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Fibered knots with the same 0-surgery

and the slice-ribbon conjecture

Tetsuya Abe and Keiji Tagami

Dedicated to Professors Taizo Kanenobu, Yasutaka Nakanishi, and

Makoto Sakuma for their 60th birthday

Akbulut and Kirby conjectured that two knots with the same 0-
surgery are concordant. In this paper, we prove that if the slice-
ribbon conjecture is true, then the modified Akbulut-Kirby’s con-
jecture is false. We also give a fibered potential counterexample to
the slice-ribbon conjecture.

1. Introduction

The slice-ribbon conjecture asks whether any slice knot in S3 bounds a
ribbon disk in the standard 4-ball B4 (see [18]). There are many studies on
this conjecture (cf. [5, 6, 13, 23, 25, 27, 31–33]). On the other hand, until
recently, few direct consequences of the slice-ribbon conjecture were known.
This situation has been changed by Baker. He gave the following conjecture.

Conjecture 1.1 ([9, Conjecture 1]). Let K0 and K1 be fibered knots in
S3 supporting the tight contact structure. If K0 and K1 are concordant, then
K0 = K1.

Baker proved a strong and direct consequence of the slice-ribbon conjec-
ture as follows:

Theorem 1.2 ([9, Corollary 4]). If the slice-ribbon conjecture is true,
then Conjecture 1.1 is true.

Originally, Conjecture 1.1 was motivated by Rudolph’s old question [48]
which asks whether the set of algebraic knots is linearly independent in the
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knot concordance group. Here we observe the following, which was implicit
in [9].

Observation 1.3. If Conjecture 1.1 is true, the set of prime fibered knots
in S3 supporting the tight contact structure is linearly independent in the
knot concordance group (see Lemma 3.1). Moreover, the set of such knots
contains algebraic knots (see Lemma 3.2). In this sense, Conjecture 1.1 is
a generalization of Rudolph’s question. Therefore Theorem 1.2 implies that
if the slice-ribbon conjecture is true, then the set of algebraic knots is lin-
early independent in the knot concordance group –an affirmative answer of
Rudolph’s question–.

Theorem 1.2 and Observation 1.3 make the slice-ribbon conjecture more
important and fascinating.

In this paper, we give another consequence of the slice-ribbon conjecture.
To state our main result, we recall Akbulut and Kirby’s conjecture on knot
concordance in the Kirby’s problem list [29].

Conjecture 1.4 ([29, Problem 1.19]). If 0-surgeries on two knots give
the same 3-manifold, then the knots are concordant.

Livingston [34] demonstrated a knot K such that it is not concordant
to Kr, where Kr is the knot obtained from K by reversing the orientation.
Therefore Conjecture 1.4 is false since 0-surgeries on K and Kr give the
same 3-manifold, however, the following conjecture seems to be still open.

Conjecture 1.5. If 0-surgeries on two knots give the same 3-manifold,
then the knots with relevant orientations are concordant.

Note that Cochran, Franklin, Hedden and Horn [14] obtained a closely
related result to Conjecture 1.5. Indeed they gave a negative answer to
the following question: “If 0-surgeries on two knots are integral homology
cobordant, preserving the homology class of the positive meridians, are the
knots concordant?”

Our main result is the following.

Theorem 1.6. If the slice-ribbon conjecture is true, then Conjecture 1.5 is
false1.

1 Recently, Kouichi Yasui [53] proved that there are infinitely many counterex-
amples of Conjecture 1.5.
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In Section 2, we will prove Theorem 1.6. We outline the proof as fol-
lows: Let K0 and K1 be the unoriented knots depicted in Figure 1 and give
arbitrary orientations on K0 and K1.

Figure 1: The definitions of K0 and K1. Each rectangle labeled 1 implies a
full twist.

By using annular twisting techniques developed in [1, 2, 40, 51], we see
that 0-surgeries on K0 and K1 give the same 3-manifold. On the other hand,
by Miyazaki’s result [36], we can prove that K0#K1 is not ribbon, where
K0#K1 denotes the connected sum of K0 and the mirror image of K1.
Suppose that the slice-ribbon conjecture is true. Then K0#K1 is not slice.
Equivalently, K0 and K1 are not concordant. As a summary, 0-surgeries on
K0 and K1 give the same 3-manifold, however, they are not concordant if
the slice-ribbon conjecture is true, implying that Conjecture 1.5 is false.

Here we consider the following question.

Question 1.7. Are the knots K0 and K1 in Figure 1 concordant?

This question is interesting since the proof of Theorem 1.6 tells us the fol-
lowing:

1) If K0 and K1 are concordant, then K0#K1 is a counterexample to the
slice-ribbon conjecture since K0#K1 is not ribbon.

2) If K0 and K1 are not concordant, then Conjecture 1.5 is false since
0-surgeries on K0 and K1 give the same 3-manifold.

This paper is organized as follows: In Section 2, we prove Theorem 1.6.
In section 3, we consider consequences of Baker’s result in [9]. In Appendix
A, we give a short review for Miyazaki’s in-depth study on ribbon fibered
knots which is based on the theorem of Casson and Gordon [11]. In Appendix



306 T. Abe and K. Tagami

B, we recall twistings, annulus twists and annulus presentations. Moreover,
we define annulus presentations compatible with fiber surfaces and study a
relation between annulus twists and fiberness of knots. Finally, we describe
monodromies of the fibered knots obtained from 63 (with an annulus pre-
sentation) by annulus twists. Using these monodromies, we can distinguish
these knots.

Notations. Throughout this paper, we will work in the smooth category.
Unless otherwise stated, we suppose that all knots are oriented. Let K be
a knot in S3. We denote MK(0) the 3-manifold obtained from S3 by 0-
surgery on K in S3, and by [K] the concordance class of K. For an oriented
compact surface F with a single boundary component and a diffeomorphism
f : F → F fixing the boundary, we denote by ̂F the closed surface F ∪D2

and by ̂f the extension f ∪ id : ̂F → ̂F . We denote by tC the right-handed
Dehn twist along a simple closed curve C on F .

2. Proof of Theorem 1.6

In this section, we prove our main theorem. The main tools are Miyazaki’s
result [36, Theorem 5.5] and annular twisting techniques developed in [1,
2, 40, 51]. For the sake of completeness, we will review these results in
Appendices A and B.

Proof of Theorem 1.6. Let K0 and K1 be the unoriented knots as in Fig-
ure 1 and give arbitrary orientations on K0 and K1. By [40, Theorem 2.3]
(see Lemma 5.6), 0-surgeries on K0 and K1 give the same 3-manifold (for
detail, see Appendix B. In this case, K0 admits an annulus presentation as
in Figure 4 and K1 = A(K0)).

On the other hand, K0#K1 is not a ribbon knot as follows: First, note
that K0 is the fibered knot 63 in Rolfsen’s knot table, see KnotInfo [12].
By Gabai’s theorem in [20], K1 is also fibered since 0-surgeries on K1 and
K2 give the same 3-manifold (see also Remark 5.9). Therefore K0#K1 is
a fibered knot. Here we can see that K0 and K1 are different knots (for
example, by calculating the Jones polynomials of K0 and K1). Also, we see
that K0 and K1 have the same irreducible Alexander polynomial

ΔK0
(t) = ΔK1

(t) = 1− 3t+ 5t2 − 3t3 + t4.

By Miyazaki’s result [36, Theorem 5.5] (or Corollary 4.3), the knot K0#K1

is not ribbon.
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Suppose that the slice-ribbon conjecture is true. Then K0#K1 is not
slice. Equivalently, K0 and K1 are not concordant. Therefore, if the slice-
ribbon conjecture is true, then Conjecture 1.5 is false. �

3. Observations on Baker’s result

In this section, we consider consequences of Baker’s result in [9].
First, we recall some definitions. A fibered knot in S3 is called tight if

it supports the tight contact structure (see [9]). A set of knots is linearly
independent in the knot concordance group if it is linearly independent in
the knot concordance group as a Z-module. We observe the following.

Lemma 3.1. If Conjecture 1.1 is true, then the set of prime tight fibered
knots in S3 is linearly independent in the knot concordance group.

Proof. Let K1,K2, . . . ,Kn be distinct prime tight fibered knots. Suppose
that for some integers a1, . . . , an we have

a1[K1] + · · ·+ an[Kn] = 0.

We will prove that if Conjecture 1.1 is true, then a1 = a2 = · · · = an = 0.
When a1 ≥ 0, . . ., an ≥ 0, then

[(#a1K1)# · · ·#(#anKn)] = 0.

Note that (#a1K1)# · · ·#(#anKn) is a tight fibered knot. If Conjecture 1.1
is true, then

(#a1K1)# · · ·#(#anKn)

is the unknot. By the prime decomposition theorem of knots, we obtain

a1 = a2 = · · · = an = 0.

When a1 ≤ 0, . . ., an ≤ 0, then

[(#−a1K1)# · · ·#(#−anKn)] = 0.

By the same argument, we obtain

a1 = a2 = · · · = an = 0.



308 T. Abe and K. Tagami

For the other case, we may assume that a1 ≥ 0, . . ., am ≥ 0 and am+1 ≤ 0,
. . ., an ≤ 0 by changing the order of the knots. Then we obtain

a1[K1] + · · ·+ am[Km] = (−am+1)[Km+1] + · · ·+ (−an)[Kn].

Equivalently,

[(#a1K1)# · · ·#(#amKm)] = [(#−am+1Km+1)# · · ·#(#−anKn)].

Note that (#a1K1)# · · ·#(#amKm) and (#−am+1Km+1)# · · ·#(#−anKn)
are tight fibered knots. If Conjecture 1.1 is true, then

(#a1K1)# · · ·#(#amKm) = (#−am+1Km+1)# · · ·#(#−anKn).

By the prime decomposition theorem of knots, we obtain

a1 = a2 = · · · = an = 0. �
Lemma 3.1 leads us to ask which knots are (prime) tight fibered. Recall
that algebraic knots are links of isolated singularities of complex curves and
L-space knots are those admitting positive Dehn surgeries to L-spaces2.

Lemma 3.2. We have the following.

1) A fibered knot is tight if and only if it is strongly quasipositive.

2) An algebraic knot is a prime tight fibered knot.

3) An L-space knot is a prime tight fibered knot.

4) A divide knot is a tight fibered knot.

5) A positive fibered knot is a tight fibered knot.

6) An almost positive fibered knot is a tight fibered knot.

Proof. (1) This follows from [26, Proposition 2.1] (see also [8]).
(2) It is well known that any algebraic knot is fibered and strongly

quasipositive. By (1), it is tight fibered. In fact, any algebraic knot is an
iterated cable of a torus knot. This implies that it is prime. For the details
on algebraic knots, see [16], [28], [52].

2 In our definition, the left-handed trefoil is not an L-space knot. Note that some
authors define L-space knots to be those admitting non-trivial Dehn surgeries to
L-spaces. In this definition, the left-handed trefoil is an L-space knot.
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(3) By [38, 39] (see also [21], [43]), an L-space knot is fibered. Hedden
[26] proved that it is tight. It is also known that an L-space knot is prime,
see [30].

(4) A’Campo [7] proved that a divide knot is fibered and its monodromy
is a product of positive Dehn twists. Such a fibered knot is known to be
tight, for example, see Remark 6.5 in [19]. For the details, see [41].

(5) Nakamura [37] and Rudolph [49] proved that any positive knot is
strongly quasipositive. By (1), a positive fibered knot is tight.

(6) The authors [4] proved that any almost positive fibered knot is
strongly quasipositive. By (1), an almost positive fibered knot is tight. �

Remark 3.3. By Theorem 1.2 and Lemmas 3.1 and 3.2, if the slice-ribbon
conjecture is true, then the set of L-space knots in S3 is also linearly inde-
pendent in the knot concordance group.

The following conjecture may be manageable than Conjecture 1.1.

Conjecture 3.4. The set of L-space knots in S3 is linearly independent in
the knot concordance group. In particular, if L-space knots K0 and K1 are
concordant, then K0 = K1.

4. Appendix A: Miyazaki’s results on ribbon fibered knots

In this appendix, we recall Miyazaki’s results [36] on non-simple ribbon
fibered knots, in particular, on composite ribbon fibered knots.

Let Ki be a knot in a homology 3-sphere Mi for i = 0, 1. We write

(M1,K1) ≥ (M0,K0) (or simply K1 ≥ K0)

if there exist a 4-manifold X with H∗(X,Z) � H∗(S3 × I,Z) and an annulus
A embedded into X such that

(∂X,A ∩ ∂X) = (M1,K1) � (M r
0 ,K

r
0),

π1(M1 \K1)→ π1(X \A)is surjective, and
π1(M0 \K0)→ π1(X \A)is injective,

where (M r
0 ,K

r
0) is (M0,K0) with reversed orientation. We say K1 is homo-

topically ribbon concordant to K0 if K1 ≥ K0. Note that this is a generaliza-
tion of the notion of “ribbon concordant”, see in [24, Lemma 3.4]. A knot K
in a homotopy 3-sphere M is homotopically ribbon if K ≥ U , where U is the
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unknot in S3. A typical example of a homotopically ribbon knot is a ribbon
knot in S3 (for detail see [36, p.3]).

Theorem 4.1 ([36, Theorem 5.5]). For i = 1, . . . , n, let Ki be a prime
fibered knot in a homotopy 3-sphere Mi satisfying one of the following:

• Ki is minimal with respect to “ ≥” among all fibered knots in homology
spheres,

• there is no f(t) ∈ Z[t] \ {±tk}k such that f(t)f(t−1)|ΔKi
(t).

If K1# · · ·#Kn is homotopically ribbon, then the set {1, . . . , n} can be paired
into �m

s=1{is, js} such that Kis = Kjs, where Kjs is (M r
js
,Kr

js
).

Remark 4.2. By a solution of the geometrization conjecture (see [44], [45]
and [46]), each homotopy 3-sphere Mi is S

3 in the above theorem.

As a corollary, we obtain the following.

Corollary 4.3. Let K0 and K1 be fibered knots in S3 with irreducible
Alexander polynomials. If K0#K1 is ribbon, then K0 = K1.

5. Appendix B: Twistings, Annulus twists and Annulus
presentations

In this appendix, we recall two operations. One is twisting, and the other is
annulus twist [1]. In a certain case, annulus twists are expressed in terms of
twistings and preserve some properties of knots. Finally, we describe mon-
odromies of the fibered knots obtained from 63 (with an annulus presenta-
tion) by annulus twists. We begin this appendix with recalling the definition
of an open book decomposition of a 3-manifold.

5.1. Open book decompositions

Let F be an oriented surface with boundary and f : F → F a diffeomor-
phism on F fixing the boundary. Consider the pinched mapping torus

̂Mf = F × [0, 1]/∼,

where the equivalent relation ∼ is defined as follows:

1) (x, 1) ∼ (f(x), 0) for x ∈ F , and
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2) (x, t) ∼ (x, t′) for x ∈ ∂F and t, t′ ∈ [0, 1].

Here, we orient [0, 1] from 0 to 1 and we give an orientation of ̂Mf by the
orientations of F and [0, 1]. Let M be a closed oriented 3-manifold. If there

exists an orientation-preserving diffeomorphism from ̂Mf to M , the pair
(F, f) is called an open book decomposition of M . The map f is called the
monodromy of (F, f). Note that we can regard F as a surface in M . The
boundary of F in M , denoted by L, is called a fibered link in M , and F is
called a fiber surface of L. Themonodromy of L is defined by the monodromy
f of the open book decomposition (F, f).

5.2. Twistings and annulus twists

Let M be a closed oriented 3-manifold, and (F, f) an open book decom-
position of M . Let C be a simple closed curve on a fiber surface F ⊂M .
Then, a twisting along C of order n is defined as performing (1/n)-surgery
along C with respect to the framing determined by F . Then we obtain the
following.

Lemma 5.1 (Stallings). The resulting manifold obtained from M by a
twisting along C of order n is (orientation-preservingly) diffeomorphic to
̂Mt−n

C ◦f .

For a proof of this lemma, see Figure 2 (see also [10], [41] and [50]).
Lemma 5.1 implies that, by a twisting along C of order n, the fibered link
with monodromy f is changed into the fibered link with monodromy t−nC ◦ f .

Remark 5.2. Our definition on the pinched mapping torus differs from
Bonahon’s [10]. We glue (x, 1) and (f(x), 0) in the pinched mapping torus.
On the other hand, (x, 0) and (f(x), 1) are glued in Bonahon’s paper.

Hereafter we only deal with the 3-sphere S3. Let A ⊂ S3 be an embedded
annulus and ∂A = c1 ∪ c2. Note that A may be knotted and twisted. In
Figure 3, we draw an unknotted and twisted annulus. An n-fold annulus
twist along A is to apply (+1/n)-surgery along c1 and (−1/n)-surgery along
c2 with respect to the framing determined by the annulus A. For simplicity,
we call a 1-fold annulus twist along A an annulus twist along A.

Remark 5.3. An n-fold annulus twist does not change the ambient 3-
manifold S3, (see [6, Lemma 2.1] or [40, Theorem 2.1]). However, each
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Figure 2: The top picture is ̂Mf , the middle picture is the resulting manifold

obtained from ̂Mf by a twisting along C of order 1 and the bottom picture

is ̂Mt−1
C ◦f . In the pictures, we remove a tubular neighborhood of C. The last

diffeomorphism is given by twisting the deep gray area (which is the solid
torus below the neighborhood of C) in the middle picture to the left.
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surgery along c1 (resp. surgery along c2) often changes the ambient 3-
manifold S3. For example, if A is an unknotted annulus with k full-twists,
the n-fold annulus twist along A is to apply (k + 1/n)-surgery along c1 and
(k − 1/n)-surgery along c2 with respect to the Seifert framings. Therefore
each surgery along c1 (resp. surgery along c2) indeed changes the ambient
3-manifold S3 frequently.

Figure 3: An unknotted annulus A ⊂ S3 with a +1 full-twist.

5.3. Annulus presentations

The first author, Jong, Omae and Takeuchi [1] introduced the notion of an
annulus presentation of a knot (in their paper it is called “band presenta-
tion”). Here, we extend the definition of annulus presentations of knots.

Let A ⊂ S3 be an embedded annulus with ∂A = c1 ∪ c2, which may be
knotted and twisted. Take an embedding of a band b : I × I → S3 such that

• b(I × I) ∩ ∂A = b(∂I × I),

• b(I × I) ∩ intA consists of ribbon singularities, and

• A ∪ b(I × I) is an immersion of an orientable surface,

where I = [0, 1]. If a knot K is isotopic to the knot (∂A \ b(∂I × I)) ∪ b(I ×
∂I), then we say that K admits an annulus presentation (A, b).

Example 5.4. The knot 63 (with an arbitrary orientation) admits an an-
nulus presentation (A, b), see Figure 4.

Let K be a knot admitting an annulus presentation (A, b). Then, by
An(K), we denote the knot obtained from K by n-fold annulus twist along
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Figure 4: The definitions of the knot 63 (left) and its annulus presentation
(right).

˜A with ∂ ˜A = c̃1 ∪ c̃2, where ˜A ⊂ A is a shrunken annulus. Namely, A \ ˜A is a

disjoint union of two annuli, each c̃i is isotopic to ci in A \ ˜A for i = 1, 2 and
A \ (∂A ∪ ˜A) does not intersect b(I × I). For simplicity, we denote A1(K)

Figure 5: A shrunken annulus Ã for the annulus presentation of 63 (left)
and the knot A(63) (right).

by A(K).

Example 5.5. We consider the knot 63 with the annulus presentation (A, b)
in Figure 4. Then A(63) is the right picture in Figure 5.

The following important lemma is a special case of Osoinach’s result [40,
Theorem 2.3].
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Lemma 5.6. Let K be a knot admitting an annulus presentation (A, b).
Then, the 3-manifold MAn(K)(0) does not depend on n ∈ Z.

5.4. Compatible annulus presentations and twistings

Let K ⊂ S3 be a fibered knot admitting an annulus presentation (A, b), and
F a fiber surface of K. We say that (A, b) is compatible with F if there exist
simple closed curves c′1 and c′2 on F such that

• ∂ ˜A = c̃1 ∪ c̃2 is isotopic to c
′
1 ∪ c′2 in S3 \K, where ˜A ⊂ A is a shrunken

annulus defined in Section 5.3, and

• each annular neighborhood of c′i in F (i = 1, 2) is isotopic to A in S3.

Let c̃1 ∪ c̃2 be the framed link with framing (1/n,−1/n) with respect to
the framing determined by the annulus A, and c′1 ∪ c′2 the framed link with
framing (1/n,−1/n) with respect to the framing determined by the fiber
surface F . Then, by the first compatible condition, c̃1 ∪ c̃2 is equal to c′1 ∪
c′2 as links in S3 \K. Moreover, by the second compatible condition, their
framings coincide. As a result, c̃1 ∪ c̃2 is equal to c′1 ∪ c′2 as framed links in
S3 \K. Hence, if K is a fibered knot with (A, b) which is compatible with
the fiber surface F , then An(K) is the knot obtained from K by twistings
along c′1 and c′2 of order +n and −n, respectively. In particular, An(K) is
a fibered knot and the monodromy of An(K) is t−nc′1

◦ tnc′2 ◦ f , where f is the
monodromy of K. As a summary, we obtain the following.

Lemma 5.7. Let K ⊂ S3 be a fibered knot admitting a compatible annulus
presentation (A, b). Then An(K) is also fibered for any n ∈ Z. Moreover,
the monodromy of An(K) is

t−nc′1
◦ tnc′2 ◦ f,

where f is the monodromy of K, and c′1 and c′2 are simple closed curves
which give the compatibility of (A, b).

Example 5.8. We consider the knot 63 with the annulus presentation (A, b)
in Figure 4. It is known that 63 is fibered. We choose a fiber surface as in
the left picture in Figure 6, and denote it by F . In this case, the annulus
presentation (A, b) is compatible with F . Indeed we define simple closed
curves c′1 and c′2 on F by c̃1 and c̃2, where ∂ ˜A = c̃1 ∪ c̃2. Then c′1 ∪ c′2 clearly
satisfies the compatible conditions.
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Figure 6: A fiber surface F of 63 (left) and a shrunken annulus ˜A (center).
The annulus presentation (A, b) of 63 is compatible with the fiber surface F
(right).

Remark 5.9. Let K1 and K2 be knots which have the same 0-surgery.
Gabai [20] proved that if K1 is fibered, then K2 is also fibered. Here let K
be a fibered knot admitting an annulus presentation (A, b) (which may not
be compatible with the fiber surface for K). Then, by Lemma 5.6 and the
above fact (Gabai’s theorem), An(K) is also fibered.

5.5. The monodromy of An(63)

At first, we describe the monodromy of 63. We draw a fiber surface of 63 as
a plumbing of some Hopf bands (see Figure 7). From Figures 7 and 9, the
monodromy of 63 is given by t−1d ◦ tb ◦ t−1c ◦ ta.

Now we describe the monodromy of An(63). From Figures 8, 9, and
Lemma 5.7, the monodromy fn of An(63) is given by t−nc′1

◦ tnc′2 ◦ t
−1
d ◦ tb ◦

t−1c ◦ ta.
Let Kn be the fibered knot An(63). Then the closed monodromies ̂fn are

conjugate with each other. It follows from two facts:

1) 0-surgeries on Kn are the same 3-manifold (which is the surface bundle
over S1 with monodromy ̂fn and whose first Betti number is one).

2) The monodromy of any surface bundle over S1 with first Betti number
one is unique up to conjugation.

Hence, the closed monodromies ̂fn do not distinguish the knots Kn. On
the other hand, we see that the monodromies fn distinguish the knots Kn

by Remark 5.10 below.
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Figure 7: The bottom right pictures are fiber surfaces of 63 given by a plumb-
ing of some Hopf bands. The loops a, b, c and d are core lines of these Hopf
bands.

Remark 5.10. Let ξn be the contact structure on S3 supported by the
open book decomposition (F, fn). Oba told us that

d3(ξn) = −n2 − n+
3

2
,

where d3 is the invariant of plane fields given by Gompf [22]. In order to
compute d3(ξn), he used the formula for d3 introduced in [15, 17], see [3] for
the details. By this computation, if Kn and Km are the same fibered knots,
then n = m or n+m = −1. Moreover if n+m = −1, we can check that Kn

and Km are the same fibered knots. As a result, we see that Kn and Km are
the same fibered knots if and only if n = m or n+m = −1. In particular,
knots Kn (n ≥ 0) are mutually distinct.

For a knot K with an annulus presentation (A, b), in general, it is hard
to distinguish An(K) and Am(K). Indeed, they have the same Alexander
modules. Osoinach [40] and Teragaito [51] used the hyperbolic structure
of the complement of An(K) to solve the problem (more precisely, they
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Figure 8: The simple closed curves c′1 and c′2 on the fiber surface of 63.

Figure 9: The monodromy fn of An(63) is t
n
c′2
◦ t−nc′1

◦ t−1d ◦ tb ◦ t−1c ◦ ta. This
is equal to t−1a ◦ t−1b ◦ te ◦ tnc ◦ t−1e ◦ tb ◦ ta ◦ t−nc ◦ t−1d ◦ tb ◦ t−1c ◦ ta, where e
is the circle depicted in this picture.

considered the hyperbolic volume of An(Kn)). On the other hand, in Oba’s
method, we consider contact structures.

Remark 5.11. In the proof of Theorem 1.6, we proved that K0#K1 is not
ribbon. By the same discussion, if Kn 
= Km, we also see that Kn#Km is
not ribbon and it is a counterexample for either Conjecture 1.5 or the slice-
ribbon conjecture. In particular, by Remark 5.10, we obtain infinitely many
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fibered potential counterexamples to the slice-ribbon conjecture by utilizing
annulus twists.
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