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A Ricci flow proof of a result by Gromov

on lower bounds for scalar curvature

Richard H. Bamler

In this note we reprove a theorem of Gromov using Ricci flow. The
theorem states that a, possibly non-constant, lower bound on the
scalar curvature is stable under C0-convergence of the metric.

1. Introduction

In [Gro14], Gromov proved the following theorem as an application of his
theory of singular spaces with positive scalar curvature:

Theorem 1. Let M be a (possibly open) smooth manifold and κ : M → R

a continuous function. Consider a sequence of C2 Riemannian metrics gi
on M that converges to a C2 Riemannian metric g in the local C0-sense.
Assume that for all i = 1, 2, . . . the scalar curvature of gi satisfies R(gi) ≥ κ
everywhere on M . Then R(g) ≥ κ everywhere on M .

In this note, we present an independent proof of this theorem using Ricci
flow.

Let us first sketch the idea of our proof in the most elementary setting:
Consider the case in which M is closed and κ is constant on M and assume
that all our metrics, g, g1, g2, . . ., are smooth. We may then solve the Ricci
flow equation

(1.1) ∂tgt = −2Ric(gt),

starting with the limiting metric g0 = g for some short time and obtain a
smooth solution (gt)t∈[0,τ∗) for some τ∗ > 0. By a theorem of Simon or Koch
and Lamm (cf [Sim02], [KL13, sec 5.3]), there are constants ε = ε(g) > 0
and τ∗ > τ = τ(g) > 0 such that any smooth metric g′ on M that is (1 + ε)-
bilipschitz to g can be evolved into a smooth Ricci flow (g′)t∈[0,τ) on the
uniform time-interval [0, τ). So the metrics gi, for sufficiently large i, can
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be evolved into a Ricci flow (gi,t)t∈[0,τ) on [0, τ). By the weak maximum
principle applied to the evolution equation for the scalar curvature,

(1.2) ∂tR(gi,t) = ΔR(gi,t) + 2|Ric(gi,t)|2,
it follows that R(gi,t) ≥ κ for all t ∈ [0, τ), for sufficiently large i. Using again
the results of Simon or Koch and Lamm, one can see that the Ricci flows
(gi,t)t∈[0,τ) converge locally smoothly to (gt)t∈[0,τ) on M × (0, τ), modulo
diffeomorphisms. So we have R(gt) ≥ κ for all t ∈ (0, τ). Letting t go to zero
yields R(g) = R(g0) ≥ κ.

The difficulties in the following proof arise from the general form of the
theorem: M need not be closed, κ need not be constant and the metrics
g, g1, g2, . . . have only regularity C2. We will overcome the first two difficul-
ties by localizing the argument presented in the previous paragraph. This
localization will be the main challenge of this note. The key estimate for
this localization can be found in Lemma 4. The issue concerning the C2-
regularity of the metrics can be addressed by considering the Ricci DeTurck
flow instead of the Ricci flow.

2. Ricci DeTurck flow

The Ricci DeTurck flow, as introduced in [DeT83], differs from the Ricci flow
by a family of diffeomorphisms. Its evolution equation is strongly parabolic,
as opposed to the Ricci flow equation, which is only weakly parabolic. This
parabolicity is a consequence of a gauge fixing, which we will recall in the
following. Choose a background metric g on M and define the Bianchi op-
erator

Xi
g(h) = (g + h)ij(g + h)pq

(−∇g
phqj +

1
2∇g

jhpq
)
,

which assigns a vector field to every symmetric 2-form h onM . The evolution
equation of the Ricci DeTurck flow now reads

(2.1) ∂tgt = −2Ric(gt)− LX(gt)gt.

The evolution equation of the difference ht := gt − g takes the form

∂tht = �ht + 2Rm ∗ht +Q(ht,∇ht,∇2ht),

where

Q(ht,∇ht,∇2ht) = (g + ht)
−1 ∗ (g + ht)

−1 ∗ ∇ht ∗ ∇ht(2.2)

+
(
(g + ht)

−1 − g−1
) ∗ ∇2ht.
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(Here all covariant derivatives are taken with respect to g.) So if gt is C0-
close to g, then (2.1) is strongly parabolic.

Given a solution (gt)t∈I of the Ricci DeTurck flow equation (2.1), we
can construct a solution (g̃t)t∈I to the Ricci flow equation (1.1) by pulling
back via a family of diffeomorphisms as follows: Let (Φt)t∈I be a flow of the
time-dependent family of vector fields Xg(gt), meaning that

(2.3) ∂tΦt = Xg(gt) ◦ Φt.

Then g̃t := Φ∗
t gt satisfies the Ricci flow equation (1.1).

We will also need to use the heat kernel on a Ricci flow and Ricci DeTurck
flow background. Consider first the heat kernel K̃(x, t; y, s), s < t, on a Ricci
flow background (g̃t = Φ∗

t gt)t∈I , that is for fixed (y, s) ∈M × I we have

∂tK̃(x, t; y, s) = Δg̃t,xK̃(x, t; y, s)

and K̃(·, t; y, s) approaches a δ-function centered at y as t↘ s. Then, for
fixed (x, t) ∈M × I, the function K̃(x, t; ·, ·) is a kernel of the conjugate heat
equation

−∂sK̃(x, t; y, s) = Δg̃s,yK̃(x, t; y, s)− R̃(y, s)K̃(x, t; y, s).

Here R̃(y, s) denotes the scalar curvature of g̃s in y. Note that this equation
implies that for all s < t

(2.4)

∫
M

K̃(x, t; y, s)dg̃s(y) = 1

Consider now the push-forward K(x, t; y, s) of K̃(x, t; y, s) under Φt.
That is

K(x, t; y, s) := K̃(Φ−1
t (x), t; Φ−1

s (y), s).

This kernel is the associated heat kernel on the Ricci DeTurck flow back-
ground (gt)t∈I and it satisfies

(2.5) ∂tK(x, t; y, s) = Δgt,xK(x, t; y, s)− ∂Xg(gt),xK(x, t; y, s)

for fixed (y, s) ∈M × I, as well as

−∂sK(x, t; y, s) = Δg̃s,yK(x, t; y, s)−R(y, s)K(x, t; y, s)

+ ∂Xg(gs),yK(x, t; y, s).
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for fixed (x, t) ∈M × I. As a direct consequence of (2.4), we also obtain

(2.6)

∫
M

K(x, t; y, s)dgs(y) = 1.

3. Proof

In the following, we will fix some dimension n ≥ 2 of the manifold M and we
will not mention this dependence anymore. We will also frequently consider
Euclidean space R

n with the standard Euclidean metric geucl and origin
o ∈ R

n.
Let us first establish and recall a short-time existence result for Ricci

DeTurck flows, which is mainly a consequence of the work of Koch and
Lamm (cf [KL12]) and which will become important for us. It states that
metrics that are sufficiently close to the Euclidean metric in the C0-sense
can be evolved by the Ricci DeTurck flow on a uniform time-interval. This
flow becomes instantly smooth and depends continuously on the initial data.
Note that we have phrased the following lemma specifically such that it can
be applied to our situation. In fact, with some additional work, the lemma
can be strengthened in several aspects: For example, the Ricci DeTurck flow
(gt)t∈[0,1) can actually be extended to the time-interval [0,∞), the condition
that g − geucl is compactly supported is not necessary and we have bounds
on all higher derivatives of gt.

Lemma 2. There are constants ε > 0, C1 <∞ such that the following is
true:

Consider a Riemannian metric g on R
n of regularity C2 that is (1 + ε)-

bilipschitz close to the standard Euclidean metric geucl and assume that
g − geucl is compactly supported. Then there is a continuous family of Rie-
mannian metrics (gt)t∈[0,1) on R

n such that the following holds:

(a) For all t ≥ 0, the metric gt is 1.1-bilipschitz to geucl.

(b) (gt) is smooth on R
n × (0, 1) and the map [0, 1)→ C2(Rn), t �→ gt is

continuous.

(c) g0 = g and (gt)t∈(0,1) is a solution to the Ricci DeTurck equation

(3.1) ∂tgt = −2Ric(gt)− LXgeucl
(gt)gt.
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(d) For any t > 0 and any m = 0, . . . , 10 we have

|∂mgt| < C1

tm/2
.

(e) If (gi,t)t∈[0,1) is a sequence of solutions to (3.1) that are continuous
on R

n × [0, 1) and smooth on R
n × (0, 1) and if gi,0 converges to some

metric g0 uniformly in the C0-sense, then (gi,t) converges to (gt) uni-
formly in the C0-sense on R

n × [0, 1) and locally in the smooth sense
on R

n × (0, 1).

Proof. The lemma essentially follows from the work of Koch and Lamm (cf
[KL12, sec 4]) (see also [Sim02]). In their paper, the authors analyze and
solve (3.1) by rewriting the term Q in (2.2) as

Q(ht,∇ht,∇2ht) = R1(ht,∇ht) +∇∗R2(ht,∇ht),

where

R1(ht,∇ht) = (geucl + ht)
−1 ∗ (geucl + ht)

−1 ∗ ∇ht ∗ ∇ht

and R2(ht,∇ht) is a (0, 3)-tensor, which has the form

R2(ht,∇ht) =
(
(geucl + ht)

−1 − g−1
eucl

) ∗ ∇ht.

(Here and in the rest of the proof, all covariant derivatives are taken with
respect to geucl.) So the evolution equation for ht = gt − geucl becomes

(3.2) ∂tht = Δht +R1(ht,∇ht) +∇∗R2(ht,∇ht).

The existence of (gt)t∈[0,1) and assertions (a), (c) and (d) are conse-
quences of [KL12, Theorem 4.3], which follows from a general analysis of
equations of the form (3.2). This theorem also provides the bound

(3.3) ‖ht‖C0(Rn×[0,1)) ≤ C‖h0‖C0(Rn)

as well as bounds on the derivatives of ht on R
n × (0, 1).

Likewise, one may look at two different solutions, (g1t ) and (g2t ), of (3.1)
and find that for any 0 < a < 1, the multi-valued function (g1t − geucl, a(g

1
t −

g2t )) satisfies an equation of a form similar to that of (3.2). So if a > 0 is
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chosen small enough such that

‖g10 − geucl‖C0(Rn) + a‖g10 − g20‖C0(Rn) < ε′,

for some universal ε′ > 0, then one can derive the bound, which is similar
to (3.3):

‖g1t − geucl‖C0(Rn×[0,1)) + a‖g1t − g2t ‖C0(Rn×[0,1))

≤ C ′(‖g10 − geucl‖C0(Rn) + a‖g10 − g20‖C0(Rn)

)
.

So if ‖g10 − geucl‖C0(Rn) <
ε
2 , then we may choose a := ε

2‖g10 − g20‖−1
C0(Rn) and

deduce

(3.4) ‖g1t − g2t ‖C0(Rn×[0,1)) ≤ 2C ′‖g10 − g20‖C0(Rn).

This implies assertion (e).
For assertion (b), observe that (3.4) implies that difference quotients of

(gt) are uniformly bounded. So we obtain a uniform bound on ∇gt. Similarly,
we obtain a uniform bound on ∇2gt. So

∂t∇2ht = Δ∇2ht +R1,t +∇∗R2,t,

where

|R1,t| < C ′′|∇3ht|+ C ′′ and |R2,t| < C ′′|ht| · |∇3ht|+ C ′′.

The continuity of ∇2ht, then follows similarly as the continuity for ht in
[KL12, Theorem 4.3]. �

Next, we analyze the heat kernel K(x, t; y, s) on a Ricci DeTurck flow
background, as introduced in Section 2. Our main observation will be that,
on a small time-interval, the kernel can be bounded from above by a standard
Gaussian.

Lemma 3. For any A <∞ there are constants C2 = C2(A), D = D(A) <
∞ and 0 < θ = θ(A) < 1

2 such that the following is true:
Let (gt)t∈[0,θ] be a smooth solution to the Ricci DeTurck equation (3.1) on

R
n. Assume that gt is 1.1-bilipschitz to geucl for all t ∈ [0, θ] and assume that
|∂mgt| < A for all m = 0, . . . , 10. Consider the heat kernel K(x, t; y, s) on
R
n × [0, θ] as discussed in Section 2. Then, for any (x, t), (y, s) ∈ R

n × [0, θ]
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with s < t, we have

K(x, t; y, s) <
C2

(t− s)n/2
exp

(
−d2geucl

(x, y)

D(t− s)

)

and for any r > 0

∫
Rn\B(x,r)

K(x, t; y, s)dgs(y) < C2 exp

(
− r2

D(t− s)

)
.

Here B(x, r) denotes the r-ball in R
n with respect to the Euclidean metric

geucl.

We remark that we can actually choose D > 4 arbitrarily as in the work
of Cheng, Li and Yau (cf [CLY81]).

Proof. Consider the associated Ricci flow g̃t = Φ∗
t gt, where Φt is defined

as in (2.3) with Φ0 = idRn and the heat kernel K̃(x, t; y, s) = K(Φ−1
t (x), t;

Φ−1
s (y), s) on a Ricci flow background. Using the derivative bounds on gt,

we find that for small enough θ, the metrics g̃t stay 1.2-bilipschitz close to
geucl. Moreover, we can find a constant C ′ = C ′(A) <∞ such that for all
x ∈ R

n and s, t ∈ [0, θ]

distgeucl
(Φt(x),Φs(x)) < C ′|s− t|.

Using [CCG+10, Theorem 26.25] and the derivative bounds on gt, we
get that for sufficiently small θ

K̃(x, t; y, s) <
C

(t− s)n/2
exp

(
−d2geucl

(x, y)

D(t− s)

)
.

Here C = C(A), D = D(A) <∞ are some uniform constants. So
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K(x, t; y, s) <
C

(t− s)n/2
exp

(
−d2geucl

(Φt(x),Φs(y))

D(t− s)

)

≤ C

(t− s)n/2
exp

(
−d2geucl

(Φt(x),Φt(y))− d2geucl
(Φt(y),Φs(y))

2D(t− s)

)

≤ C

(t− s)n/2
exp

(
−d2g̃t(x, y)− C ′(t− s)2

2D(t− s)

)

≤ C ′′

(t− s)n/2
exp

(
− d2geucl

(x, y)

2(1.2)2D(t− s)

)

This proves the first assertion of the lemma, after adjusting D. The second
assertion follows by integration and adjusting D again. �

We now state and prove the our key estimate:

Lemma 4. There is an ε > 0 and for every δ > 0 there is a τ = τ(δ) > 0
such that the following is true:

Let g0 be a C2-Riemannian metric on R
n that is (1 + ε)-bilipschitz close

to the standard Euclidean metric geucl and assume that g0 − geucl is com-
pactly supported. Assume that R(g0) > a on B(o, 1) for some a ∈ R. Then
there is a solution (gt)t∈[0,1) to the Ricci DeTurck flow equation (3.1) with
initial metric g0 such that R(o, t) > a− δ for all t ∈ [0, τ ].

Proof. Choose ε > 0 from Lemma 2. Then g0 can be evolved to a solution
(gt)t∈[0,1) of the Ricci DeTurck flow (3.1) such that gt is 1.1-bilipschitz to geucl
for all t ∈ [0, 1). By Lemma 2(d), we can find a uniform constant C3 <∞
such that for all t ∈ (0, 1)

(3.5) |Rm|(·, t), |R|(·, t) < C3

t
.

Note that the scalar curvature bound follows already from the bound on
the Riemannian curvature and is only mentioned for convenience. We even
have the more precise lower bound R(·, t) > − n

2t , which will, however, not
be essential for us.
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The scalar curvature R of gt satisfies the equation

∂tR = ΔR− ∂Xgeucl
(gt)R+ 2|Ric|2,

which is the analogue of (1.2) for Ricci DeTurck flow. So the scalar curvature
is a supersolution for the associated heat equation on a Ricci DeTurck flow
background (compare with (2.5)). Hence it follows that for any x ∈ R

n and
any 0 < s < t ≤ 1

(3.6) R(x, t) ≥
∫
Rn

K(x, t; y, s)R(y, s)dgs(y).

Alternatively, this equation can be derived from the corresponding equations
involving the heat kernel K̃(x, t; y, s) on a Ricci flow background and then
pulling back via the diffeomorphisms Φt.

Let us now choose the constants that we will be using throughout the
proof. Let C1 <∞ be the constant from Lemma 2 and let θ := θ(2C1) >
0 and D := D(2C1), C2 := C2(2C1) <∞ be the constants from Lemma 3.
Next choose β > 0 small enough such that

1− β >
√
1− θ

and set

c :=
β2

Dθ
.

Choose λ > 0 such that

1 + λ <
(1− β)2

1− θ
.

Note that
∞∑
k=1

2C2C3

(1− θ)k
exp

(−c(1 + λ)k
)
<∞.

So for any δ > 0, we can find a large number N = N(δ) ∈ N such that

(3.7)

∞∑
k=N

2C2C3

(1− θ)k
exp

(−c(1 + λ)k
)
< δ.

We can finally define

τ = τ(δ) := (1− θ)N .

Next, we choose times and radii

tk := (1− θ)k, and rk := 1− (1− β)k,
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for k = 1, 2, . . . and set

ak := inf
B(o,rk)

R(·, tk).

By (3.5), we have

(3.8) |ak| ≤ C3

tk

and by Lemma 2(b), we find that

(3.9) lim inf
k→∞

ak ≥ a.

We will now estimate ak from below in terms of ak+1. Let x ∈ B(o, rk).
First note that by Lemma 3, we have∫

Rn\B(x,rk+1−rk)
K(x, tk; y, tk+1)dgtk+1

(y) < C2 exp

(
− (rk+1 − rk)

2

D(tk − tk+1)

)
< C2 exp

(
−β2(1− β)2k

Dθ(1− θ)k

)
< C2 exp

(−c(1 + λ)k
)
.

Then, by (3.6), (3.5), (2.6) and (3.8)

R(x, tk) ≥
∫
Rn

K(x, tk; y, tk+1)R(y, tk+1)dgtk+1
(y)

≥ ak+1

∫
B(x,rk+1−rk)

K(x, tk; y, tk+1)dgtk+1
(y)

− C3

tk+1

∫
Rn\B(x,rk+1−rk)

K(x, tk; y, tk+1)dgtk+1
(y)

≥ ak+1 −
(

C3

tk+1
+ ak+1

)∫
Rn\B(x,rk+1−rk)

K(x, tk; y, tk+1)dgtk+1
(y)

≥ ak+1 − 2C3

tk+1
· C2 exp

(−c(1 + λ)k
)
.

So we conclude that

ak ≥ ak+1 − 2C2C3

(1− θ)k
exp

(−c(1 + λ)k
)
.

Together with (3.9) and (3.7), this implies that for all k ≥ N

R(o, tk) ≥ ak > a− δ.
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In particular, this proves the claim for t = τ and for t = tk for all k ≥ N . The
lower bound on R(o, t) for any t ∈ [0, τ ] follows similarly, e.g. by perturbing
the parameter θ slightly or by parabolic rescaling with a bounded factor.
For our purposes, it is, however, enough to know the bound R(o, tk) > a− δ
for all k ≥ N . �

We can finally prove Theorem 1.

Proof of Theorem 1. Consider the constant ε > 0 from Lemma 4. Assume
that for some x ∈M and some κ′ ∈ R we have R(g, x) < κ′ < κ(x). By re-
stricting M to a subset, we may assume that for some κ′′ ∈ R

R(g, x) < κ′ < κ′′ < κ(y) for all x, y ∈M.

Next, we choose a chart Φ : U ⊂M → R
n around x such that Φ(x) = o and

such that Φ∗g on Φ(U) is (1 + ε)-bilipschitz to geucl. By rescaling, we may
assume that Φ(U) contains the closure of B(o, 1).

Let ϕ : Rn → [0, 1] be a smooth cutoff function that is constantly equal
to 1 on B(o, 1) and whose support is contained in Φ(U). Consider the metric

g0 := ϕΦ∗g + (1− ϕ)geucl.

This metric is still (1 + ε)-bilipschitz to geucl and C2 and satisfies

(3.10) R(g0, o) < κ′.

Similarly, the metrics

gi,0 := ϕΦ∗gi + (1− ϕ)geucl

are (1 + ε)-bilipschitz close to geucl and C2 and satisfy

R(gi,0) > κ′′ on B(o, 1).

Moreover, gi,0 converge to g0 uniformly in the C0-sense.
Apply Lemma 4 to each metric gi,0 with a = κ′′ and δ = 1

2(κ
′′ − κ′).

Then we get a sequence of Ricci DeTurck flows (gi,t)t∈[0,1) such that for any
t ∈ [0, τ(δ)] we have

R(gi,t, o) > κ′′ − δ.

By Lemma 2(e), these Ricci DeTurck flows converge to the Ricci DeTurck
flow (gt)t∈[0,1) starting from g0. The convergence is uniformly C0 on R

n ×
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[0, 1) and locally smooth on R
n × (0, 1). So for all t ∈ (0, τ ]

R(gt, o) ≥ κ′′ − δ.

Using Lemma 2(b), it follows that

R(g0, o) = lim
t→0

R(g0,t, o) ≥ κ′′ − δ > κ′,

in contradiction to (3.10). �
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