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Damping oscillatory integrals by the

Hessian determinant via Schrödinger

Philip T. Gressman

We consider the question of when it is possible to force a degenerate
scalar oscillatory integral to decay as fast as a nondegenerate one
by restricting the support to the region where the Hessian deter-
minant of the phase is bounded below. We show in two dimensions
that the desired outcome is not always possible, but does occur for
a broad class of phases which may be described in terms of the
Newton polygon. The estimates obtained are uniform with respect
to linear perturbation of the phase and in the cutoff value of the
Hessian determinant. In the course of the proof, we investigate a
geometrically-invariant approach to making uniform estimates of
qualitatively nondegenerate oscillatory integrals. The approach il-
luminates a previously unknown fundamental relationship between
the asymptotics of oscillatory integrals and the Schrödinger equa-
tion.

One of the deep results of Phong, Stein, and Sturm [12] in their study of
uniform decay rates for oscillatory integral operators in 1 + 1 dimensions
is the fact that, for a real polynomial phase Φ on R

2 one has the uniform
estimate

(1)

∣∣∣∣∣
∫
[−1,1]2

eiλΦ(x,y)χ

(
ε−1

∂2Φ

∂x∂y
(x, y)

)
f(x)g(y)dxdy

∣∣∣∣∣≤C(λε)−
1

2 ||f ||2||g||2

for any two functions f, g ∈ L2([−1, 1]) and any λ, ε > 0, where χ is a smooth
function supported on the interval [1, 2]. The constant C depends only on the
degree of Φ and on the cutoff χ. In this paper, we will investigate the extent
to which analogues of (1) are possible in higher dimensions. Questions of
stability of decay for oscillatory integrals are certainly not new in harmonic
analysis, nor are approaches based on weights and damping. Readers should
see the references [1, 2, 9–11, 13, 14] for a variety of important formulations of
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and approaches. Aside from those problems which are fundamentally one-
dimensional or exhibit some sort of one-dimensional multilinearity, in the
existing literature on oscillatory integral operators, sharp decay rates are
difficult to achieve.

The present paper focuses on two dimensional, translation-invariant ver-
sions of (1). (For various reasons to be noted later, one should not expect
the arguments presented here to work in dimensions 4 and higher without
substantial modifications.) By the usual L2 theory, the problem reduces to
that of showing

(2) sup
ξ∈R2

∣∣∣∣∣
∫
[−1,1]2

ei(λΦ(x)+ξ·x)χ(ε−1 detHess Φ(x))ψ(x)dx

∣∣∣∣∣ ≤ Cλ−1ε−
1

2 ,

where, for convenience, an additional smooth cutoff function ψ has been
added with support in some small neighborhood of the origin. (The notation
Hess Φ is reserved for the usual Hessian matric of Φ and the notation will be
used ∇2Φ for an intrinsic geometric version of the Hessian to appear later.)

Unlike the robust sense in which (1) holds, the inequality (2) can fail
under fairly routine circumstances. If Φ(x1, x2) := (x2 + x21)

2, one sees that
the Hessian determinant equals 8(x2 + x21). To evaluate the left-hand side

of (2) at ξ = 0 in the special case ε = λ−
1

2 , make the change of variables
x2 �→ λ−1/2x2 − x21; the integral can easily be seen to be asymptotic to

λ−
1

2

(∫
eix

2
2χ(8x2)dx2

)(∫
ψ(x1,−x21)dx

)

as λ→∞. In particular, the coefficient of λ−1/2 will typically be nonzero.
However, if the full inequality (2) held, the decay would have been λ−3/4.

Even so, (2) is generally true if not universally. Suppose that Φ is real
analytic on a neighborhood of the origin in R

2 and that Φ(0, 0) = ∇Φ(0, 0) =
0. Let Γ be the Newton polygon associated to Φ at the origin, i.e., Γ ⊂ [0,∞)2

is the convex hull of the union of all quadrants [k1,∞)× [k2,∞) such that

∂k1+k2Φ

∂k1x1∂k2x2
(0, 0) 	= 0.

To each compact edge e of Γ, we associate a polynomial φe by restricting
the Taylor series of Φ at the origin to those terms lying on e, i.e.,

φe(x) :=
∑

(k1,k2)∈e

xk1

1 xk2

2

k1!k2!

∂k1+k2Φ

∂k1x1∂k2x2
(0, 0).
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For each edge polynomial φe, it will be assumed that the mapping (x1, x2) �→
∇φe(x1, x2) has at at worst Whitney fold singularities away from the x1-
and x2-axes. If the edge e happens to meet the first (horizontal) axis in
[0,∞)2, the mapping x �→ ∇φe(x) will also be required to have no worse
than a Whitney fold singularity on the x2-axis away from the origin, and
likewise for edges meeting the second (vertical axis) and singularities on the
x1-axis away from the origin. By a Whitney fold singularity of a mapping
between manifolds of the same dimension, we mean that when the mapping
has a degenerate differential at a point, it is degenerate on a hypersurface
passing through any such point, that the determinant of the differential
vanishes only to first order near that hypersurface, and that the differential
is injective when restricted to the hypersurface. The reader will note that
this condition is slightly stronger than the usual condition of Varčenko [17],
but the extra strength seems to be necessary as the local behavior of both
Φ and detHess Φ must be simultaneously described by the structure of this
single Newton polygon. The Whitney condition (or at least some similar
hypothesis) is also necessary to rule out the pathologies associated to the
phase (x2 + x21)

2 just analyzed.
The main result of this paper is as follows:

Theorem 1. When Φ is as above, there is a neighborhood U of the origin
in R

2 such that, for every smooth ψ supported on U and every smooth χ
supported on [−2,−1] ∪ [2, 1], there is a finite C such that

(3) sup
ξ∈R2

∣∣∣∣
∫

eiλ(Φ(x)+ξ·x)χ(ε−1 detHess Φ(x))ψ(x)dx

∣∣∣∣ ≤ Cλ−1ε−
1

2 logs
1

ε

for all positive λ and all ε ∈ (0, 12). The exponent s equals zero unless the
Newton polygon Γ meets the diagonal at a vertex, in which case s = 1.

The estimate (3) has a number of consequences which are worth record-
ing. Consider the measure μ on the graph (x,Φ(x)) given by∫

R3

fdμ :=

∫
U
f(x,Φ(x))ψ(x)dx,

where ψ is any smooth function supported on U . By (3) and a dyadic de-
composition in the size of detHess Φ(x):

Corollary 1. Suppose that, on the neighborhood U from Theorem 1, one
has

|{x ∈ U | | detHess Φ(x)| < ε}| ≤ cε
1

d
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for some finite c, positive d and all ε > 0 (here | · | applied to a set denotes
Lebesgue measure). Then the following conclusions hold:

1) (Sobolev Convolutions) For any σ ∈ (0, 2
2+d) and any exponent p sat-

isfying |12 − 1
p | ≤ 1−σ

2 , there is a constant C <∞ such that

|||∇|σ(f ∗ μ)||p ≤ C||f ||p ∀f ∈ Lp(R3).

2) (Oscillatory Integrals) For σ and p as above, there is a C <∞ such
that(∫
R2

∣∣∣∣
∫
R2

eiλΦ(x−y)g(y)ψ(x− y)dy

∣∣∣∣
p

dx

) 1

p

≤ C|λ|−σ||f ||p ∀f ∈ Lp(R2)

when ψ is smooth and supported on the neighborhood U from Theorem
1.

3) (Fourier Restriction) For any exponents p, q satisfying 1 ≤ p < d+8
d+6 ,

1
q ≥ d+4

2
1
p′ , there is a C <∞ such that

(4)

(∫
|f̂(ξ)|qdμ

) 1

q

≤ C||f ||p ∀f ∈ Lp(R3).

4) (Maximal Averages) For any index p ∈ [2,∞] satisfying p > d+2
2 , there

is a finite constant C such that

(∫
R2

ess.sup
t>0

∣∣∣∣
∫

f(x+ ty)dμ(y)

∣∣∣∣
p

dx

) 1

p

≤ C||f ||p ∀f ∈ Lp(R3).

The techniques to achieve this corollary from (3) are all completely
straightforward applications of techniques from [12], [15] and elsewhere. For
Fourier restriction and maximal averages, these results generally match the
known state-of-the-art by Greenblatt [3], Ikromov, Kempe, and Müller [6, 7],
and Ikromov and Müller [8], although in some cases the estimate (4) exceeds
previously best-known results which require q = 2.

The proof of Theorem 1 proceeds in two stages. The first takes place
in Section 1, in which uniform, geometrically-invariant estimates for nonde-
generate scalar oscillatory integrals are investigated. The switch from the
complicated signularities of Theorem 1 to nondegenerate critical points is
possible because, once we decompose the domain away from the origin, the
only critical points we will encounter will be nondegenerate. However, the
challenge is that, while any critical points of Φ + ξ · x on the support of the
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cutoff are technically nondegenerate, there is essentially no quantitative con-
trol of the nondegeneracy. Consequently, there is need for uniform estimates
which hold for all λ rather than just being true as λ→∞. The remark-
able thing about this analysis is that it identifies a previously-unknown,
fundamental relationship between the asymptotic expansion of any nonde-
generate oscillatory integral and the formal expansion of certain solution
operators of Schrödinger-type equations. The basis for this connection is
found in Lemma 1, which establishes that any smooth phase Φ with a non-
degenerate critical point at p in a manifold with torsion-free connection ∇
intrinsically generates (i.e., without reference to any choice of coordinates)
a second-order operator � in a neighborhood of p for which(

∂

∂t
− i

2
�
)[

t−
n

2 eit
−1(Φ−Φ(p))

]
= 0

holds for all t > 0. This realization in turn yields a much deeper understand-
ing of the geometric significance of the coefficients found when asymptoti-
cally expanding nondegenerate oscillatory integrals (see (17)), namely that,
up to a constant, the coefficients of the asymptotic expansion match the
Taylor coefficients of the formal expansion of exp(i�∗t/2) applied to the
amplitude ψ (here �∗ is an appropriate adjoint of � since it need not be
self-adjoint). For this reason, the estimates derived in Section 1 are presented
in a general way without reference to the specific context of Theorem 1 to
facilitate future application to other problems. The second stage of the proof
comes in Section 2, in which the results of Section 1 are applied to phases Φ
satisfying the hypotheses of Theorem 1. The main argument of this section
is built on the familiar analysis of boxes in the bi-dyadic decomposition of
the plane.

1. Geometric oscillatory integral analysis

It is certainly the case that the asymptotic behavior of oscillatory integrals
with nondegenerate critical points is well-understood: if Φ is a C∞ function
on some neighborhood of x0 ∈ R

n and x0 is a nondegenerate critical point
of Φ, then

(5)

∫
eiλΦ(x)ψ(x)dx ∼

∞∑
j=0

ajλ
−n

2
−j as λ→ +∞

when ψ ∈ C∞(Rn) is supported on a sufficiently small neighborhood of x0.
Each aj depends only on finitely many derivatives of Φ and ψ at x0. For
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example,

(6) a0 =
π

n

2 ei
π

4
ωψ(x0)√| detHess Φ(x0)|

where ω equals the number of positive eigenvalues of Hess Φ(x0) minus the
number of negative eigenvalues. Hörmander [5] and Stein [16], for example,
give somewhat distinct proofs of these and other facts.

Despite the wealth of knowledge, there are several important reasons to
revisit the asymptotics (5). One is the need to employ a fully coordinate-
independent approach that only exploits the relative geometry of the phase
Φ and the amplitude ψ. In order to pose a scalar oscillatory integral problem,
the only structures intrinsically involved are an n-dimensional manifoldM,
a measure μ of smooth density on M, a real phase Φ, and an amplitude ψ.
With this minimal structure, the integral

(7)

∫
eiλΦψdμ

makes sense and can be studied asymptotically or uniformly. This formula-
tion of the problem may legitimately be considered qualitative, since, e.g., no
information about magnitudes of derivatives of Φ or ψ is available. Instead,
the challenge is to discover useful structures rather than imposing them.

Although the minimal structure of (7) is sufficient for asymptotics,
meaningful uniform estimates do not seem possible without some additional
assistance. In the case of Theorem 1, the manifold M happens to come
equipped with a torsion-free connection ∇·. The connection here plays the
role of a more fundamental, qualitative substitute for more quantitative ge-
ometric structures like metrics. In R

n, for example, the standard connection
is preserved by affine transformations, unlike metrics. In particular, when
perturbing any phase Φ by a linear perturbation of the form ξ · x as in (2),
there is automatically a unique, torsion-free connection that arises which
is independent of coordinates (constructed from any spanning set of linear
functions as a coordinate system and taking coordinate vector fields to be
constant with respect to each other).

For readers uninspired by coordinate-independent methods, there is still
another reason to reexamine this ostensibly simple statement (5). In order
to prove Theorem 1, it is necessary to establish uniform estimates which are
manifestly stable with respect to C∞ perturbations of the phase and the
amplitude. Because the Hessian determinant will be restricted to the region
where it is comparable to ε, special care must be taken when understanding
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the sort of perturbations which arise, as uniformity in ε can only be accom-
plished through a precise understanding of the terms (and, in particular,
the magnitude of the derivatives) that will appear. Along the way, it will be
necessary to establish stability of the higher-order terms error terms of the
asymptotic expansion as well.

1.1. Oscillatory integrals and Schrödinger equations

The first step is a proof of Lemma 1, which identifies a fundamental rela-
tionship between oscillatory integral asymptotics and pseudo-Riemannian
Schrödinger equations. Specifically, it identifies every nondegenerate oscilla-
tory integral as a solution of a Schrödinger equation:

Lemma 1. Suppose Φ is a smooth, real-valued function on some open sub-
set U of an n-dimensional manifold M with torsion-free connection ∇ and
that Φ has a nondegenerate critical point at some point p ∈ U . Then there
is a neighborhood Ω of p and a smooth, second-order differential operator �
on Ω such that

(8)

(
∂

∂t
− i

2
�
)[

t−
n

2 eit
−1(Φ−Φ(p))

]
= 0

for all t > 0. Moreover, for all sufficiently small smooth perturbations of Φ
and ∇, on the same set Ω, corresponding operators � continue to exist so
that the perturbed version of (8) (where p is understood to always be the
critical point of the pertrubed Φ) still holds. The operator � depends only on
Φ and ∇ (i.e., no coordinate choices are necessary) and varies smoothly as
they vary.

Note that (8) is exactly a time-dependent Schrödinger equation when
� is replaced by the usual Laplacian. In fact, if Φ(x) :=

∑n
j=1 ajx

2
j/2 for

nonzero real constants aj and ∇· is the Euclidean connection on R
n, then

the operator � we are about to construct will simply equal

(9)

n∑
j=1

1

aj

∂2

∂x2j
.

Moreover, since the operator � will be independent of the connection at
the critical point, one can expect � to look exactly like (9) at a critical
point, where the aj ’s are replaced by second coordinate derivatives in some
coordinate system such that the (coordinate-dependent) Hessian is diagonal.



412 Philip T. Gressman

The purpose of the connection, then, is to give a canonical, smooth, and
coordinate-independent way to extend the definition of the operator � from
the critical point itself to a neighborhood of that critical point.

The first step in the proof is to observe that a geometrically-invariant
Hessian of Φ is well-defined given a torsion-free connection (i.e., one does
not need a metric). Suppose ∇ is such a connection and Φ is a real-valued
function, both smooth and both defined on some open subset U of the man-
ifold M. We define the Hessian ∇2Φ to be the quadratic form on vectors
given by

(10) ∇2Φ(X,Y ) := Y XΦ− (∇Y X)Φ.

Clearly (10) only depends on pointwise values of the vector field Y , and
because ∇ is torsion-free, ∇2Φ is symmetric; thus ∇2Φ is a well-defined
tensor field. (Note that if the connection ∇·· were not torsion-free, ∇2Φ
would depend on derivatives of X and would consequently not be a well-
defined tensor field. Moreover, dependence on the derivatives of the vector
field X is precisely what we wish to avoid, as choosing canonical vector fields
is tantamount to choosing a coordinate system.) It is a trivial but important
fact that ∇2Φ is independent of the connection at every critical point of Φ
because the term (∇Y X)Φ vanishes there.

Given a critical point p of Φ, let Ω0 and Ω1 be open neighborhoods of
p such that the closure of Ω0 is compact and contained in Ω1 and any two
points p′, q′ in the closure of Ω0 are connected by a unique geodesic curve
γ ⊂ Ω1 (meaning ∇γ̇ γ̇ = 0, γ(0) = p′, and γ(1) = q′ as usual). Note that this
geodesic connectivity property of Ω0 and Ω1 will continue to be true for any
sufficiently small perturbation of the connection ∇. It’s also true that one
may choose Ω1 sufficiently small so that Φ has a unique critical point in
Ω1 at the point p. The existence of a unique critical point in Ω0 and no
critical points in Ω1 \ Ω0 will also continue to be true for sufficiently small
perturbations of Φ. For any real σ > 0 and any q ∈ Ω0, we define a weighted
Hessian ∇2

σ Φ at q by taking γ to be the geodesic with γ(0) = p, γ(1) = q,
and setting

∇2
σ Φ(X,Y ) := σ

∫ 1

0
(1− s)σ−1 ∇2Φ

∣∣
γ(s)

(
X|γ(s) , Y |γ(s)

)
ds,(11)

where we extend X and Y by reverse parallel transport along γ so that
Xγ(1) = X and likewise for Y . We are primarily interested in the cases σ =
1, 2, but it is perhaps worth remarking that the usual Hessian (10) is the
limit of ∇2

σ Φ as σ → 0+. Regardless of the choice of σ, all weighted Hessians
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agree at the critical point p. Because the geodesics depend smoothly on p
and the connection ∇, the weighted Hessians will also vary smoothly when
Φ and ∇ are perturbed. Let us also restrict Ω0 as necessary so that ∇2

1 Φ is
nondegenerate on the closure of Ω0. Such nondegeneracy will consequently
also be true for small perturbations of Φ and ∇. The neighborhood Ω from
Lemma 1 can now be chosen to equal any open subset whose closure is
contained in Ω0. The operator � is identified and the proof of Lemma 1 is
completed via the next proposition.

Proposition 1. Given ψ ∈ C∞(Ω0), define the vector field Zψ by

Zψf := (∇2
1 Φ)

−1 (dψ, df)(12)

for all f on Ω0. Also consider the operator �0 and function η on Ω0 given
by

�0f := tr((∇2
1 Φ)

−1∇2
2 Φ(∇2

1 Φ)
−1∇2f),(13)

η(q) :=

∫ 1

0
[n−�0Φ(γ(s))]

ds

s
,(14)

where γ is the geodesic with γ(0) = p and γ(1) = q. Then the operator

(15) �f := �0f + Zηf

satisfies (8) and varies smoothly under small C∞ perturbations of Φ and ∇.

Proof. Without loss of generality, we may assume Φ(p) = 0. The smoothness
of Zψ is straightforward. Smoothness of η follows once it is observed that
�0Φ must equal n at the point p, because tr((∇2

1 Φ)
−1∇2

2 Φ(∇2
1 Φ)

−1∇2Φ) is
the trace of the identity at p since ∇2Φ = ∇2

1 Φ = ∇2
2 Φ at p.

Let D be the vector field on Ω0 such that, at q, D = γ̇(1) for the geodesic
γ with γ(0) = p and γ(1) = q. We then have the identities

∇2
1 Φ

∣∣
q
(D,X) = XΦ|q , ∇2

2 Φ
∣∣
q
(D,D) = 2Φ(q),(16)

for any vector X. Both formulas are a consequence of integration by parts.
More specifically, one first expands definition (11) using (10) to conclude
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that

∇2
σ Φ

∣∣
q
(D,X) = σ

∫ 1

0
(1− s)σ−1 [γ̇(s)(XΦ)− (∇γ̇X)Φ]γ(s) ds.

Now (∇γ̇X)Φ = 0 because X has been parallel transported. The remaining
term satisfies γ̇(s)(XΦ) = d

ds [XΦ(γ(s))]. We integrate by parts to see that
the first identity of (16) must hold (using the fact that the boundary term
at s = 0 vanishes because Φ has a critical point). Doing the same integration
by parts with σ = 2 and taking X = D gives instead that

∇2
2 Φ

∣∣
q
(D,D) = 2

∫ 1

0
(γ̇Φ)(γ(s))ds.

A second integration by parts in this formula gives the second part of (16).
Since ∇2

1 Φ is nondegenerate on Ω0, we may write first identity of (16) as
(∇2

1 Φ)
−1dΦ = D (since ∇2

1 Φ(D, ·) = dΦ(·) as linear functionals on vectors).
If we apply �0 to t−

n

2 eit
−1Φ, we get that

�0

(
t−

n

2 eit
−1Φ

)
=

(−it−1�0Φ− t−2(∇2
1 Φ)

−1∇2
2 Φ(∇2

1 Φ)
−1(dΦ, dΦ)

)
t−

n

2 eit
−1Φ

=
(−it−1�0Φ− 2t−2Φ

)
t−

n

2 eit
−1Φ.

Since ZηΦ = ZΦη = Dη, the identity (8) will hold if and only if Dη = n−
�0Φ. Along any geodesic beginning at p, this equation becomes

s
d

ds
η(γ(s)) = n−�0Φ(γ(s)).

Because n−�0Φ vanishes at p, this equation has a unique smooth solution
for which η vanishes at p as well, i.e., (14) (note that smoothness follows be-
cause the vanishing of n−�0Φ(γ(s)) implies that n−�0Φ(γ(s)) factors as s
times a smooth function in s and the point q). Finally, the fact that � varies
smoothly with small C∞ perturbations of Φ and ∇ follows immediately from
the definitions (12) and (14) since the formulas both formulas are smoothly
dependent on the geometry and the phase so long as the perturbations in
question are small enough to preserve the invertibility of ∇2Φ. �

1.2. Pointwise Schrödinger estimates

The next lemma establishes explicit asymptotics with remainder terms for
nondegenerate oscillatory integrals in terms of the operator � constructed
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in the previous section. The advance of this lemma over the variants from
[5] or [16] is that it’s now relatively easy to describe the coefficients in the
asymptotic expansion in terms of the formal Taylor series expansion of the
operator exp(it�∗/2) at t = 0, where �∗ is an appropriate adjoint of �
from (15). Specifically, the reader may see the connection between (17) and
Hörmander’s Theorem 7.7.5 [5], but the decay of the error term in Hörman-
der’s result is not sharp (i.e., it requires more regularity than is necessary).
Instead, (17) is closer to Hörmander’s Lemma 7.7.3, which applies explicitly
to quadratic phases; although one could change variables a la Stein [16] to
apply this lemma more generally, this method would still yield a coordinate-
dependent estimate for the error term.

Lemma 2. Let Φ be a phase satisfying the hypotheses of Lemma 1 and let �
and Ω be the operator and open set identified by the conclusion of Lemma 1.
Consider the function

Iψ(t) :=

∫
Ω
t−

n

2 eit
−1Φψ dμ

for ψ smooth and compactly supported on Ω and dμ some measure generated
by a smooth, nonvanishing density μ on M. Let ω equal the number of
positive eigenvalues of ∇2Φ(p) minus the number of negative eigenvalues.
Then as t→ 0+, the difference

(17) Iψ(t)− π
n

2 ei
π

4
ωeit

−1Φ(p)

(√| det∇2Φ|
μ

(p)

)−1 N∑
	=0

(i�∗)	ψ(p)
2	�!

t	

is O(tN+1) as t→ 0+ for each N (when operator �∗ is the adjoint of (15)
with respect to dμ). If the magnitude of the difference (17) is denoted EN

ψ (t)
and if k is any integer strictly greater than n

2 , then

EN
ψ (t) � tN+1

(∫
|(�∗)N+1ψ|dμ

)1− n

2k
(∫

|(�∗)N+k+1ψ|dμ
) n

2k

,(18)

where the implicit constant depends only on N , n, and k.

Proof. We begin by establishing the following fact about functions on the
positive half line: Suppose f ∈ Ck(R>0) satisfies the bounds |f(t)| ≤ At−n/2

and |f (k)(t)| ≤ Bt−n/2 on (0,∞) for some positive n < 2k. Then f is bounded
on (0,∞) and ||f ||∞ � A(2k−n)/(2k)Bn/(2k) with an implicit constant that
depends only on n and k. To see this, let η be any C∞ function which is
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identically one on (−∞, 1] and identically zero on [2,∞); for any positive
integer k, let

ωk(t) :=
tk−1

(k − 1)!
η(t)χ[0,∞)(t) and ω̃k(t) :=

k∑
l=1

(
k

l

)
η(	)(t)

tl−1

(l − 1)!
.

The k-th derivative of ωk in the sense of distributions is exactly ω̃k plus a
Dirac delta function at t = 0. Consequently, for any ρ > 0 and any t0 > 0,
we have

(−1)kρk
∫

f (k)(t+ t0)ρ
−1ωk(ρ

−1t)dt = f(t0) +

∫
f(t+ t0)ρ

−1ω̃k(ρ
−1t)dt

for any function f which is Ck on some interval containing [t0, t0 + 2ρ]. Now
if |f(t)| ≤ At−n/2 on the positive real line, then

∫ ∣∣f(t+ t0)ρ
−1ω̃k(ρ

−1t)
∣∣ dt ≤ A

∫ 2ρ

ρ
t−

n

2 ρ−1|ω̃k(ρ
−1t)|dt ≤ Aρ−

n

2 ||ω̃k||1.

Likewise, if |f (k)(t)| ≤ Bt−n/2, then

(19) ρk
∫ ∣∣∣f (k)(t+ t0)ρ

−1ωk(ρ
−1t)

∣∣∣ dt ≤ Bρk−
n

2

∫ 2

0
t−

n

2 |ωk(t)|dt.

As long as k > n
2 , the integral on the right-hand side of (19) will be finite.

Consequently, for any t0 > 0, we will have

|f(t0)| � Aρ−
n

2 +Bρk−
n

2 .

This inequality can be optimized over ρ by taking ρ comparable to (A/B)1/k

(one may assume B 	= 0 since if f is a polynomial then the bound |f(t)| ≤
At−

n

2 would imply f vanishes identically). This leads to the conclusion that

|f(t0)| � A1− n

2kB
n

2k

uniformly for all t0 > 0, where the implicit constant depends only on n and k.
Now we apply this observation to f(t) := Iψ(t). Without loss of gener-

ality, assume that Φ(p) = 0 at the critical point p. By (8) we have that

(20)
dk

dtk
Iψ(t) =

(
i

2

)k

I(�∗)kψ(t)
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and so we must have

|Iψ(t)| ≤ t−
n

2

∫
|ψ|dμ and |I(k)ψ (t)| ≤ 2−kt−

n

2

∫ ∣∣∣(�∗)k ψ∣∣∣ dμ.
Consequently the bound for f above gives that

(21) |Iψ(t)| �
(∫ ∣∣∣(�∗)k ψ∣∣∣ dμ)

n

2k
(∫

|ψ|dμ
)1− n

2k

for any k > n
2 with a constant depending only on n and k.

To compute higher-order errors, we go back to the Taylor polynomial
for Iψ(t). From the usual calculation (6), we know that I(�∗)�ψ(t0) tends to
finite limit as t0 → 0+, namely to

(22)
π

n

2 ei
π

4
ωμ(p)(�∗)	ψ(p)√| det∇2Φ(p)| .

Thus the sum appearing in (17) is simply the degree N Taylor polynomial
of Iψ(t) at t = 0. By the remainder formula for Taylor’s theorem, we know
that the error EN

ψ (t) will be bounded in magnitude by tN+1 times the supre-
mum of the magnitude of the (N + 1)-st derivative of Iψ(t). Combining (20)
and (21) gives exactly (18). �

1.3. Nondegenerate cutoffs

In addition to Lemma 2, it will also be necessary to establish an essentially
lower-dimensional estimate with respect to a foliation of Ω under the as-
sumption that the amplitude ψ is not necessarily smooth when examined
transversely to the leaves. The net effect is that the nondegenerate oper-
ator (15) is replaced by a degenerate variant which takes into account the
geometry of the foliation. At first glance, it appears as though there is a cost
in terms of decay in the asymptotic expansion, but in reality this is not the
case.

For convenience, we will take the foliation to be level sets of a smooth
function u with nonvanishing differential. Specifically, any smooth function
u will be called a nondegenerate cutoff function for the phase Φ at the point
p when the following criteria are satisfied:

• At the point p, du 	= 0.

• The phase Φ has a critical point at p when restricted to the hyper-
surface of constant u passing through p. That is, dΦ ∧ du = 0 and
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dΦ = cdu for some constant c. For obvious reasons, this constant will
be called dΦ

du (p).

• The critical point of Φ− dΦ
du (p)u at p is nondegenerate when restricted

to the hypersurface of constant u passing through p. That is, ∇2Φ−
dΦ
du (p)∇2u restricts to a nondegenerate quadratic form on vectors tan-
gent to the hypersurface of constant u at p. (Note that since Φ−
dΦ
du (p)u has a critical point, ∇2Φ− dΦ

du (p)∇2u is independent of the
connection at p.)

Near p, the set of points at which dΦ and du are linearly dependent (i.e.,
dΦ ∧ du = 0) will be a curve. To see this, simply define linearly-independent
vector fields X1, . . . , Xn−1 near p for which Xju = 0. Now dΦ ∧ du = 0 holds
exactly when XjΦ = 0 for j = 1, . . . , n− 1. Since the critical point of Φ−
dΦ
du (p)u on the hypersurface of constant u is assumed to be nondegenerate,
we know that the matrix XkXj(Φ− dΦ

du (p)u) will have full rank at p. But
XkXju = 0 since the vector fields are tangent to level hypersurfaces of u.
Consequently XkXjΦ will also be a matrix of rank (n− 1), so the implicit
function theorem guarantees that there is a curve γ which is transverse to
the level hypersurfaces of u which will parametrize the zero set of dΦ ∧ du in
a neighborhood of p. At all such points p′ sufficiently near p at which dΦ ∧
du = 0, we may further assume that ∇2φ− dΦ

du (p
′)∇2u is nondegenerate on

its own level hypersurface of u.
Let us return to the analogue of Lemma 1 when Φ is accompanied by a

nondegenerate cutoff function u at the point p. We know that there exists an
open interval I and a curve γ : I →M such that γ parametrizes the zero set
of dΦ ∧ du near p. When we parametrize γ so that u(γ(s)) = s, we see that
this parametrization varies smoothly as a function u and Φ and the interval
I can be taken to be independent of sufficiently small perturbations. We
may assume that du does not vanish on the closure of the curve γ, so we can
find small neighborhoods in those hypersurfaces of constant u intersecting
the curve γ on which we may apply Lemma 1 with the connection ∇· on the
hypersurfaces of constant u being chosen to equal the Levi-Civita connection
of ∇2Φ− dΦ

du∇2u restricted to the hypersurfaces of constant u. We conclude
that there is a neighborhood Ω of p and a differential operator � on the
closure of that neighborhood such that � commutes with multiplication by
any function of u and

(23)

(
∂

∂t
− i

2
�
)[

t−
n−1

2 eit
−1(Φ−f(u))

]
= 0,
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where f is the function given by f(s) := Φ(γ(s)). (Note that f ′(s) = dΦ(γ̇) =
dΦ
du (γ(s))du(γ̇), so f ′(s) = dΦ

du (γ(s)) when we parametrize γ as already spec-
ified.) As always, we can assume that this neighborhood is constant for
sufficiently small perturbations of Φ, u, and the original connection ∇·, and
we know that � and f vary smoothly under such perturbations. We can
(and must) also choose Ω so that ∇2Φ− dΦ

du∇2u is nondegenerate on level
hypersurfaces of u at every point on the closure of γ.

Once the Schrödinger equation (23) is known, one may develop an im-
mediate analogue of the asymptotic expansion (17). The proof is exactly the
same as the proof of Lemma 2 except for one point, which is the evaluation
of the limit

lim
t→0+

t−
n−1

2

∫
U
eit

−1(Φ−f(u))ψdμ.

This limit must certainly exist, since by Fubini we may express the integral as
an integral over submanifolds of constant u. In particular, the limit will be an
integral of ψ over the curve γ, since this curve parametrizes the critical points
of the phase Φ− f(u) on the constant-u submanifolds. Using stationary
phase,

(24) lim
t→0+

t−
n−1

2

∫
U
eit

−1(Φ−f(u))ψdμ = π
n−1

2 ei
π

4
ω

∫
ψ(γ(s))dϕ(s)

where ω is the number of positive eigenvalues minus negative eigenvalues
when the Hessian ∇2Φ− f ′(u)∇2u is restricted to submanifolds of constant
u. Here we used the fact that the Hessian∇2(Φ− f(u)) and∇2Φ− f ′(u)∇2u
agree on hypersurfaces of constant u. The density ϕ can be determined by
the coarea formula: by Fubini, we may write∫

fdμ =

∫ (∫
u=s

f dμ|u=s

)
ds

where μ|u=s is a density on the hypersurface u = s; if X1, . . . , Xn−1 are
linearly-independent vectors tangent to u = s, then

μ|u=s (X1, . . . , Xn−1) = μ(V,X1, . . . , Xn−1)

for any vector field V with V u = 1. Evaluating the limit (22) on the hyper-
surface u = s gives dϕ = dϕ

ds ds, where

(25)
dϕ

ds
=

μ(γ̇, X1, . . . , Xn−1)√| det(∇2Φ− f ′(u)∇2u)(Xj , Xk)jk|
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where X1, . . . , Xn−1 are any choice of linearly-independent tangent vec-
tors to the hypersurface u = s and in the denominator we mean the de-
terminant of the (n− 1)× (n− 1) matrix whose jk-entry equals (∇2Φ−
f ′(u)∇2u)(Xj , Xk)jk. The vector γ̇ appears because γ̇u = 1, and the Hes-
sian determinant in the denominator comes from (22) combined with the fact
that ∇2Φ− f ′(u)∇2u agrees with ∇2(Φ− f(u)) along these hypersurfaces.
Following Lemma 2 exactly, we conclude that the difference

(26) t−
n−1

2

∫
eit

−1(Φ−f(u))ψdμ− π
n−1

2 ei
π

4
ω

N∑
	=0

i	t	

2	�!

∫
((�∗)	ψ)(γ(s))dϕ(s)

is O(tN+1), and specifically we have essentially the same expression for the
error estimates, namely the inequality (18) with the new operator �∗, n
replaced by n− 1 and k > n−1

2 , i.e., (26) is bounded in magnitude by a
constant times

(27) tN+1

(∫
|(�∗)N+1ψ|dμ

)1−n−1

2k
(∫

|(�∗)N+k+1ψ|dμ
)n−1

2k

.

Finally, since � (and hence �∗) commute with multiplication by functions
of u, we can multiply ψ by eit

−1f(u); the final conclusion is that

(28) t−
n−1

2

∫
eit

−1Φψdμ− π
n−1

2 ei
π

4
ω

N∑
	=0

i	t	

2	�!

∫
γ
eit

−1Φ(�∗)	ψ dϕ

satisfies the error estimate (27).

1.4. One-dimensional analysis

Before the proof of Theorem 1 can begin in full, there is a final issue to
consider, namely the nature of the (now one-dimensional) phase f(s) :=
Φ(γ(s)). It is already established that ∇2Φ− dΦ

du∇2u is well-defined and
independent of the connection along γ. It is an easy calculation to see that

∇2(Φ− f(u))(X,Y ) = ∇2Φ(X,Y )− f ′(u)∇2u(X,Y )− f ′′(u)(Xu)(Y u).

Since Φ− f(u) is identically zero and has critical points along γ, we conclude
that ∇2(Φ− f(u))(X, γ̇) = 0 along γ. Thus

(29) f ′′(u)(Xu) = ∇2Φ(X, γ̇)− f ′(u)∇2u(X, γ̇)
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since we have parametrized γ so that γ̇u = 1. Let X1, . . . , Xn be linearly-
independent, smooth vector fields such that Xju = 0 for j = 1, . . . , n− 1
and Xn = γ̇ on γ. If we look at the matrix (∇2Φ− f ′(u)∇2u)(Xi, Xj), we
see that the ij-entry is zero when i = n and j < n (or vice-versa). We also
see that the nn-entry equals f ′′(u). Thus from (25) we find that

(30) f ′′(s) = ±det(∇2Φ− f ′(s)∇2u)

μ2

(
dϕ

ds

)2

(with the sign ± determined by the sign of the determinant of the minor
(∇2Φ− f ′(u)∇2u)(Xi, Xj) for i, j ≤ n− 1).

Now we return to the terms (28) appearing in the asymptotic expansion
of

t−
n−1

2

∫
eit

−1Φη(u)ψ dμ,

namely

(31)

∫
I
eit

−1f(s)η(s)ψ(γ(s))
dϕ

ds
ds

with ψ replaced by (�∗)	ψ for the higher-order terms, where we have in-
troduced a smooth cutoff η in the parameter s (which equals u in this
parametrization). For convenience, henceforth in this section we will let
ω(s) := η(s)ψ(γ(s))dϕds . The next proposition shows how one can gain an

additional factor of t−1/2, bringing the total back to t−n/2 as desired, when
u is equal to (det∇2Φ/μ2) (i.e., when the cutoff function u is chosen to be
the Hessian determinant).

Proposition 2. Suppose f : I → R is a C2 function, and suppose that there
exists a continuous function g : I → R and constants C, K, and δ such that

|f ′′(s)− g(s)| ≤ C|f ′(s)|,(32)

δ ≤ |g(s)| ≤ Kδ.(33)

Then for all t > 0,

(34)

∣∣∣∣
∫
I
eit

−1f(s)ω(s)ds

∣∣∣∣ ≤ (tδ−1)
1

2

(
12||ω||∞ + 4||ω′||1 + 2C

√
K||ω||1

)
.

Proof. Consider the set Eε := {s ∈ I | |f ′(s)| ≤ ε}. This set must be con-
nected when ε < C−1δ. To see this, first observe that (32), (33), and the
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continuity of g dictate that f ′′(s) 	= 0 on Eε and has constant sign. Now
choose any real number a ∈ [−ε, ε] and consider the set of points s ∈ I such
that f ′(s) = a. If this set contains two points s1 < s2, then since f ′′(s1) and
f ′′(s2) have the same sign, there must be an s3 strictly in-between at which
f ′(s3) = a as well (thanks to the Intermediate Value Theorem since a must
lie between f ′(s′1) and f ′(s′2) for all s′1 sufficiently close to and greater than
s1 and all s′2 sufficiently close to and less than s2). The point s3 belongs
to Eε, so iterating this process, we must be able to find a convergent se-
quence {sk}∞k=1 in Eε such that f ′(sk) = a for all k. But then the Mean
Value Theorem and continuity of f ′′ require that f ′′(limk sk) = 0. Conse-
quently the equation f ′(s) = a has at most one solution in I. But now if
there happened to exist points s < s′ < s′′ such that s, s′′ ∈ Eε and s′ 	∈ Eε,
then the Intermediate Value Theorem would dictate that f ′ cannot possi-
bly be single-valued on [s, s′′] ∩ Eε (assuming that |f ′| reaches its maximum
on [s, s′′] at s′, then either f ′(s) = ε or f ′(s) = −ε would have to have one
solution on either side of s′).

Returning to the proof of (34), since∣∣∣∣
∫
I
eit

−1f(s)ω(s)ds

∣∣∣∣ ≤ ||ω||1,
we may assume without loss of generality that 2C

√
Ktδ−1 ≤ 1. If we fix

ε =
√
tδ, then ε ≤ δ/(2C) (since K ≥ 1). Thus it is established that Eε is an

interval and |f ′′(s)| ≥ δ/2 on Eε. Consequently the length of Eε is at most
2εδ−1, and ∣∣∣∣

∫
Eε

eit
−1f(s)ω(s)ds

∣∣∣∣ ≤ 2εδ−1||ω||∞.

For the remaining pieces, we divide I \ Eε into sets Mε and H, where
ε < |f ′(s)| < C−1δ on Mε and |f ′(s)| ≥ C−1δ on H. We know that Mε is
a union of no more than two intervals (at most one on either side of Eε).
Consequently,H can also be written as a union of no more than two intervals.
On any interval [a, b], the standard integration-by-parts trick found in the
proof of van der Corput’s lemma gives that∣∣∣∣
∫ b

a
eit

−1f(s)ω(s)ds

∣∣∣∣≤ t

( |ω(a)|
|f ′(a)|+

|ω(b)|
|f ′(b)|+

∫ b

a

(
|ω(s)| |f

′′(s)|
|f ′(s)|2 +

|ω′(s)|
|f ′(s)|

)
ds

)
.

On an interval of Mε, we have∫ b

a

|f ′′(s)|
|f ′(s)|2ds =

∣∣∣∣
∫ b

a

f ′′(s)
(f ′(s))2

ds

∣∣∣∣ =
∣∣∣∣ 1

f ′(b)
− 1

f ′(a)

∣∣∣∣ .



Damping oscillatory integrals 423

Thus ∣∣∣∣
∫ b

a
eit

−1f(s)ω(s)ds

∣∣∣∣ ≤ 3ε−1t||ω||∞ + ε−1t||ω′||1

on any such interval (with a coefficient of 3 instead of 4 because f ′(b) and
f ′(a) have the same sign). On an interval of H, on the other hand, we have
|f ′′(s)| ≤ Kδ + C|f ′(s)|, so that

∣∣∣∣
∫ b

a
eit

−1f(s)ω(s)ds

∣∣∣∣ ≤ 2tε−1||ω||∞ + C2(K + 1)t||ω||1δ−1 + ε−1t||ω′||1

(where we may use ε−1 in the first and last term since ε−1 < |f ′(s)| here as
well). We conclude that

∣∣∣∣
∫
I
eit

−1f(s)ω(s)ds

∣∣∣∣ ≤ 2(εδ−1 + 5tε−1)||ω||∞
+ 4ε−1t||ω′||1 + 2C2(K + 1)tδ−1||ω||1.

Substituting ε =
√
tδ and using once again thatK ≥ 1 establishes the propo-

sition since 2C2(K + 1)(tδ−1) ≤ (2C
√
Ktδ−1)2 and without loss of general-

ity (2C
√
Ktδ−1)2 ≤ 2C

√
Ktδ−1. �

2. Proof of Theorem 1

The proof of the main theorem proceeds by a standard bi-dyadic decompo-
sition of the plane. On each piece we may assume that the amplitude ψ is a
smooth function of compact support. It will also be possible to assume that
Φ is a smooth, real-valued phase defined on a neighborhood of the support
of ψ such that the mapping x �→ ∇Φ(x) has at most Whitney fold singu-
larities on this neighborhood. The first step of the proof is to establish two
inequalities for the integral on such pieces. The first is that for any fixed
c > 0 and any positive N ,

(35)

∣∣∣∣
∫

eiλ(Φ(x)+ξ·x)χ(ε−1 detHess Φ(x))ψ(x)dx

∣∣∣∣ � ε(λε)−N

uniformly for all ξ ∈ R
2 such that |∇Φ(x) + ξ| > c on the support of ψ and

uniformly in all positive ε, λ, assuming that χ is smooth on R and compactly
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supported away from 0. The second is that

(36)

∣∣∣∣
∫

eiλ(Φ(x)+ξ·x)χ(ε−1 detHess Φ(x))ψ(x)dx
∣∣∣∣ � λ−1ε−

1

2

uniformly for all ξ ∈ R
n and all λ, ε > 0.

The proof of (35) is a thoroughly standard “non-stationary phase” esti-
mate, and follows, for example, from Lemma 2 of [4]. The key observation
to be made in applying the lemma to the present situation is that the map-
ping x �→ ∇Φ(x) having only Whitney folds means that the gradient of the
Hessian determinant of Φ does not vanish when the Hessian determinant
does vanish, so the zero set is a manifold, and the support of the integral
is roughly contained in an ε-neighborhood of the zero set of the Hessian
determinant. (Note also that the non-stationary estimate (35) is sufficient
for our purposes because we are in two dimensions; in dimensions four and
higher, no choice of N can make ε(λε)−N smaller than ε−1λ−2, which would
be the desired goal in that case.)

To prove (36), it suffices to assume that ξ lives in some compact subset of
R
2, since if |∇Φ+ ξ| > c on the support of ψ, then the estimate (35) applies

and is sharper than the estimate (36) (since without loss of generality it may
be assumed that ε is bounded above). Using compactness of the support of
ψ and the range of ξ as well as a smooth partition of unity, we may assume
without loss of generality that ψ is supported within a small neighborhood
of a critical point of Φ + x · ξ for some ξ under consideration (since every
point x which is not a critical point has a neighborhood, stable under small
perturbations of ξ, on which (35) holds uniformly for some small c). In this
case, u = detHess Φ will be a nondegenerate cutoff for the phase Φ(x) + ξ · x
by virtue of the assumption that x �→ ∇Φ(x) has only Whitney folds. We
use (28) to estimate the integral. In particular, we see that the difference∫

eiλ(Φ(x)+ξ·x)χ(ε−1 detHess Φ(x))ψ(x)dx

− π
n−1

2 λ−
1

2 ei
π

4
ω

∫
eiλ(Φ(γ(s))+γ(s)·ξ)χ(ε−1s)ψ(γ(s))dϕ(s)

will already be no greater than a constant times λ−
3

2 , which again beats (36)
since we may assume that λ is bounded below in magnitude (otherwise the
trivial estimate that the integral has size no greater than ε will beat (36) as
well). Now by (30) and Proposition 2, we conclude that∣∣∣∣

∫
eiλ(Φ(γ(s))+γ(s)·ξ)χ(ε−1s)ψ(γ(s))dϕ(s)

∣∣∣∣ � λ−
1

2 ε−
1

2 ,
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so (36) must hold as well.
The bi-dyadic decomposition itself is built from any smooth function η

supported on [12 , 2] such that

(37)
∑

j1,j2∈Z
η(2j1x1, 2

j2x2) = 1

away from the x1- and x2-axes. For each j := (j1, j2), we let

ψj(x) := ψ(2−j1x1, 2−j2x2)η(|x1|, |x2|).

We note that for j1, j2 ≥ 0, the CM norms of ψj will be uniformly bounded
for any fixed M , and if ψ is supported sufficiently near the origin, we will
have that

ψ(x1, x2) =
∑

j1,j2≥0
ψj(2

j1x1, 2
j2x2)

away from the axes.

2.1. Vertex estimates

Suppose α := (α1, α2) is a vertex of the Newton polygon of Φ with α1, α2 	=
0. We assume that α 	= (1, 1), since if it were a vertex, the Hessian deter-
minant of Φ would be nonvanishing on a neighborhood of the origin. Let
j := (j1, j2) be any pair of positive integers such that

2α·jΦ(2−j1x1, 2−j2x2)− ∂αΦ(0, 0)

α!
xα

is a sufficiently small smooth function on the support of η from (37). Then∫
eiλ(Φ(x)+x·ξ)χ(ε−1u(x))ψj(2

j1x1, 2
j2x2)dx

= 2−
−→
1 ·j

∫
eiλ2

−α·jΦξ
j(x)χ(ε−1u(2−j1x1, 2−j2x2))ψj(x)dx,

where

Φξ
j(x) := 2α·jΦ(2−j1x1, 2−j2x2) + 2α·j(2−j1x1ξ1 + 2−j2x2ξ2).

The Hessian determinant of Φξ
j equals 22(α−

−→
1 )·ju(2−j1x2, 2−j2x2), and this

must be a small perturbation of the Hessian determinant of the monomial
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term itself: ∂αΦ(0,0)
α! xα. In particular, for sufficiently large j (depending on

∂αΦ(0, 0) and α), it will be uniformly bounded above and below on the
support of η. Because χ is supported away from zero and infinity, the inte-

grand will be identically zero unless 2−2(α−
−→
1 )·j ≈ ε. On any such box, the

derivatives of χ(ε−1u(2−j1x1, 2−j2x2)) will be bounded independently of ε
and j.

Putting these facts together with the estimate (36) (since the Hessian
determinant of the rescaled phase is bounded above and below) gives∣∣∣∣

∫
eiλΦ

ξ(x)χ(ε−1u(x))ψj(2
j1x1, 2

j2x2)dx

∣∣∣∣ � 2−
−→
1 ·j(λ2−α·j)−1 ≈ λ−1ε−

1

2

uniformly in λ, j, and ε. Since the number of boxes on which 2−2(α−
−→
1 )·j ≈ ε

can hold is logarithmic in ε (since we have explicitly ruled out α =
−→
1 ), we

can sum over all j for only the cost of a logarithm of ε. If α is not on the
diagonal, we can eliminate this logarithmic factor by observing that, for all
but boundedly many of these boxes, the derivative of Φε

j must be bounded
uniformly below. Thus, we have the improved estimate (35) on these boxes
that∣∣∣∣

∫
eiλΦ

ξ(x)χ(ε−1u(x))ψj(2
j1x1, 2

j2x2)dx

∣∣∣∣ � 2−
−→
1 ·j min{1, (λ2−α·j)−N}

for any N > 1. Summing over j’s such that 2−2(α−
−→
1 )·j ≈ ε can be split into

those terms on which λ2−α·j ≤ 1 (on which the estimate 2−
−→
1 ·j is used)

and λ2−α·j ≥ 1 (on which the estimate 2−
−→
1 ·j(λ2−α·j)−N is used). As long

as α is not on the diagonal, these estimates will decay exponentially away
from the cut-off λ2−α·j = 1, and so the entire sum will converge and will be

dominated by 2−
−→
1 ·j0 for j0 satisfying λ = 2α·j0 and ε = 2−2(α−

−→
1 )·j0 , giving

2−
−→
1 ·j0 ≤ λ−1ε−1/2.

2.2. Edge estimates

When considering the terms of the partition (37), the only boxes which are
not covered by the so-called vertex estimates which were just proved are
those boxes on which multiple boundary points of the Newton polygon of Φ
(i.e., monomials in x1 and x2) have approximately the same size. These boxes
are identifiable in terms of the compact edges of the polygon. Generally, if the
slopes of the compact faces are −β2

1 , . . . ,−β2
m, then the only boxes from (37)

remaining to consider are boxes on which β−1	 j1 − β	j2 is uniformly bounded
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(for each of � = 1, . . . ,m). There is, however an important exception: since no
estimates were made for on-axis vertices, if edge �meets the first (horizontal)
axis then we must still deal with all boxes on which β−1	 j1 − β	j2 is bounded
above. If the edge meets the second (vertical) axis, then we would still need
to consider boxes on which β−1	 j1 − β	j2 is bounded below. And if a single
edge meets both axes, then no vertex estimates were proved and we would be
starting from scratch. In other words, we will fix a sufficiently large constant
C and for each integer k ≥ 0 define the amplitude function

ψ̃k(2
β�kx1, 2

β−1
� kx2) :=

∑
|β−1

� j1−k|≤C
|β�j2−k|≤C

ψj(2
j1x1, 2

j2x2)

when edge � meets neither axis,

ψ̃k(2
β�kx1, 2

β−1
� kx2) :=

∑
|β−1

� j1−k|≤C
β�j2−k≥−C

ψj(2
j1x1, 2

j2x2)

when edge � meets only the first (horizontal) axis,

ψ̃k(2
β�kx1, 2

β−1
� kx2) :=

∑
β−1
� j1−k≥−C
|β�j2−k|≤C

ψj(2
j1x1, 2

j2x2)

when edge � meets only the second (vertical) axis, and

ψ̃k(2
β�kx1, 2

β−1
� kx2) :=

∑
β−1
� j1−k≥−C
|β�j2−k|≤C

ψj(2
j1x1, 2

j2x2) +
∑

|β−1
� j1−k|≤C
β�j2−k>C

ψj(2
j1x1, 2

j2x2)

when the edge � meets both axes. This way, the functions ψ̃k have uniformly
bounded support and are always supported away from the origin. They
may or may not be supported away from the coordinate axes, but on their
support we know that the mapping (x1, x2) �→ ∇p	(x1, x2) (where p	 is the
polynomial corresponding to edge �) has at worst Whitney folds. It is also
true that the CM -norms of these functions ψ̃k are uniformly bounded as a
function of k.

In this case, we fix attention on the edge with slope −β2
	 . We pick

(j1, j2) = (β	k, β
−1
	 k) and make a similar scaling of Φε to the one used

in the vertex estimates. Let us specifically assume that the compact face,
when extended, has first intercept β−1	 d	(β	 + β−1	 ) and second intercept
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β	d	(β	 + β−1	 ) (so that d	 would equal the Newton distance of this particu-

lar extended face). For convenience, let β̃	 := β	 + β−1	 . Then we rescale by
means of the transformation

Φξ
k(x) := 2d�β̃�kΦξ(2−β�kx1, 2

−β−1
� kx2).

Now for large k we have that Φ0
k(x) differs from the polynomial p	(x), cor-

responding to the edge � of the Newton polygon of Φ, by a small smooth
perturbation. As before, the Hessian determinant of Φξ

k is easily computed

to equal 22(d�−1)β̃�ku(2−β�kx1, 2
−β−1

� kx2). We may assume that the distance
d	 is greater than one (since, by taking k →∞, this could only happen when
the Hessian determinant of Φ was nonvanishing at the origin). So the cutoff
u ≈ ε corresponds to the Hessian determinant of Φk being approximately
ε22(d�−1)β̃�k. In particular, the number of such terms k can therefore be at
most comparable to the logarithm of ε (since the Hessian determinant of Φk

will be uniformly bounded above on the support of a cutoff function η which
is contained in [−2, 2]× [−2, 2] in the rescaled coordinates).

By (36), we have

∣∣∣∣2−β̃�k

∫
eiλ2

−d�β̃�kΦξ
k(x)χ(ε−12−2(d�−1)β̃�k detHess Φk(x))ψ̃k(x)dx

∣∣∣∣
� 2−β̃�k(λ2−d�β̃�k)−1(ε−12−2(d�−1)β̃�k)

1

2 ≈ λ−1ε−
1

2 .

Simply summing this estimate over k gives the desired estimate λ−1ε−
1

2

times a logarithmic factor in ε. However, as before, we may eliminate the
logarithm by using the fact that, for any fixed ξ, there will be at most a
bounded number of boxes on which the gradient of Φξ

k vanishes. Away from
this finite collection of boxes, we can use (35) with N = 1 to obtain

∣∣∣∣2−β̃�k

∫
eiλ2

−d�β̃�kΦξ
k(x)χ(ε−12−2(d�−1)β̃�k detHess Φk(x))ψ̃k(x)dx

∣∣∣∣
� 2−β̃�k(λ2−d�β̃�k)−1(ε22(d�−1)β̃�k)1−1 ≈ 2(d�−1)β̃�kλ−1.

Since we have assumed d	 > 1, when we sum over k, the entire sum will
be comparable to the term for the largest value of k, which occurs when
22(d�−1)β̃�k ≈ ε−1. So once again, the entire sum is dominated by λ−1ε−1/2.
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