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Pointed Castelnuovo numbers

Gavril Farkas and Nicola Tarasca

The classical Castelnuovo numbers count linear series of minimal
degree and fixed dimension on a general curve, in the case when this
number is finite. For pencils, that is, linear series of dimension one,
the Castelnuovo numbers specialize to the better known Catalan
numbers. Using the Fulton-Pragacz determinantal formula for flag
bundles and combinatorial manipulations, we obtain a compact
formula for the number of linear series on a general curve having
prescribed ramification at an arbitrary point, in the case when
the expected number of such linear series is finite. The formula is
then used to solve some enumerative problems on moduli spaces of
curves.

A linear series of type grd on a smooth curve C of genus g is a pair � = (L, V )
consisting of a line bundle L on C of degree d and a subspace of global
sections V ⊂ H0(C,L) of projective dimension r. The Brill-Noether theorem
says that for a general curve C, the variety Gr

d(C) of linear series grd on C has
dimension ρ(g, r, d) := g − (r + 1)(g − d+ r), and is empty if ρ(g, r, d) < 0.
In particular, when ρ(g, r, d) = 0 there is a finite number Ng,r,d of linear
series grd. This number is equal to

Ng,r,d = g!

r∏
i=0

i!

(g − d+ r + i)!
.

Remarkably, Castelnuovo [2] correctly determined Ng,r,d in the 1880’s us-
ing a subtle degeneration argument and Schubert calculus. However, the
construction of the moduli space of curves, implicitly assumed in the de-
generation, has been achieved only in the 1960’s by Deligne and Mumford.
A modern rigorous proof of the Brill-Noether theorem appeared in 1980 in
the work of Griffiths and Harris [8] and is based on Castelnuovo’s original
degeneration.

2010 Mathematics Subject Classification: 14Q05 (primary), 14H51 (secondary).
Key words and phrases: Brill-Noether theory, enumerative geometry on a general

curve.

389



390 G. Farkas and N. Tarasca

Similarly, one can consider linear series on a general curve having pre-
scribed vanishing at a fixed general point. For a smooth curve C of genus
g, let p ∈ C be a point and � = (L, V ) ∈ Gr

d(C). The vanishing sequence of
� at p

a�(p) : 0 ≤ a0 < · · · < ar ≤ d(1)

is the ordered sequence of distinct vanishing orders of sections in V at
the point p. Given r, d and a sequence a : 0 ≤ a0 < · · · < ar ≤ d as in (1),
the adjusted Brill-Noether number is defined as ρ(g, r, d, a) := ρ(g, r, d)−∑r

i=0(ai − i). Eisenbud and Harris ([4, Proposition 1.2]) proved that a gen-
eral pointed curve (C, p) of genus g > 0 admits a linear series � ∈ Gr

d(C)
with vanishing sequence a�(p) = a if and only if

r∑
i=0

(ai − i+ g − d+ r)+ ≤ g.(2)

Here (n)+ := max{n, 0} for any integer n. Note that this condition is stronger
than the condition ρ(g, r, d, a) ≥ 0. When (2) is satisfied, the variety of lin-
ear series � ∈ Gr

d(C) with vanishing sequence a at the point p is pure of
dimension ρ(g, r, d, a). As in the unpointed case, one can consider the zero-
dimensional case. Let g, r, d be positive integers and a : 0 ≤ a0 < · · · < ar ≤
d as above, such that ρ(g, r, d, a) = 0. Then, by (2) the curve C admits
a linear series grd with vanishing sequence a at the point p if and only if
a0 + g − d+ r ≥ 0. When such linear series exist, their number is counted
by the adjusted Castelnuovo number

Ng,r,d,a = g!

∏
i<j(aj − ai)∏r

i=0(g − d+ r + ai)!
.(3)

In order to prove (3), one can specialize the general curve of genus g to
a rational curve with g elliptic tails attached to it, specialize the marked
point to a point on the rational component, and count via Schubert cal-
culus degenerations of linear series on this singular curve (see the proof of
Proposition 1.2 in [4]).

From (2), it follows that if a is the vanishing sequence at a general point
of a linear series grd on the general curve, then necessarily ρ(g, r, d, a) ≥ 0.
Moreover, any linear series � ∈ Gr

d(C) on a curve of genus g = 0, 1 satisfies
ρ(g, r, d, a�(p)) ≥ 0 for any point p ∈ C.

For g ≥ 2, pointed curves admitting a linear series with adjusted Brill-
Noether number equal to −1 at the marked point form a divisor in Mg,1,
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see [5]; when ρ(g, r, d, a) ≤ −2 this locus has codimension at least 2 inMg,1.
In particular, for a general curve C there exists no linear series � ∈ Gr

d(C)
satisfying a�(p) ≥ a for a point p ∈ C if ρ(g, r, d, a) ≤ −2, see [6]. It follows
that for each � ∈ Gr

d(C), the vanishing sequence a�(p) at an arbitrary point
p ∈ C satisfies ρ(g, r, d, a�(p)) ≥ −1, and there is at most a finite number
of points in C where a linear series � ∈ Gr

d(C) has vanishing sequence a
verifying ρ(g, r, d, a) = −1. The aim of this note is to determine this number.
In the following formula, we let δij be the Kronecker delta and set 1/n! = 0,
when n < 0.

Theorem 1. Fix g ≥ 2 and a : 0 ≤ a0 < · · · < ar ≤ d such that ρ(g, r, d, a)
= −1. For a general curve C of genus g, the number of pairs (p, �) ∈ C ×
Gr

d(C) such that a�(p) = a is equal to

ng,r,d,a := g!
∑

0≤j1<j2≤r

(
(aj2 − aj1)

2 − 1
)

(4)

∏
0≤i<k≤r

(
ak − δj1k − δj2k − ai + δj1i + δj2i

)
∏r

i=0

(
g − d+ r + ai − δj1i − δj2i

)
!

.

Since ρ(g, r, d, a) = −1 and necessarily ρ(g, r, d) ≥ 0, note that ng,r,d,a =
0 in the case a = (0, 1, 2, . . . , r). The case r = 1 was previously known. In-
deed, up to subtracting a base point, one can suppose that a0 = 0. Since
ρ(g, 1, d, a) = −1, one has d ≥ g

2 + 1 and a1 = 2d− g. In Theorem 1, we re-
cover the following formula from [9, Theorem B] for the number of pencils
vanishing with order 2d− g at some unspecified point:

ng,1,d,(0,2d−g) = (2d− g − 1)(2d− g)(2d− g + 1)
g!

d!(g − d)!
.

When a = (0, 1, . . . , r − 1, r + 1) and ρ(g, r, d) = 0, there is only one non-
zero summand in the formula for ng,r,d,a. We recover the Plücker formula for
the total number of ramification points on every linear series grd on a general
curve, see [3, pg. 345]:

ng,r,d,a = Ng,r,d(r + 2)(r + 1)r(g − d+ r) = Ng,r,d(r + 1)
(
d+ r(g − 1)

)
.

Let us consider the next non-trivial example. Suppose ρ(g, r, d) = n−
r − 1 > 0, and let s := g − d+ r. The number of linear series � ∈ Gr

d(C) on
a general curve C of genus g satisfying the condition |�(−n · p)| �= ∅ at a
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certain unspecified point p ∈ C is equal to

ng,r,d,(0,1,...,r−1,n) =
g! · n(n2 − 1)

(s− 1)!(s+ n− 1)!(r − 1)!

r∏
i=2

i! · (n− i)

(s− 1 + i)!
.

Theorem 1 is proven in §1 using the determinantal formula for flag bun-
dles. The resulting determinant is simplified through a series of combina-
torial manipulations. As an application, we compute classes of closures of
pointed Brill-Noether divisors in Mg,1 in §2, after a result of Eisenbud and
Harris. In §3 we deduce the non-proportionality of closures of Brill-Noether
classes of codimension 2 in Mg.

We remark that proving Theorem 1 via a degeneration argument and
Schubert calculus is not feasible. In contrast to the situation from [4] where
one computes the numbers Ng,r,d,a by specializing to a curve having a ra-
tional component and g elliptic tails, here one would have to describe all
linear series on elliptic curves having prescribed vanishing at two unspeci-
fied points (the exceptional ramification point and the point of attachment
to the rest of the curve). However, unlike for 1-pointed elliptic curves, there
is no adequate lower bound for Brill-Noether numbers on arbitrary 2-pointed
elliptic curves. In particular we get a lot more linear series with prescribed
ramification than we expect and it is difficult to determine which of these
limit linear series are smoothable.

1. Counting Brill-Noether special points

Let C be a general curve of genus g ≥ 2 and fix positive integers r and d, as
well as a sequence

a : 0 ≤ a0 < · · · < ar ≤ d

with ρ(g, r, d, a) = −1. In this section we count the number ng,r,d,a of pairs
(y, �) ∈ C ×Gr

d(C) such that a�(y) = a. Note that every such linear series is
complete.

Let p be a general point of C. Choose m such that the line bundle L⊗
OC(mp) is non-special for every L ∈ Picd(C) (for instance, m = max{2g −
2− d+ 1, 0}). The natural evaluation maps

H0(L⊗OC(mp))→ H0(L⊗OC(mp)|mp+ary)

� · · ·� H0(L⊗OC(mp)|mp+a0y)
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globalize to

π∗(E)→ μ∗(ν∗L ⊗ODr
) =:Mr � · · ·� μ∗(ν∗L ⊗OD0

) =:M0

as maps of vector bundles over C × Picd+m(C). Here L is a Poincaré bun-
dle on C × Picd+m(C), the map π : C × Picd+m(C)→ Picd+m(C) is the sec-
ond projection, E is a vector bundle of rank d+m− g + 1 defined as E :=
π∗(L), the maps μ : C × C × Picd+m(C)→ C × Picd+m(C) and ν : C × C ×
Picd+m(C)→ C × Picd+m(C) are the projections onto the first and third,
and the second and third factors respectively, and finally ODi

is the struc-
ture sheaf of the divisor Di in C × C whose restriction to {y} × C ∼= C is
mp+ aiy.

We are interested in the locus of pairs (y, L) such that h0(L⊗OC(−aiy))
≥ r + 1− i, for i = 0, . . . , r. This is the locus where the morphism of vector
bundles

ϕi : π
∗(E)→Mi

has rank at most d+m+ i− g − r, for i = 0, . . . , r. The class of this lo-
cus can be computed using Fulton-Pragacz determinantal formula for flag
bundles [7, Theorem 10.1].

We shall first compute the Chern polynomial of the bundlesMi. Let πi :
C × C × Picd+m(C)→ C for i = 1, 2 and π3 : C × C × Picd+m(C)→
Picd+m(C) be the natural projections. Denote by θ the pull-back to C ×
C × Picd+m(C) of the class θ ∈ H2(Picd+m(C)) via π3, and denote by ηi the
cohomology class π∗i ([point]) ∈ H2(C × C × Picd+m(C)), for i = 1, 2. Note
that η2i = 0. Furthermore, given a symplectic basis δ1, . . . , δ2g forH

1(C,Z) ∼=
H1(Picd+m(C),Z), we denote by δiα the pull-back to C × C × Picd+m(C) of
δα via πi, for i = 1, 2, 3. Let us define the class

γi,j := −
g∑

s=1

(
δjsδ

i
g+s − δjg+sδ

i
s

)
.

Note that

γ21,2 = −2gη1η2 and ηiγ1,2 = γ31,2 = 0, for i = 1, 2,

γ2k,3 = −2ηkθ and ηkγk,3 = γ3k,3 = 0, for k = 1, 2,

γi,jγj,3 = ηjγi,3, for {i, j} = {1, 2}.
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From [1, §VIII.2], we have

ch(ν∗L) = 1 + (d+m)η2 + γ2,3 − η2θ,

ch(ODi
) = 1− e−(aiη1+aiγ1,2+(ai+m)η2),

hence via the Grothendieck-Riemann-Roch formula

ch(Mi) = μ∗ ((1 + (1− g)η2) · ch(ν∗L ⊗ODi
))

= ai +m+ η1(a
2
i (g − 1) + ai(d− g + 1)) + aiγ1,3 − aiη1θ.

It follows that the Chern polynomial of Mi is

ct(Mi) = 1 + η1(a
2
i (g − 1) + ai(d− g + 1)) + aiγ1,3 + (ai − a2i )η1θ.

Recall that ct(E) = e−tθ ([1, §VIII.2]). In the following, we will use the Chern

classes c
(i)
t := ct(Mi − E), that is,

c
(i)
1 = η1(a

2
i (g − 1) + ai(d− g + 1)) + aiγ1,3 + θ

and

c
(i)
j =

θj

j!
+ η1θ

j−1
(
a2i (g − 1) + ai(d− g + 1)

(j − 1)!
+

ai − a2i
(j − 2)!

)
+

ai
(j − 1)!

γ1,3θ
j−1

for j ≥ 2.
From the Fulton-Pragacz formula [7, Theorem 10.1], the number of pairs

(y, �) in C ×Gr
d(C) with a�(y) = a is the degree of the following (r + 1)×

(r + 1) matrix

(5) ng,r,d,a = deg

⎡
⎢⎢⎢⎢⎣

c
(r)
g−d+r+ar−r · · · c

(r)
g−d+r+ar

c
(r−1)
g−d+r+ar−1−r c

(r−1)
g−d+r+ar−1−(r−1) · · · c

(r−1)
g−d+r+ar−1

...
. . .

...

c
(0)
g−d+r+a0−r · · · c

(0)
g−d+r+a0

⎤
⎥⎥⎥⎥⎦ .

Since η21 = η1γ1,3 = θg+1 = 0, many terms in the expansion of the above
determinant are zero. The only terms that survive are the ones obtained by
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multiplying a summand

η1θ
j−1

(
a2i (g − 1) + ai(d− g + 1)

(j − 1)!
+

ai − a2i
(j − 2)!

)

of one of the classes c
(i)
j with r summands θj

j! from the other classes c
(i)
j , or

the terms obtained by multiplying two summands

ai
(j − 1)!

γ1,3θ
j−1

of two different classes c
(i)
j with r − 1 summands θj

j! from the other classes

c
(i)
j . We use the following variation of the Vandermonde determinant

⎡
⎢⎢⎢⎢⎣

1
(br−r)! · · · 1

br!
1

(br−1−r)!
1

(br−1−(r−1))! · · · 1
br−1!

...
. . .

...
1

(b0−r)! · · · 1
b0!

⎤
⎥⎥⎥⎥⎦ =

∏
l<k(bk − bl)∏r

j=0 bj !
.

Hence the quantity (5) can be written as

ng,r,d,a =
g!∏r

j=0(g − d+ r + aj)!
(6)

×
[

r∑
i=0

(a2i (g − 1) + ai(d− g + 1))(g − d+ r + ai)

∏
0≤l<k≤r

(ak − δik − al + δil)

+

r∑
i=0

(ai − a2i )(g − d+ r + ai)(g − d+ r + ai − 1)

∏
0≤l<k≤r

(ak − 2δik − al + 2δil)

− 2
∑

0≤i1<i2≤r
ai1ai2(g − d+ r + ai1)(g − d+ r + ai2)

∏
0≤l<k≤r

(ak − δi1k − δi2k − al + δi1l + δi2l )

⎤
⎦

where δij is the Kronecker delta.
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Remember that g, r, d, a satisfy the condition ρ(g, r, d, a) = −1. In the
following we use the independent variables r, a1, . . . , ar, and s := g − d+ r.
Note that

g = rs+ s− 1 +

r∑
i=0

(ai − i), d = rs+ r − 1 +

r∑
i=0

(ai − i).

Since the right-hand side of (5) is zero if ai = aj for any i �= j, we can
write (6) as

(7) ng,r,d,a = g!

∏
0≤i<j≤r(aj − ai)∏r

j=0(g − d+ r + aj)!

(
P2(r, a)s

2 + P3(r, a)s+ P4(r, a)
)

where Pi(r, a) is a polynomial in the variables r and a0, . . . , ar which is
symmetric in a0, . . . , ar for i = 2, 3, 4. Note that the expression in the square
brackets in (6) can be reduced to a linear combination of the following
expressions

r∑
i=0

ati
∏
l<k

(ak − δik − al + δil),

r∑
i=0

ati
∏
l<k

(ak − 2δik − al + 2δil),∑
i<j

(atia
u
j + aui a

t
j)

∏
l<k

(ak − δik − δjk − al + δil + δjl ),

for t, u ≥ 0 such that t+ u ≤ 4. From Lemma 1 and Lemma 2 (see below),
the polynomial Pi(r, a) is symmetric of degree i in a0, . . . , ar and has degree
at most i+ 2 in r, for i = 2, 3, 4.

Since the polynomials Pi(r, a) are symmetric in a0, . . . , ar, they can be
expressed in terms of the standard symmetric polynomials in a0, . . . , ar.
That is, we can write Pi(r, a) as a linear combination of the finitely many
monomials in

σ1 =
∑

0≤i≤r
ai, σ2 =

∑
0≤i<j≤r

aiaj ,

σ3 =
∑

0≤i<j<k≤r
aiajak, σ4 =

∑
0≤i<j<k<l≤r

aiajakal

of degree at most i in a0, . . . , ar, with polynomials in r of degree at most
i+ 2 as coefficients. By the bound on the degree in r, the polynomial Pi(r, a)



Pointed Castelnuovo numbers 397

is determined by its values at integers r with 1 ≤ r ≤ i+ 3. Hence, the ex-
pression in the square brackets in (6) is determined by its values at integers
r with 1 ≤ r ≤ 7.

To complete the proof, it remains to verify the equality of the cum-
bersome expression for ng,r,d,a in (6) and the compact expression in (4).
By pulling out the denominators, the expression in (4) can be rewritten as
follows

g!∏r
j=0(g − d+ r + aj)!

×
∑

0≤j1<j2≤r

(
(aj2 − aj1)

2 − 1
)
(s+ aj1)(s+ aj2)(8)

∏
0≤i<k≤r

(ak − δj1k − δj2k − ai + δj1i + δj2i ).

Let fs,r,a be the polynomial in the square brackets in (8), and let hs,r,a be
the polynomial in the square brackets in (6). By Lemma 2, formula (8) can
also be written as in (7), with polynomials P ′i (r, a) symmetric of degree i
in a0, . . . , ar and of degree at most i+ 2 in r, for i = 2, 3, 4. Hence, to show
that (8) coincides with (6), it is enough to show that the polynomials fs,r,a
and hs,r,a coincide for 1 ≤ r ≤ 7. When r = 1, one has

hs,1,a = (a1 − a0)
(
(σ2

1 − 4σ2 − 1)s2 + (σ3
1 − 4σ1σ2 − σ1)s+ σ2

1σ2 − 4σ2
2 − σ2

)
= fs,1,a.

Thereafter, one verifies the case r = 2:

hs,2,a =
∏

0≤i<j≤2
(aj − ai)

(
(2σ3

1 − 7σ1σ2 + 9σ3 + 3σ2 − σ2
1 − 4σ1 + 3)s

+ (2σ2
1 − 6σ2 − 6)s2 + σ2

1σ2 − 4σ2
2 + 3σ1σ3 − σ3

1 − 9σ3 + 4σ1σ2 + σ2
1

− 5σ2 + σ1 − 1
)

= fs,2,a,

the case r = 3:

hs,3,a =
∏

0≤i<j≤3
(aj − ai)

(
(3σ3

1 − 10σ1σ2 + 12σ3 + 8σ2 − 3σ2
1 − 10σ1 + 20)s

+ (3σ2
1 − 8σ2 − 20)s2 + σ2

1σ2 − 4σ2
2 + 3σ1σ3 − 3σ3

1 − 18σ3 + 11σ1σ2

+ 4σ2
1 − 14σ2 + 5σ1 − 10

)
= fs,3,a,
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the case r = 4:

hs,4,a =
∏

0≤i<j≤4
(aj − ai)

(
(4σ2

1 − 10σ2 − 50)s2

+ (4σ3
1 − 13σ1σ2 + 15σ3 + 15σ2 − 6σ2

1 − 20σ1 + 75)s+ σ2
1σ2

− 4σ2
2 + 3σ1σ3 − 6σ3

1 − 30σ3 + 21σ1σ2 + 10σ2
1 − 30σ2 + 15σ1 − 50

)
= fs,4,a,

the case r = 5:

hs,5,a =
∏

0≤i<j≤5
(aj − ai)

(
(5σ2

1 − 12σ2 − 105)s2

+ (5σ3
1 − 16σ1σ2 + 18σ3 + 24σ2 − 10σ2

1 − 35σ1 + 210)s+ σ2
1σ2

− 4σ2
2 + 3σ1σ3 − 10σ3

1 − 45σ3 + 34σ1σ2 + 20σ2
1 − 55σ2 + 35σ1 − 175

)
= fs,5,a,

the case r = 6:

hs,6,a =
∏

0≤i<j≤6
(aj − ai)

(
(6σ2

1 − 14σ2 − 196)s2

+ (6σ3
1 − 19σ1σ2 + 21σ3 + 35σ2 − 15σ2

1 − 56σ1 + 490)s+ σ2
1σ2

− 4σ2
2 + 3σ1σ3 − 15σ3

1 − 63σ3 + 50σ1σ2 + 35σ2
1 − 91σ2 + 70σ1 − 490

)
= fs,6,a,

and, finally, the case r = 7:

hs,7,a =
∏

0≤i<j≤7
(aj − ai)

(
(7σ2

1 − 16σ2 − 336)s2

+ (7σ3
1 − 22σ1σ2 + 24σ3 + 48σ2 − 21σ2

1 − 84σ1 + 1008)s+ σ2
1σ2

− 4σ2
2 + 3σ1σ3 − 21σ3

1 − 84σ3 + 69σ1σ2 + 56σ2
1

− 140σ2 + 126σ1 − 1176
)

= fs,7,a.

Since hs,r,a = fs,r,a holds for 1 ≤ r ≤ 7, the formulae (6) and (8) coincide for
all r. Theorem 1 follows. �
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Remark 1. We record the values of the polynomials Pi(r, a) appearing in
the formula (7):

P2(r, a) = rσ2
1 − 2(r + 1)σ2 − r(r + 1)2(r + 2)

12
,

P3(r, a) = rσ3
1 − (3r + 1)σ1σ2 + 3(r + 1)σ3

+ (r2 − 1)σ2 − r(r − 1)

2
σ2
1 −

r(r + 1)(r + 2)

6
σ1

+
(r − 1)r(r + 1)2(r + 2)

24
,

P4(r, a) = σ2
1σ2 − 4σ2

2 + 3σ1σ3

− r(r − 1)

2
σ3
1 −

3r(r + 1)

2
σ3 +

(r − 1)(3r + 2)

2
σ1σ2

+
(r − 1)r(r + 1)

6
σ2
1 −

r(r + 1)(2r + 1)

6
σ2

+
(r − 1)r(r + 1)(r + 2)

24
σ1 − (r − 1)r2(r + 1)2(r + 2)

144
.

In the above proof, we have used the following two lemmata.

Lemma 1. We have

r∑
i=0

ati
∏
l<k

(ak − δik − al + δil) = P (r, a)
∏
l<k

(ak − al)

where P (r, a) is a polynomial in r and a0, . . . , ar, symmetric of degree t in
a0, . . . , ar, and of degree at most t+ 1 in r.

Proof. It is easy to see that the left-hand side is anti-symmetric in a0, . . . , ar,
hence we can factor by

∏
l<k(ak − al) and obtain a quotient P (r, a) sym-

metric in a0, . . . , ar. In particular, any monomial in the variables ai in the
expansion of the left-hand side has degree at least r(r+1)

2 .
Let us analyze the expansion of the left-hand side. If we first consider

only the summands ak − al in each factor of each product, we obtain(
r∑

i=0

ati

)∏
l<k

(ak − al).

This is a homogeneous polynomial in the variables ai of degree t+ r(r+1)
2

which contributes the summand
∑r

i=0 a
t
i to P (r, a).
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Next, let us consider non-zero summands of type δil − δik in j factors of
each product, and the summands ak − al in the remaining factors of each
product, for 1 ≤ j ≤ r. We obtain

(r + 1)

(
r

j

)

homogeneous polynomials in the variables ai of degree t+ r(r+1)
2 − j with

coefficients all equal to 1. The sum of such polynomials, if nonzero, is a
homogeneous polynomial in the variables ai of degree t+

r(r+1)
2 − j ≥ r(r+1)

2
with coefficients polynomials in r of degree at most j + 1. Such polynomial
contributes a summand to P (r, a) of degree t− j in the variables ai and
degree at most j + 1 in r for j ≤ t, hence the statement. �
The same result holds for the expressions

r∑
i=0

ati
∏
l<k

(ak − 2δik − al + 2δil).

Example. It is easy to verify the following equality

r∑
i=0

ai
∏
l<k

(ak − δik − al + δil) =

(
r∑

i=0

ai − r(r + 1)

2

)∏
l<k

(ak − al).

Similarly, we have the following.

Lemma 2. We have∑
i<j

(atia
u
j + aui a

t
j)

∏
l<k

(ak − δik − δjk − al + δil + δjl ) = P (r, a)
∏
l<k

(ak − al)

where P (r, a) is a polynomial in r and a0, . . . , ar, symmetric of degree t+ u
in a0, . . . , ar, and of degree at most t+ u+ 2 in r.

2. Classes of pointed Brill-Noether divisors

As an application of Theorem 1, we compute pointed Brill-Noether divisor
classes in Mg,1. We fix a vanishing sequence a : 0 ≤ a0 < · · · < ar ≤ d such
that ρ(g, r, d, a) = −1 and letMr

g,d (a) be the locus of smooth curves (C, p) ∈
Mg,1 admitting a linear series � ∈ Gr

d(C) having vanishing sequence a�(p) ≥
a. Eisenbud and Harris proved in [5, Theorem 4.1] that the class of the
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closure of a pointed Brill-Noether divisorMr
g,d (a) inMg,1 can be expressed

as μBN + νW, where

BN := (g + 3)λ− g + 1

6
δirr −

g−1∑
i=1

i(g − i)δi(9)

is the class of the pull-back from Mg of the Brill-Noether divisor,

W := −λ+

(
g + 1

2

)
ψ −

g−1∑
i=1

(
g − i+ 1

2

)
δi

is the class of the Weierstrass divisor, and μ and ν are some positive rational
numbers. We use the method of test curves to find μ and ν. Let δij be the
Kronecker delta.

Corollary 1. For g > 2, the class of the divisor Mr
g,d (a) in Mg,1 is equal

to

[Mr
g,d (a)] = μ · BN + ν · W

where

μ = − ng,r,d,a

2(g2 − 1)
+

1

4
(
g−1
2

) r∑
i=0

ng−1,r,d,(a0+1−δi0,...,ar+1−δir) and

ν =
ng,r,d,a

g(g2 − 1)
.

Proof. Let C be a general curve in Mg and consider the curve C =
{[C, y]}y∈C inMg,1 obtained by varying the point y in C. The only generator
class having non-zero intersection with C is ψ, and C · ψ = 2g − 2. On the
other hand, C · Mr

g,d (a) is equal to the number of pairs (y, �) ∈ C ×Gr
d(C)

such that a�(y) = a, that is, ng,r,d,a. Hence, we deduce that

ν =
ng,r,d,a

(2g − 2)
(
g+1
2

) .
Furthermore, let (E, p, q) be a two-pointed elliptic curve with p− q not

a torsion point in Pic0(E). Consider the curve D in Mg,1 obtained by
identifying the point q ∈ E with a moving point in a general curve D of
genus g − 1. Then the intersection Mr

g,d (a) ·D corresponds to the pairs
(y, �) where y is a point in D and � = {�E , �D} is a limit linear series
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with a�E(p) = a. By [5, Lemma 3.4], the intersection is everywhere trans-
verse. The only possibility is ρ(E, p, q) = 0 and ρ(D, y) = −1. It follows that
a�D(y) = (a0 + 1− δi0, . . . , ar + 1− δir), for some i = 0, . . . , r, and in each
case �E is uniquely determined. Studying the intersection of D with the
generating classes, we obtain

r∑
i=0

ng−1,r,d,(a0+1−δi0,...,ar+1−δir) =
(
μ(g − 1) + ν

(
g

2

))
(2g − 4)

whence we compute μ. �

Example. When r = 1, d = g − h, and a = (0, g − 2h), we recover the class

of the divisor M1
g,g−h(a) computed by Logan in [10, Theorem 4.5].

3. Non-proportionality of Brill-Noether classes of
codimension two

In [4] Eisenbud and Harris show that all classes of closures of Brill-Noether
divisors inMg are proportional. That is, if ρ(g, r, d) = −1, then the class of
the closure of the locus Mr

g,d of curves with a linear series grd is

[Mr
g,d] = c · BN ∈ CH1(Mg),

where the class BN is in (9), and c is a positive rational number.
If ρ(g, r, d) = −2, then the locusMr

g,d of curves admitting a linear series
grd is pure of codimension two ([5]). In the case r = 1, the class of the closure
of the Hurwitz-Brill-Noether locus M1

2k,k has been computed in [11] using
the space of admissible covers. In this section, we show that classes of Brill-
Noether loci of codimension two are generally not proportional in CH2(Mg).

The first non-trivial case is when g = 10: in M10 we consider the two
Brill-Noether loci M1

10,5 and M2
10,8 of codimension two. In order to show

that the classes of the closures ofM1
10,5 andM2

10,8 are not proportional, we
show that their restrictions to two test families are not proportional.

For i = 2, 3, let Ci be a general curve of genus i, and Cg−i a general curve
of genus g − i. Consider the two-dimensional family Si of curves obtained
by identifying a moving point x in Ci with a moving point y in Cg−i. The
base of this family is Ci × Cg−i.

An element Ci ∪x∼y Cg−i of the family Si is in the closure of M2
10,8 if

and only if it admits a limit linear series {�Ci
, �Cg−i

} of type g28 such that
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ρ(i, 2, 8, a�Ci (x)) = ρ(g − i, 2, 8, a�Cg−i (y)) = −1. There are exactly

Ti :=
∑

a=(a0,a1,a2)

ρ(i,2,8,a)=−1

ni,2,8,a · ng−i,2,8,(d−a2,d−a1,d−a0)

pairs (x, y) in Ci × Cg−i with this property. Moreover, since the family Si

is in the locus of curves of compact type, we known that the intersection is
transverse at each point [4, Lemma 3.4]. Hence, we have

S2 ·
[
M2

10,8

]
= T2 = 23184, S3 ·

[
M2

10,8

]
= T3 = 48384.

Similarly, we compute

S2 ·
[
M1

10,5

]
= 2016, S3 ·

[
M1

10,5

]
= 12096.

Since the restriction of [M2
10,8] and [M1

10,5] to the surfaces S2 and S3 are

not proportional, we deduce that [M2
10,8] and [M1

10,5] are not proportional.
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