not distinguish the two. For well-posedness questions of nonlinear
problems, such concentrated solutions are the principal adversary. Corre-
spondingly, scale-invariant estimates are an essential tool for treating non-
linear problems at the critical regularity.

We should also note that by choosing p close to 2(d+2)
d one may make the

d
2 − d+2

p loss of derivatives as small as one wishes. It is not difficult to verify
that the stated estimate fails for the square torus (i.e., θ1 = · · · = θd = 1) if

one takes p = 2(d+2)
d ; see [2].

Very recently, Bourgain and Demeter (see [5, Theorem 2.4]) proved anal-
ogous Strichartz estimates with an arbitrarily small loss of scaling:

Theorem 1.2 (Non-scale-invariant Strichartz estimates). Fix d ≥ 1,

θ1, . . . , θd ∈ (0, 1], 1 ≤ N ∈ 2Z, and p ≥ 2(d+2)
d . Then for any η > 0,

(1.3) ‖eitΔP≤Nf‖Lp
t,x([0,1]×Td) �η N

d

2
− d+2

p
+η‖f‖L2

x
,

where Δ := θ1∂
2
x1

+ · · ·+ θd∂
2
xd
.

This result will be an essential part of the proof of Theorem 1.1. In much
earlier work, Bourgain showed that in the case of a square torus, Theorem 1.2
implies Theorem 1.1; see [2, Proposition 3.113].
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The space-time Fourier methods used by Bourgain for the square torus
are ill-suited to the case of an irrational torus. We will be using the basic
dispersive estimate for the propagator (see Lemma 2.2), which pushes all
the difficulty into bounding the resulting temporal convolution. This style
of argument (which is closer to the usual Euclidean treatment) is indiffer-
ent to the rational/irrational character of the θs. In particular, the intricate
astigmatism resulting from refocusing at slightly different times in each coor-
dinate direction can be brutishly handled by the arithmetic-geometric mean
inequality. Nonetheless, important insights employed by Bourgain in [2] do
inform and suffuse our treatment of the subtle temporal convolution.

We now give a brief summary of prior work on Strichartz estimates on
square and irrational tori:

• In [2], Bourgain considered only the square torus. He proved Theo-
rems 1.1 and 1.2 in dimensions one and two. He also proved (1.2) for

p > 4 when d = 3 and for p ≥ 2(d+4)
d when d ≥ 4.

• The paper [3] of Bourgain was the first to consider irrational tori. It
considers only the case d = 3 and proves scale-invariant Lp

tL
4
x Strichartz

estimates for p > 16
3 .

• Bourgain, [4], and Demeter, [6], gave very different proofs that (1.3)

holds for p = 2(d+3)
d on all tori.

• The paper [7] of Guo, Oh, and Wang proves several Strichartz esti-
mates on irrational tori. In particular, they obtain (1.2) in the follow-
ing cases: d = 2 and p > 20

3 , d = 3 and p > 16
3 , d = 4 and p > 4, and

lastly, d ≥ 5 and p = 4. The also prove that (1.2) holds for d = 3 and
p > 14

3 under the additional assumption θ1 = θ2.

As an application of Theorem 1.1 we consider the initial-value problem for
the energy-critical nonlinear Schrödinger equation

(1.4)

{
i∂tu+Δu = ±|u|

4

d−2u

u(0) = u0 ∈ H1(Td)

in spatial dimensions d ∈ {3, 4}. Specifically, we show the following:

Theorem 1.3 (Well-posedness for the energy-critical NLS). Fix d ∈
{3, 4} and let u0 ∈ H1(Td). Then there exists a time T = T (u0) and a unique
solution u ∈ Ct([0, T );H

1(Td)) ∩X1([0, T )) to (1.4). Moreover, there exists
η0 = η0(d) > 0 such that if ‖u0‖H1(Td) ≤ η, then the solution u is global in
time.
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The function spaces used to construct the solution in Theorem 1.3,
namely those defined in (1.7), are precisely the ones used in [9] to obtain this
theorem for the three dimensional square torus. Subsequently, Theorem 1.3
was proved in [7] for the case when d = 3 and θ1 = θ2, and for the fully irra-
tional three-torus in [12]. Thus, in the three dimensional case, Theorem 1.3 is
not new. Here, we will combine the new estimates provided by Theorem 1.1
with several beautiful ideas introduced in [9] to provide a simpler proof.

In four dimensions, Theorem 1.3 was proved in [10] on the square torus,
contingent on certain Strichartz estimates that were subsequently proved
in [4, 6]. The results of this paper allow their argument to be adapted to
irrational tori; however, we argue in a rather different way that we contend
is significantly simpler.

Let us now discuss the principal differences between the arguments pre-
sented here to prove Theorem 1.3 and those in previous work. First and
foremost, we treat the three and four dimensional cases in a completely par-
allel manner, though for the sake of readability, we give the details in each
case separately. We make no use of multilinear estimates; we only exploit the
idea of decomposing into frequency cubes. We do not need to use temporal
orthogonality arguments, nor the interpolation theory of Up and V p spaces.
The authors of [9] indicate that such a simpler proof is possible in the three
dimensional setting (see the discussion of their equation (7)), but no such
claim is made in their treatment of the four dimensional case [10].

1.1. Notation and useful lemmas

Throughout this text, we will be regularly referring to the spacetime norms

(1.5)
∥∥u∥∥

Lp
tLr

x([0,1]×Td)
:=

(∫
[0,1]

(∫
Td

|u(t, x)|r dx
)p/r

dt

)1/p

,

with obvious changes if p or r are infinity.
We write X � Y to indicate that X ≤ CY for some constant C, which

is permitted to depend on the ambient spatial dimension, d, without further
comment.

Let φ be a smooth radial cutoff on R such that φ(x) = 1 for |x| ≤ 1 and
φ(x) = 0 for |x| ≥ 2. With N ∈ 2N we define the Littlewood–Paley projec-
tions
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(1.6)

P̂1f(k) := f̂1(k) := f̂(k)

d∏
j=1

φ(kj),

P̂≤Nf(k) := f̂≤N (k) := f̂(k)

d∏
j=1

φ
(kj

N

)
,

and P̂Nf(k) := f̂N (k) := f̂(k)

d∏
j=1

[
φ
(kj

N

)
− φ

(2kj

N

)]
,

where k = (k1, . . . , kd) ∈ Zd. Using Littlewood–Paley projectors with this
product structure simplifies the proof of Theorem 1.1 slightly.

Next we recall the definition of the function spaces Up and V p and use
them to construct the relevant function spaces for our applications. The
general theory of Up and V p spaces is discussed at some length in [11]; we
will confine ourselves here to reviewing the definitions and basic properties
in the specific setting that is relevant to our problem. In particular, we only
consider finite time intervals of the form [0, T ). Let H be a separable Hilbert
space over C; in this paper, this will be C or Hs(Td) with s = 0, 1. Let Z be
the set of finite partitions 0 = t0 < t1 < . . . < tK ≤ T . We use the convention
that v(T ) := 0 for all functions v : [0, T )→ H.

Definition 1.4. Let 1 ≤ p <∞. An Up-atom is a function a : [0, T )→ H
of the form

a =

K∑
k=1

χ[tk−1,tk)φk−1,

where {tk} ∈ Z and {φk} ⊂ H with
∑K−1

k=0 ‖φk‖pH = 1. The atomic space
Up([0, T );H) is the space of all functions u : [0, T )→ H of the form

u =

∞∑
j=1

λjaj

with {λj} ∈ 	1(C) and aj being Up-atoms. The norm on Up([0, T );H) is
given by

‖u‖Up := inf

{ ∞∑
j=1

|λj | : u =

∞∑
j=1

λjaj with {λj} ∈ 	1(C) and Up-atoms aj

}
.
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Definition 1.5. Let 1 ≤ p <∞. The space V p([0, T );H) is the space of all
functions v : [0, T )→ H such that

‖v‖V p := sup
{tk}∈Z

(
K∑
k=1

‖v(tk)− v(tk−1)‖pH

)1/p

<∞.

The space V p
rc([0, T );H) denotes the closed subspace of all right-continuous

functions v : [0, T )→ H such that v(0) = 0.

Remark 1.6. The spaces Up([0, T );H), V p([0, T );H), and V p
rc([0, T );H)

are Banach spaces and satisfy

Up([0, T );H) ↪→ V p
rc([0, T );H) ↪→ U q([0, T );H) ↪→ L∞([0, T );H)

for all 1 ≤ p < q <∞.

Definition 1.7. Let s = 0, 1. Then Up
ΔH

s and V p
ΔH

s denote the spaces
of all functions u : [0, T )→ Hs(Td) such that the map t→ e−itΔu(t) is in
Up([0, T );Hs) and V p([0, T );Hs), repectively, with norms given by

‖u‖Up
ΔHs := ‖e−itΔu‖Up([0,T );Hs) and ‖u‖V p

ΔHs := ‖e−itΔu‖V p([0,T );Hs).

We define Xs([0, T )) and Y s([0, T )) to be the spaces of all functions u :

[0, T )→ Hs(Td) such that for every ξ ∈ Zd the map t→ ̂e−itΔu(t)(ξ) is in
U2([0, T );C) and V 2

rc([0, T );C), respectively, with norms given by

(1.7)

‖u‖Xs([0,T )) :=

(∑
ξ∈Zd

〈ξ〉2s‖ ̂e−itΔu(t)(ξ)‖2U2

)1/2

,

‖u‖Y s([0,T )) :=

(∑
ξ∈Zd

〈ξ〉2s‖ ̂e−itΔu(t)(ξ)‖2V 2

)1/2

.

These are the same spaces used in [9] and subsequent works.

Remark 1.8. From [9, Proposition 2.8], we have the continuous embed-
dings U2

ΔH
s ↪→ Xs ↪→ Y s ↪→ V 2

ΔH
s. We also note that

‖u‖L∞t Hs
x([0,T )×Td) � ‖u‖Xs([0,T ))
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and, by [9, Proposition 2.11],∥∥∥∥∫ t

0
ei(t−s)ΔF (s) ds

∥∥∥∥
Xs([0,T ))

� ‖F‖L1
tHs

x([0,T )×Td).

Using the atomic structure of Up and Remark 1.8, we can recast the
Strichartz estimates from Theorem 1.1 as follows:

(1.8) ‖P≤Nu‖Lp([0,T )×Td) � N
d

2
− d+2

p ‖P≤Nu‖Up
ΔL2 � N

d

2
− d+2

p ‖P≤Nu‖Y 0([0,T ))

for all p > 2(d+2)
d and N ≥ 1. In particular, due to the Galilei invariance of

solutions to the linear Schrödinger equation,

‖PCu‖Lp([0,T )×Td) � N
d

2
− d+2

p ‖PCu‖Y 0([0,T )) for all p > 2(d+2)
d(1.9)

and for any cube C ⊂ Rd of side-length N ≥ 1.

2. Scale invariant Strichartz estimates

The implicit constants in this section will be allowed to depend on the
magnitude of {θj}dj=1 and we will not be tracking that dependence. It is

worth noting however that the number theoretical properties of {θj}dj=1

play no role in our arguments.
In this section, we will write

(2.1) KN (t, x) := [eitΔP≤Nδ0](x) =
∑
k∈Zd

d∏
j=1

φ(kj/N)e2πi[xjkj−tθjk2
j ]

for the convolution kernel associated to the frequency-localized propagator.
Here 1 ≤ N ∈ 2Z and P≤N is the Littewood–Paley projector defined in (1.6).

As observed already in [2], the passage from Theorem 1.2 to Theorem 1.1
requires additional information about the action of the convolution kernel
KN (t, x) only in places where it is large. This will become apparent when
we complete the proof of Theorem 1.1 at the end of this section.

From the micro-local perspective, we expect KN to be large only near
conjugate points of the geodesic flow. For the square torus, there are many
such conjugate points, one at every rational time; however, the degree of
refocusing is governed by the denominator of the rational number concerned.
These heuristics are borne out by Lemma 2.2 below, whose statement is best
understood in the context of Dirichlet’s Lemma on rational approximation.
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Lemma 2.1 (Dirichlet). Given an integer N ≥ 2 and β ∈ [0, 1], there
exist integers 1 ≤ q < N and 0 ≤ a ≤ q so that (a, q) = 1 and |β − a

q | ≤ 1
Nq .

Recall that (a, q) denotes the greatest common divisor of a and q; cor-
respondingly, (a, q) = 1 asserts that a and q are relatively prime. Note also
that (0, q) = q. For a proof of Dirichlet’s Lemma, see, for example, [8, §3.8].

Lemma 2.2 (Dispersive estimate for KN). Choosing integers 0 ≤ aj ≤
qj < N so that (aj , qj) = 1 and |θjt− aj

qj
| ≤ 1

qjN
, we have

|KN (t, x)| �
d∏

j=1

N
√
qj
(
1 +N

∣∣θjt− aj

qj

∣∣1/2)
uniformly for t ∈ [0, 1].

Due to the product structure of (2.1), this d-dimensional estimate is an
immediate corollary of the one-dimensional case treated in [2, Lemma 3.18]
via an application of Weyl’s method.

Incidentally, Lemma 2.2 shows thatKN can only be very large if {θjt}dj=1

can all be simultaneously well-approximated by rationals with small denom-
inator. Correspondingly, under a mild Diophantine condition, which holds
for Lebesgue almost all d-tuples of parameters θj , one may show that KN

is very large only very close to t = 0. This leads to a much shorter proof of
Theorem 1.1 for such d-tuples.

So far, we have been rather nebulous about what it means forKN (t, x) to
be very large. It turns out that the precise meaning depends on the exponent
p from Theorem 1.1 that one is treating. For now, we will use a parameter
0 < σ  1 that will be chosen later and say that KN (t, x) is large when t
belongs to

T :=
{
t ∈ [0, 1] : qjN

2
∣∣θjt− aj

qj

∣∣ ≤ N2σ

for some j, qj ≤ N2σ, and (aj , qj) = 1
}
.

We then define

K̃N (t, x) := χT (t)KN (t, x).

In view of Lemma 2.2, this construction guarantees that

|KN (t, x)− K̃N (t, x)| � Nd(1−σ).(2.2)
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The centerpiece of our analysis is the following proposition, which es-
tablishes space-time estimates for K̃N .

Proposition 2.3 (Strichartz estimates for K̃N). Choose 2 < p, r ≤ ∞
such that d

2 − 2
p − d

r > 0. Then

‖K̃N ∗ F‖Lp
tLr

x([0,1]×Td) � N2( d

2
− 2

p
− d

r
)‖F‖

Lp′
t Lr′

x ([0,1]×Td)
,

provided σ is sufficiently small (depending on (d, p, r) only).

As we will see, Proposition 2.3 is a direct consequence of the next two
lemmas. The first lemma concerns mapping properties of K̃N as a convolu-
tion kernel on Td (with t fixed); this will follow easily from Lemma 2.2. The
second lemma is much more challenging and deals with the resulting tempo-
ral convolution. This two-step argument has strong parallels to the standard
approach in the Euclidean setting, where one uses the (much simpler) dis-
persive estimate and then the time convolution is handled very swiftly by an
application of the Hardy–Littlewood–Sobolev inequality. Such an approach
yields only very poor estimates in the torus setting. It is essential to ex-
ploit the non-resonant structure of the temporal convolution kernel which
yields substantial gains for large q relative to the Hardy–Littlewood–Sobolev
inequality.

In the square torus setting, Bourgain proves a close analogue of Propo-
sition 2.3 with p = r > 2(d+2)

d by a rather different argument, which builds
upon the Fourier analytic methods used to prove Stein–Tomas restriction
theorems. In that case, estimates on the space-time Fourier transform of
the relevant convolution kernels can be derived from the analysis of certain
equations in integers; in the case of irrational tori, this becomes a morass,
dependent on subtle Diophanine approximation properties of the parame-
ters θj . This is why a different approach is needed to prove Proposition 2.3
in the case of irrational tori. Nonetheless, in deriving Theorem 1.1 from
Proposition 2.3 we do follow the arguments of [2] rather closely.

To state the first lemma used in the proof of Proposition 2.3, we intro-
duce a family of smooth radial cutoffs on R as follows:

φN−2(x) :=

{
1, if |x| ≤ 1

0, if |x| ≥ 2

and for all dyadic T > N−2 we define φT (x) := φN−2(x)− φN−2(2x). Ex-
ploiting just these definitions, we have
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d∑
j=1

N2σ∑
Q=1

N2σ−2/Q∑
T=N−2

∑
(a,q)=1
q∼Q

φT

( θjt− a

q

T

)
≥ 1 for all t ∈ T .(2.3)

Here, and in all that follows, Q and T are restricted to lie in 2Z and q ∼ Q
means that Q ≤ q < 2Q.

Lemma 2.4 (Dispersive estimates for K̃N). For t ∈ [0, 1] and 2 ≤ r ≤
∞ we have

‖K̃N (t) ∗ f‖Lr(Td) � ‖f‖Lr′ (Td)

d∑
j=1

N2σ∑
Q=1

N2σ−2/Q∑
T=N−2

(QT )
d

r
− d

2

∑
(a,q)=1
q∼Q

φT

( θjt− a

q

T

)
.

Proof. By the unitarity of the propagator eitΔ, we have

‖KN (t) ∗ f‖L2(Td) = ‖f‖L2(Td).

On the other hand, from the kernel estimates of Lemma 2.2, we obtain

‖KN (t) ∗ f‖L∞(Td) � ‖f‖L1(Td)

d∏
j=1

N
√
qj
(
1 +N

∣∣θjt− aj

qj

∣∣1/2) ,
where 0 ≤ aj ≤ qj < N obey (aj , qj) = 1 and |θjt− aj

qj
| ≤ 1

qjN
.

Interpolating between these two bounds and using the arithmetic–
geometric mean inequality, we derive that for any 2 ≤ r ≤ ∞,

‖KN (t) ∗ f‖Lr(Td) � ‖f‖Lr′ (Td)

d∏
j=1

(
N

√
qj
(
1 +N

∣∣θjt− aj

qj

∣∣1/2)
)1− 2

r

� ‖f‖Lr′ (Td)

d∑
j=1

(
N−2qj

(
1 +N2

∣∣θjt− aj

qj

∣∣)) d

r
− d

2

.

The lemma now follows easily from (2.3). �
To continue, for fixed Q we define

F1,Q(t) :=
∑

(a,q)=1
q∼Q

δ
(
t− a

q

)
and F2,Q(t) :=

∑
0≤a<q
q∼Q

δ
(
t− a

q

)
.
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Note that we may write∑
(a,q)=1
q∼Q

φT

( θjt− a

q

T

)
=

[
F1,Q ∗ φT

( ·
T

)]
(θjt)

and so, by Lemma 2.4,

(2.4) ‖K̃N (t) ∗ F‖Lp
tLr

x([0,1]×Td)

�
d∑

j=1

N2σ∑
Q=1

N2σ−2/Q∑
T=N−2

(QT )
d

r
− d

2

∥∥∥[F1,Q ∗ φT

( ·
T

)]
(θjt) ∗ ‖F (t)‖Lr′ (Td)

∥∥∥
Lp

t ([0,1])
,

for any 2 ≤ p, r ≤ ∞.
To prove Proposition 2.3, we need to estimate the time convolution in

the expression above. We are going to do this in two steps. First, we bound
convolution with F1,Q ∗ φT (·/T ) as an operator on the torus T; in particular,
functions will be understood to be periodic in time. Later, we will reintroduce
θj and pass to the requisite convolution on the subset [0, 1] of the real line.
We now turn to the first part of this program.

Lemma 2.5. Fix 2 < p ≤ ∞. Then for any σ < min{12 , 1− 2
p},∥∥∥F1,Q ∗ φT

( ·
T

)
∗ f

∥∥∥
Lp(T)

� Q
2

p
(1+ε)T

2

p ‖f‖Lp′ (T) with ε = σ(3−2σ)
(1−σ)(1−2σ) ,

uniformly for 1 ≤ Q ≤ N2σ and N−2 ≤ T ≤ N2σ−2/Q.

As the convolution kernel F1,Q ∗ φT is positive, we may bound the norm
by replacing F1,Q by F2,Q. The advantage of doing so is that the Fourier
transform of F2,Q is more easily and more efficiently estimated than that of
F1,Q; one should compare what follows with [2, Lemma 3.33].

Lemma 2.6 (Fourier transform of F2). Let dQ(n) denote the number
of divisors q of n that obey q ∼ Q. Then∣∣F̂2,Q(ω)

∣∣ � QdQ(ω) for all ω �= 0(2.5)

and clearly, ∣∣F̂2,Q(ω)
∣∣ � Q2 for all ω ∈ Z.
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Proof. Recall that
∑q−1

a=0 e
2πiaω/q = q if q divides ω, but vanishes otherwise.

Thus,

F̂2,Q(ω) =
∑
q∼Q

q−1∑
a=0

e2πiaω/q =
∑
q∼Q

qχ{q |ω}

and the claims immediately follow. �
The proof of Lemma 2.5, will also rely on a distributional estimate for

dQ(n). The bound we need can be found in Lemma 4.28 of [1]; for complete-
ness, we will recapitulate the proof here (with minor modifications).

Lemma 2.7. For any α, τ > 0 we have

#{1 ≤ n ≤ R : dQ(n) > D} �τ,α D−2αQ2τR.

Proof. It suffices to treat the case where 2α =: k is an integer.
Observe first that for fixed q1, . . . , qk we have

#{1 ≤ n ≤ R : qj |n for all 1 ≤ j ≤ k} = #{1 ≤ n ≤ R : lcm(q1, . . . , qk)|n}
≤ R/ lcm(q1, . . . , qk).

On the other hand, by the trivial sub-polynomial bound (see [8, Theo-
rem 315]) on the total number of divisors function d(·), we have

#{(q1, . . . , qk) : lcm(q1, . . . , qk) = 	} ≤ d(	)k �ε 	
kε,

for any ε > 0. Correspondingly, by Chebyshev’s inequality,

#{1 ≤ n ≤ R : dQ(n) > D} � D−k
R∑

n=1

(∑
q∼Q

χqZ(n)

)k

� D−k
∑

q1,...,qk∼Q

R

lcm(q1, . . . , qk)

�ε D
−k

(2Q)k∑
�=1

R
� 	

kε �ε D
−kRQεk

for any ε > 0. The lemma now follows by choosing ε < 2τ/k. �
We now have all the ingredients we need to complete the proof of

Lemma 2.5.
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Proof of Lemma 2.5. We first note that for distinct pairs (a1, q1) and (a2, q2)
such that (a1, q1) = 1 = (a2, q2) and q1 ∼ Q ∼ q2 we have∣∣a1

q1
− a2

q2

∣∣ � 1
Q2 � T,

because σ < 1
2 . Thus ∥∥F1,Q ∗ φT

( ·
T

)∥∥
L∞(T)

≤ 1,

and so ∥∥∥F1,Q ∗ φT

( ·
T

)
∗ f

∥∥∥
L∞(T)

� ‖f‖L1(T).(2.6)

Next we will prove a restricted weak type (r′0, r0) estimate for suit-
able r0 ∈ (2, 4). The lemma will follow by interpolating between this bound
and (2.6).

Fix r0 > 2 and take E,F ⊆ T. Majorizing F1,Q by F2,Q and employing
the Plancherel identity and Young’s convolution inequality, we obtain

〈χE ,F1,Q ∗ φT

( ·
T

)
∗ χF 〉 � |E|

1

2 |F | 12
∥∥F̂2,Q(ω)T φ̂T (Tω)

∥∥
�∞ω (ω good)

(2.7)

+ |E| 34 |F | 34
∥∥F̂2,Q(ω)T φ̂T (Tω)

∥∥
�2ω(ω bad)

,

where we declare

ω ∈ Z is good if and only if
∣∣F̂2,Q(ω)

∣∣ ≤ Q1+δA

for some small δ > 0 and some A > 0 to be chosen later. By definition,∥∥F̂2,Q(ω)T φ̂T (Tω)
∥∥
�∞ω (ω good)

� Q1+δAT.(2.8)

We now turn to estimating the ‘bad’ frequencies. By Lemma 2.6, for a
‘bad’ frequency ω �= 0 we must have dQ(ω) � AQδ. Therefore, using the fact

that φ̂T has rapid decay uniformly in T and Lemma 2.7, we obtain∥∥F̂2,Q(ω)T φ̂T (Tω)
∥∥2
�2ω(ω bad)

(2.9)

� T 2Q4 +
∑

2Z�R≥T−1

∑
0<|ω|≤R
ω bad

∣∣F̂2,Q(ω)
∣∣2T 2(RT )−100

� T 2Q4 +
∑

2Z�R≥T−1

Q4A−2αQ2τ−2αδRT 2(RT )−100

� T 2Q4
(
1 + T−1A−2αQ2τ−2αδ).
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We choose

A :=
( |E||F |

T 2

) 1

2
− 1

r0 , α := 4−r0
2(r0−2) , δ := α−1, and τ := δ.(2.10)

Using that |E|, |F | ≤ 1 and the restrictions on T and Q, we find

T−1A−2α ≥ T
− 2(r0−2)

r0 ≥ Q
2(r0−2)

r0σ ≥ Q2

provided r0 ≥ 2/(1− σ). Thus, combining (2.7), (2.8), and (2.9) yields

〈χE ,F1,Q ∗ φT

( ·
T

)
∗ χF 〉 � (|E||F |)

1

r′
0 Q1+δT

2

r0 .(2.11)

This proves that this convolution operator satisfies a restricted weak type
(r′0, r0) estimate with bound Q1+δT 2/r0 , provided σ and r0 obey the restric-
tion stated above.

Now for p and σ as in the hypotheses of the lemma, r0 = 2/(1− σ) obeys
2 < r0 < p. Interpolating between (2.6) and the restricted weak type (r′0, r0)
estimate above, we deduce that∥∥∥F1,Q ∗ φT

( ·
T

)
∗ f

∥∥∥
Lp(T)

� Q
2

p
(1+ε)T

2

p ‖f‖Lp′ (T),

which proves the lemma. �

The next result performs the second step in the program laid out above,
namely, it allows us to pass from convolution on T to convolution on R.

Lemma 2.8. Let 2 < p ≤ ∞ and assume g : T→ [0,∞) is the kernel of a
bounded convolution operator from Lp′(T) to Lp(T) with norm A. Then for
any θ ∈ (0, 1] and R > 0 we have∥∥∥∥∫ R

−R
g(θs)f(t− s) ds

∥∥∥∥
Lp(R)

� Aθ−
2

p (1 + θR)‖f‖Lp′ (R).

Proof. We argue by duality. Pick k ∈ Z such that θR ≤ k. Using the hypoth-
esis and the fact that p > 2, for h ∈ Lp′(R) we estimate∣∣∣∣∫

R

h(t)

∫ R

−R
g(θs)f(t− s) ds dt

∣∣∣∣
≤

∫∫
|t−s|≤R

|h(t)||f(s)|g(θ[t− s]) ds dt
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≤ θ−2
∫∫

|t−s|≤k

∣∣h( t
θ

)∣∣∣∣f( s
θ

)∣∣g(t− s) ds dt

≤ θ−2
∑

m,n∈Z
|m−n|≤k+1

∫ 1

0

∫ 1

0

∣∣h( t+n
θ

)∣∣∣∣f( s+m
θ

)∣∣g(t− s) ds dt

≤ θ
2

p′−2A
∑

m,n∈Z
|m−n|≤k+1

‖h‖Lp′ ([n
θ
,n+1

θ
])‖f‖Lp′ ([m

θ
,m+1

θ
])

≤ θ−
2

pA(2k + 3)

(∑
n∈Z

‖h‖p′
Lp′ ([n

θ
,n+1

θ
])

)1/p′ (∑
m∈Z

‖f‖p
Lp′ ([m

θ
,m+1

θ
])

)1/p

≤ θ−
2

pA(2k + 3)‖h‖Lp′ (R)

(∑
m∈Z

‖f‖p′
Lp′ ([m

θ
,m+1

θ
])

)1/p′

≤ θ−
2

pA(2k + 3)‖h‖Lp′ (R)‖f‖Lp′ (R).

This completes the proof of the lemma. �

We now have all the necessary ingredients to prove Strichartz estimates
for the kernel K̃N .

Proof of Proposition 2.3. Fix p, r as in the statement of the proposition.
Combining Lemmas 2.4, 2.5, and 2.8 with (2.4), we obtain

‖K̃N (t) ∗ F‖Lp
tLr

x([0,1]×Td)

�
d∑

j=1

∑
1≤Q≤N2σ

N2σ−2/Q∑
T=N−2

(QT )
d

r
− d

2Q
2

p
(1+ε)T

2

p ‖F‖
Lp′

t Lr′
x ([0,1]×Td)

� N2( d

2
− 2

p
− d

r
)‖F‖

Lp′
t Lr′

x ([0,1]×Td)
,

provided we take σ > 0 sufficiently small so that σ < min{12 , 1− 2
p} and

d
2 − 2

p(1 + ε)− d
r > 0. This completes the proof of the proposition. �

We are now ready to prove the main theorem. With Proposition 2.3 in
place, the rational/irrational nature of the torus plays no further role; indeed,
the proof of Theorem 1.1 follows closely the ideas behind Propositions 3.82
and 3.113 in [2].
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Proof of Theorem 1.1. Fix p > p0 :=
2(d+2)

d and let f ∈ L2(Td) be normal-
ized via ‖f‖L2(Td) = 1. By Bernstein’s inequality,

‖eitΔP≤Nf‖L∞t,x([0,1]×Td) ≤ CN
d

2 ‖eitΔP≤Nf‖L∞t L2
x([0,1]×Td) ≤ CN

d

2

for some C > 0. Thus, we may write

‖eitΔP≤Nf‖Lp
t,x([0,1]×Td)(2.12)

=

∫ ∞

0
pλp−1∣∣{(t, x) ∈ [0, 1]× Td :

∣∣(eitΔP≤Nf)(x)
∣∣ > λ}

∣∣ dλ
=

∫ CN
d
2

0
pλp−1∣∣{(t, x) ∈ [0, 1]× Td :

∣∣(eitΔP≤Nf)(x)
∣∣ > λ}

∣∣ dλ.
For most values of λ, we exploit the non-scale-invariant Strichartz esti-

mates of Bourgain and Demeter recorded in Theorem 1.2. Specifically, for
small δ > 0 to be chosen later, this theorem together with Chebyshev’s in-
equality yields∫ N

d
2
−δ

0
pλp−1∣∣{(t, x) ∈ [0, 1]× Td :

∣∣(eitΔP≤Nf)(x)
∣∣ > λ}

∣∣ dλ(2.13)

�
∫ N

d
2
−δ

0
pλp−1N

p0η

λp0
dλ � Np( d

2
− d+2

p
)+p0η−δ(p−p0) � Np( d

2
− d+2

p
),

provided we take η < δ(p− p0)/p0. This renders acceptable the contribution

of λ ≤ N
d

2
−δ to the RHS(2.12).

It remains to estimate the contribution of large values of λ. To this end,
fix λ > N

d

2
−δ and let

Ω := {(t, x) ∈ [0, 1]× Td :
∣∣(eitΔP≤Nf)(x)

∣∣ > λ}.

By choosing some ω ∈ {0, π2 , π, 3π2 } appropriately, we have that

Ωω := {(t, x) ∈ [0, 1]× Td : Re
(
eiωeitΔP≤Nf

)
(x) > λ

2}

satisfies |Ω| ≤ 4|Ωω|. By the definition of Ωω and Cauchy–Schwarz,

λ2|Ωω|2 �
∣∣∣∣∫ 1

0

∫
Td

(eitΔP≤Nf)(x)χΩω
(t, x) dx dt

∣∣∣∣2(2.14)

� ‖f‖2L2(Td)

∥∥∥∥∫ 1

0
e−itΔP≤NχΩω

(t) dt

∥∥∥∥2
L2(Td)
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�
∫
Td

∫ 1

0

∫ 1

0
χΩω

(t, x)
[
ei(t−s)ΔP 2

≤NχΩω
(s)

]
(x) ds dt dx

� 〈χΩω
,KNχΩω

〉L2
t,x
.

To continue, we fix r ∈ (p0, p) and split KN = K̃N + [KN − K̃N ]. Choos-
ing σ small, we may apply Proposition 2.3 with exponent pair (r, r) to obtain∣∣〈χΩω

, K̃NχΩω
〉L2

t,x

∣∣ � |Ωω|
2

r′Nd− 2(d+2)

r .

On the other hand, by (2.2),∣∣〈χΩω
, [KN − K̃N ]χΩω

〉L2
t,x

∣∣ � |Ωω|2Nd(1−σ).

Combining these inequalities with (2.14) we obtain

λ2|Ωω|2 � |Ωω|
2

r′Nd− 2(d+2)

r + |Ωω|2Nd(1−σ).

We now choose δ  dσ
2 so that the second term on the right-hand side of the

inequality above is much smaller than the left-hand side. Thus we deduce
that

|Ω| ≤ 4|Ωω| � N
r

2
(d− 2(d+2)

r
)λ−r.

Recalling the definition of Ω and that r ∈ (p0, p), it then follows that∫ CN
d
2

N
d
2
−δ

pλp−1∣∣{(t, x) ∈ [0, 1]× Td :
∣∣(eitΔP≤Nf)(x)

∣∣ > λ}
∣∣ dλ

� N
r

2
(d− 2(d+2)

r
)

∫ CN
d
2

N
d
2
−δ

λp−1−r dλ

� Np( d

2
− d+2

p
).

This bounds the contribution of large values of λ to (2.12) in an acceptable
manner and so completes the proof of Theorem 1.1. �

3. Bilinear Strichartz estimates

The purpose of this section is to discuss bilinear estimates (in all dimensions)
that inform the treatment of the energy-critical NLS. We will not make direct
use of the estimates in this section. We will however exploit the main idea
in the proof of the following lemma, namely, splitting into frequency cubes
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adapted to the lower frequency. While the argument in [9] exploits a more
complicated trilinear estimate (analogous to Lemma 3.3 below), they remark
that it suffices to use a much simpler estimate (see equation (7) in [9]), which
can be derived along the same lines as Lemma 3.1 below.

Lemma 3.1 (Bilinear Strichartz estimate). Fix d ≥ 3 and T ≤ 1. Then
for every 1 ≤ N2 ≤ N1 we have

‖uN1
vN2
‖L2

t,x([0,T )×Td) � N
d−2

2

2 ‖uN1
‖Y 0([0,T ))‖vN2

‖Y 0([0,T )).(3.1)

The implicit constant does not depend on T .

Remark 3.2. In the Euclidean setting one has the following stronger esti-
mate:

‖uN1
vN2
‖L2

t,x(R×Rd) � N
d−1

2

2 N
− 1

2

1 ‖uN1
‖Y 0‖vN2

‖Y 0 .

No such estimate holds on the torus. Indeed, choosing u and v to be linear
solutions with characters as initial data, one can see that no negative power
of the higher frequency can appear on the RHS(3.1).

Proof. To prove (3.1), we decompose Rd = ∪jCj , where each Cj is a cube
of side-length N2. We write PCj

for the (sharp) Fourier projection onto this
cube. As the spatial Fourier support of (PCj

uN1
)vN2

is contained in a fixed
dilate of the cube Cj , for each j, we deduce that

‖uN1
vN2
‖L2

t,x([0,T )×Td) �
(∑

j

∥∥(PCj
uN1

)vN2

∥∥2
L2

t,x([0,T )×Td)

)1/2

.

Using the Strichartz inequality (1.9), we estimate∥∥(PCj
uN1

)vN2

∥∥
L2

t,x([0,T )×Td)
� ‖PCj

uN1
‖L4

t,x([0,T )×Td)‖vN2
‖L4

t,x([0,T )×Td)

� N
d−2

2

2 ‖PCj
uN1

‖Y 0‖vN2
‖Y 0 .

Observing that

‖u‖Y 0([0,T )) �
(∑

j

∥∥PCj
uN1

∥∥2
Y 0([0,T ))

)1/2

� ‖u‖Y 0([0,T )),

we immediately derive (3.1). �
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By further exploiting the ideas in [9], one can obtain a stronger bilinear
Strichartz estimate. We will not use this result in this paper and simply
record the estimate for comparison. In the case d = 4, what follows is essen-
tially [10, Proposition 2.8]. Their argument can be adapted to dimensions
d ≥ 3 because of the L4

t,x Strichartz estimate given in Theorem 1.1.

Lemma 3.3 (Improved bilinear Strichartz estimate). Fix d ≥ 3 and
T ≤ 1. Then there exists δ > 0 such that for every 1 ≤ N2 ≤ N1 we have

‖uN1
vN2
‖L2

t,x([0,T )×Td) � N
d−2

2

2

(
N2

N1
+ 1

N2

)δ‖uN1
‖Y 0([0,T ))‖vN2

‖Y 0([0,T )).

4. Well-posedness for the energy-critical NLS

The main estimates needed to prove local well-posedness for the energy-
critical NLS are contained in the following proposition.

Proposition 4.1. Fix d ∈ {3, 4} and F (u) = ±|u|
4

d−2u. Then for any 0 <
T ≤ 1, ∥∥∥∥∫ t

0
ei(t−s)ΔF (u(s)) ds

∥∥∥∥
X1([0,T ])

� ‖u‖
d+2

d−2

X1([0,T ])(4.1)

and ∥∥∥∥∫ t

0
ei(t−s)Δ

[
F (u+ w)(s)− F (u)(s)

]
ds

∥∥∥∥
X1([0,T ])

(4.2)

� ‖w‖X1([0,T ])

(
‖u‖X1([0,T ]) + ‖w‖X1([0,T ])

) 4

d−2 .

The implicit constants do not depend on T .

Proof. As (4.1) follows from (4.2) by taking u ≡ 0, we will only treat the
latter. Throughout the proof of the proposition all spacetime norms will be
taken on [0, T ]× Td.

FixN ≥ 1 and observe that P≤N [F (u+ w)− F (u)] ∈ L1([0, T ];H1(Td)).
By duality (see Proposition 2.11 in [9]),∥∥∥∥∫ t

0
ei(t−s)ΔP≤N

[
F (u+ w)(s)− F (u)(s)

]
ds

∥∥∥∥
X1([0,T ])

≤ sup
‖ṽ‖Y−1([0,T ])=1

∣∣∣∣∫ T

0

∫
Td

P≤N
[
F (u+ w)(t)− F (u)(t)

]
ṽ(t, x) dx dt

∣∣∣∣ .
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Let v := P≤N ṽ. We will prove that∣∣∣∣∫ T

0

∫
Td

[
F (u+ w)(t)− F (u)(t)

]
v(t, x) dx dt

∣∣∣∣(4.3)

� ‖v‖Y −1([0,T ])‖w‖X1([0,T ])

(
‖u‖X1([0,T ]) + ‖w‖X1([0,T ])

) 4

d−2 .

Estimate (4.2) follows from this by letting N →∞.
A little combinatorics shows that (4.3) follows from an estimate of the

form

∑
N0≥1

∑
N1≥···≥N d+2

d−2
≥1

∣∣∣∣∣∣
∫ T

0

∫
Td

vN0
(t, x)

d+2

d−2∏
j=1

u
(j)
Nj

(t, x) dx dt

∣∣∣∣∣∣(4.4)

� ‖v‖Y −1

d+2

d−2∏
j=1

‖u(j)‖X1([0,T ]),

by choosing u(j) varying over the collection {u, ū, w, w̄}. The remainder of
the proof is dedicated to the verification of (4.4).

The treatments of the cases d = 3 and d = 4 are completely parallel; in
both cases, we make principal use of the Strichartz estimate with exponent
2(d+1)
d−1 . However, we chose to write out the argument in each dimension

separately, because we feel it is more readable.

Case I: d = 3. In order to have a non-zero contribution to LHS(4.4), the
two highest frequencies must be comparable. We distinguish two subcases.

Case I.1: N0 ∼ N1 ≥ · · · ≥ N5. We exploit the main idea of the proof of
Lemma 3.1. As there, let PCj

denote the family of Fourier projections onto
a tiling of cubes of size N2. We write Cj ∼ Ck if the sum set overlaps the
Fourier support of P≤2N2

. Observe that given Ck there are a bounded number
of Cj ∼ Ck. Using Hölder, Bernstein, and Cauchy–Schwarz, we estimate

∑
N0∼N1≥···≥N5

∣∣∣∣∫ T

0

∫
Td

vN0
(t, x)u

(1)
N1

(t, x) . . . u
(5)
N5

(t, x) dx dt

∣∣∣∣
�

∑
N0∼N1≥···≥N5

∑
Cj∼Ck

‖PCj
vN0
‖L4

t,x
‖PCk

u
(1)
N1
‖L4

t,x

‖u(2)N2
‖L4

t,x
‖u(3)N3

‖L4
t,x
‖u(4)N4

‖L∞t,x‖u
(5)
N5
‖L∞t,x
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�
∑

N0∼N1≥···≥N5

∑
Cj∼Ck

N0N
1
2
4 N

1
2
5

N1N
1
4
2 N

3
4
3

‖PCj
vN0
‖Y −1‖PCk

u
(1)
N1
‖Y 1

‖u(2)N2
‖Y 1‖u(3)N3

‖Y 1‖u(4)N4
‖Y 1‖u(5)N5

‖Y 1

� ‖u(4)‖Y 1‖u(5)‖Y 1

∑
N0∼N1

∑
Cj∼Ck

‖PCj
vN0
‖Y −1‖PCk

u
(1)
N1
‖Y 1

∑
N2≥N3

(
N3

N2

) 1

4 ‖u(2)N2
‖Y 1‖u(3)N3

‖Y 1

�
5∏

j=2

‖u(j)‖Y 1

∑
N0∼N1

‖vN0
‖Y −1‖u(1)N1

‖Y 1

� ‖v‖Y −1

5∏
j=1

‖u(j)‖Y 1 .

This settles Case I.1 because X1 ↪→ Y 1.

Case I.2: N0 � N1 ∼ N2 ≥ N3 ≥ N4 ≥ N5. In this subcase, we do not need
to decompose into cubes and only use the Strichartz inequalities proved in
Theorem 1.1:

∑
N0�N1∼N2≥···≥N5

∣∣∣∣∫ T

0

∫
Td

vN0
(t, x)u

(1)
N1

(t, x) . . . u
(5)
N5

(t, x) dx dt

∣∣∣∣
�

∑
N0�N1∼N2≥···≥N5

‖vN0
‖L4

t,x
‖u(1)N1

‖L4
t,x
‖u(2)N2

‖L4
t,x
‖u(3)N3

‖L4
t,x
‖u(4)N4

‖L∞t,x‖u
(5)
N5
‖L∞t,x

�
∑

N0�N1∼N2≥···≥N5

N
5
4
0 N

1
2
4 N

1
2
5

N
3
4
1 N

3
4
2 N

3
4
3

‖vN0
‖Y −1‖u(1)N1

‖Y 1‖u(2)N2
‖Y 1

‖u(3)N3
‖Y 1‖u(4)N4

‖Y 1‖u(5)N5
‖Y 1

� ‖v‖Y −1

5∏
j=3

‖u(j)‖Y 1

∑
N1∼N2

(
N1

N2

) 1

2 ‖u(1)N1
‖Y 1‖u(2)N2

‖Y 1

� ‖v‖Y −1

5∏
j=1

‖u(j)‖Y 1 .

This completes the proof of the proposition in the case of three space di-
mensions.
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Case II: d = 4. Again we distinguish two subcases: either N0 ∼ N1 ≥ N2 ≥
N3 or N0 � N1 ∼ N2 ≥ N3.

Case II.1: N0 ∼ N1 ≥ N2 ≥ N3. Arguing exactly as in Case I.1, we obtain∑
N0∼N1≥N2≥N3

∣∣∣∣∫ T

0

∫
Td

vN0
(t, x)u

(1)
N1

(t, x)u
(2)
N2

(t, x)u
(3)
N3

(t, x) dx dt

∣∣∣∣
�

∑
N0∼N1≥N2≥N3

∑
Cj∼Ck

∥∥PCj
vN0

∥∥
L

10/3
t,x

∥∥PCk
u
(1)
N1

∥∥
L

10/3
t,x

∥∥u(2)N2

∥∥
L

10/3
t,x

∥∥u(3)N3

∥∥
L10

t,x

�
∑

N0∼N1

∑
Cj∼Ck

N0

N1

∥∥PCj
vN0

∥∥
Y −1

∥∥PCk
u
(1)
N1

∥∥
Y 1

∑
N2≥N3

(
N3

N2

)2

5

∥∥u(2)N2

∥∥
Y 1

∥∥u(3)N3

∥∥
Y 1

� ‖v‖Y −1

3∏
j=1

‖u(j)‖Y 1 .

Case II.2: N0 � N1 ∼ N2 ≥ N3. We argue in the same manner as Case I.2:

∑
N0�N1∼N2≥N3

∣∣∣∣∫ T

0

∫
Td

u
(1)
N1

(t, x)u
(2)
N2

(t, x)u
(3)
N3

(t, x)vN0
(t, x) dx dt

∣∣∣∣
�

∑
N0�N1∼N2≥N3

∥∥vN0

∥∥
L

10/3
t,x

∥∥u(1)N1

∥∥
L

10/3
t,x

∥∥u(2)N2

∥∥
L

10/3
t,x

∥∥u(3)N3

∥∥
L10

t,x

�
∑

N0�N1∼N2≥N3

N
6
5
0 N

2
5
3

N
4
5
1 N

4
5
2

∥∥vN0

∥∥
Y −1

∥∥u(1)N1

∥∥
Y 1

∥∥u(2)N2

∥∥
Y 1

∥∥u(3)N3

∥∥
Y 1

� ‖v‖Y −1‖u(3)‖Y 1

∑
N1∼N2

(
N1

N2

)2

5 ‖u(1)N1
‖Y 1‖u(2)N2

‖Y 1

� ‖v‖Y −1

3∏
j=1

‖u(j)‖Y 1 .

This completes the proof of the proposition when d = 4. �
Proof of Theorem 1.3. With Proposition 4.1 in place, the remainder of the
proof mimics the arguments in [9]. We first consider the case of small initial
data. Fix d ∈ {3, 4} and let u0 ∈ H1(Td) satisfy

‖u0‖H1(Td) ≤ η ≤ η0

for a small η0 = η0(d) to be chosen later.
We first note that by conservation of mass and energy, it suffices to

construct the solution to the initial-value problem (1.4) on the time interval
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[0, 1]. Indeed, by Sobolev embedding,

‖f‖
L

2d
d−2 (Td)

�d ‖f‖H1(Td)

and so, in both the defocusing and the focusing cases we have

M(u)+E(u) =

∫
Td

1
2 |u0(x)|

2+ 1
2 |∇u0(x)|2± d−2

2d |u0(x)|
2d

d−2 dx∼‖u0‖2H1(Td),

provided η0(d) is chosen sufficiently small. Using a continuity argument to-
gether with the conservation of mass and energy, we deduce that this equiv-
alence holds at all times of existence, namely,

M(u) + E(u) ∼ ‖u(t)‖2H1(Td).

Thus, a simple iteration argument allows us to extend the local-in-time
solution to a global-in-time solution.

To construct the solution to (1.4) on the time interval [0, 1], we use
a contraction mapping argument. More precisely, we will show that the
mapping

Φ(u)(t) := eitΔu0 ∓ i

∫ t

0
ei(t−s)ΔF (u(s)) ds(4.5)

is a contraction on the ball

B :=
{
u ∈ X1([0, 1]) ∩ CtH

1
x([0, 1]× Td) : ‖u‖X1([0,1]) ≤ 2η

}
under the metric

d(u, v) := ‖u− v‖X1([0,1]).

Using Proposition 4.1, we see that for u ∈ B,

‖Φ(u)‖X1([0,1]) ≤ ‖eitΔu0‖X1([0,1]) +

∥∥∥∥∫ t

0
ei(t−s)ΔF (u(s)) ds

∥∥∥∥
X1([0,1])

≤ ‖u0‖H1(Td) + C‖u‖
d+2

d−2

X1([0,1]) ≤ η + C(2η)
d+2

d−2 ≤ 2η,

provided η0 is chosen sufficiently small. This proves Φ maps the ball B to
itself.
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To see that Φ is a contraction under the metric d, we apply Proposi-
tion 4.1 to u, v ∈ B to get

d(Φ(u),Φ(v)) ≤
∥∥∥∥∫ t

0
ei(t−s)Δ

[
F (u(s))− F (v(s))

]
ds

∥∥∥∥
X1([0,1])

� ‖u− v‖X1([0,1])

(
‖u‖X1([0,1]) + ‖v‖X1([0,1])

) 4

d−2

� d(u, v)(4η)
4

d−2

≤ 1
2d(u, v),

provided η0 is chosen sufficiently small.
This completes the discussion of small initial data. We now turn to the

statement in Theorem 1.3 concerning large initial data.
Let u0 ∈ H1(Td) with

‖u0‖H1(Td) ≤ A

for some 0 < A <∞. Let δ > 0 be a small number to be chosen later (de-
pending on A) and let N = N(u0) ≥ 1 be such that

‖P>Nu0‖H1(Td) ≤ δ.

We will show that the mapping Φ(u) defined in (4.5) is a contraction on the
ball

B :=
{
u ∈ X1([0, T ]) ∩ CtH

1
x([0, T ]× Td) :

‖u‖X1([0,T ]) ≤ 2A, ‖u>N‖X1([0,T ]) ≤ 2δ
}

under the metric

d(u, v) := ‖u− v‖X1([0,T ]),

provided T is chosen sufficiently small (depending on A, δ, and N). For the
remainder of the proof, all space-time norms will be on [0, T ]× Td.

First we verify that Φ maps B to itself. Using Remark 1.8, Proposi-
tion 4.1, and Bernstein, for u ∈ B we estimate

‖Φ(u)‖X1 ≤ ‖eitΔu0‖X1 +

∥∥∥∥∫ t

0
ei(t−s)ΔF (u≤N (s)) ds

∥∥∥∥
X1

+

∥∥∥∥∫ t

0
ei(t−s)Δ

[
F (u(s))− F (u≤N (s))

]
ds

∥∥∥∥
X1

≤ ‖u0‖H1(Td) + C‖F (u≤N )‖L1
tH1

x
+ C‖u>N‖X1‖u‖

4

d−2

X1
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≤ A+ CT‖u≤N‖L∞t H1
x
‖u≤N‖

4

d−2

L∞t,x
+ C(2δ)(2A)

4

d−2

≤ A+ CTN2(2A)
d+2

d−2 + C(2δ)(2A)
4

d−2 ≤ 2A,

provided δ is chosen small enough depending on A, and T is chosen small
enough depending on A and N .

We decompose

F (u) = F1(u) + F2(u)

where F1(u) = O
(
u2>Nu

6−d

d−2

)
and F2(u) = O

(
u

4

d−2

≤N u
)
.

Here, O aggregates terms of similar structure, where factors may addition-
ally have complex conjugates and/or further Littlewood–Paley projections.
Arguing similarly to the above, we estimate

‖P>NΦ(u)‖X1

≤ ‖eitΔP>Nu0‖X1 +

∥∥∥∥∫ t

0
ei(t−s)ΔF1(u(s)) ds

∥∥∥∥
X1

+

∥∥∥∥∫ t

0
ei(t−s)ΔF2(u(s)) ds

∥∥∥∥
X1

≤ ‖P>Nu0‖H1(Td) + C‖u>N‖2X1‖u‖
6−d

d−2

X1 + C‖F2(u)‖L1
tH1

x

≤ δ + C(2δ)2(2A)
6−d

d−2

+ CT

[
‖∇u‖L∞t L2

x
‖u≤N‖

4

d−2

L∞t,x
+ ‖u‖

L∞t L
2d

d−2
x

N‖u≤N‖
4

d−2

L∞t L
4d

d−2
x

]
≤ δ + C(2δ)2(2A)

6−d

d−2 + CTN2(2A)
d+2

d−2

≤ 2δ,

provided δ is chosen small enough depending on A, and T is chosen small
enough depending on A, δ, and N .

Next, we prove that Φ is a contraction. We again decompose F = F1 + F2

and observe that

F1(u)− F1(v) = O
(
(u− v)(u>N + v>N )

(
u

6−d

d−2 + v
6−d

d−2

))
and

F2(u)− F2(v) = O
(
(u− v)

(
u≤N + v≤N

) 4

d−2

)
+O

(
(u≤N − v≤N )(u+ v)

(
u≤N + v≤N

) 6−d

d−2

)
.
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Employing Remark 1.8, Proposition 4.1, and Bernstein as before, for u, v ∈
B we estimate

d
(
Φ(u),Φ(v)

)
� ‖u− v‖X1

(
‖u>N‖X1 + ‖v>N‖X1

)(
‖u‖X1 + ‖v‖X1

) 6−d

d−2

+ ‖F2(u)− F2(v)‖L1
tH1

x

� (4δ)(4A)
6−d

d−2d(u, v) + T‖∇(u− v)‖L∞t L2
x

(
‖u≤N‖L∞t,x + ‖v≤N‖L∞t,x

) 4

d−2

+ T‖u− v‖
L∞t L

2d
d−2
x

N
(
‖u≤N‖

L∞t L
4d

d−2
x

+ ‖v≤N‖
L∞t L

4d
d−2
x

) 4

d−2

+ T
(
‖∇u‖L∞t L2

x
+ ‖∇v‖L∞t L2

x

)
‖u≤N

− v≤N‖L∞t,x
(
‖u≤N‖L∞t,x + ‖v≤N‖L∞t,x

) 6−d

d−2

+ T
(
‖u‖

L∞t L
2d

d−2
x

+ ‖v‖
L∞t L

2d
d−2
x

)
N‖u≤N − v≤N‖

L∞t L
4d

d−2
x

×
(
‖u≤N‖

L∞t L
4d

d−2
x

+ ‖v≤N‖
L∞t L

4d
d−2
x

) 6−d

d−2

�
[
(4δ)(4A)

6−d

d−2 + TN2(4A)
4

d−2

]
d(u, v)

≤ 1
2d(u, v),

provided δ is chosen small enough depending on A, and T is chosen small
enough depending on A and N .

By the contraction mapping theorem, this allows us to construct a
unique solution u to (1.4) in the ball B. To see that uniqueness holds in
the larger class X1([0, T ]) ∩ CtH

1
x([0, T ]× Td), we need only observe that

if v ∈ X1([0, T ]) ∩ CtH
1
x([0, T ]× Td) is a second solution to (1.4) with data

v(0) = u0, then there exists N0 ≥ 1 such that

‖v>N0
‖X1([0,T ]) ≤ 2δ.

Choosing the larger of N and N0, we find a new ball B that contains both u
and v. In this way, the contraction mapping argument guarantees u = v on
a possibly smaller interval [0, T ′]. Iterating this argument yields uniqueness
in the larger class. �
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