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An extension of the pair-correlation

conjecture and applications

Alessandro Languasco, Alberto Perelli,

and Alessandro Zaccagnini

We study an extension of Montgomery’s pair-correlation conjecture
and its relevance in some problems on the distribution of prime
numbers.

1. Introduction

Throughout the paper we assume the Riemann Hypothesis (RH) for the
Riemann zeta function ζ(s). Let

F (X,T ) = 4
∑

−T≤γ,γ′≤T

Xi(γ−γ′)

4 + (γ − γ′)2
,

where γ, γ′ run over the imaginary part of the non-trivial zeros of ζ(s), be
the pair-correlation function of the zeta zeros. In his famous paper [16],
Montgomery conjectured that

(1.1) F (X,T ) ∼ T

π
log T

as X →∞, uniformly for Xε ≤ T ≤ X for any fixed 0 < ε < 1. Moreover,
the essentially equivalent assertion in [16], that for any fixed 0 < α < β and
T →∞

π

T log T

∑
−T≤γ,γ′≤T

2πα

log T
≤γ−γ′≤ 2πβ

log T

1 ∼
∫ β

α

(
1− (sinπu

πu

)2)
du,

raised an interesting connection with the Random Matrix Theory; see the
excellent survey by Conrey [2]. A sharp numerical confirmation of the latter
conjecture was given by Odlyzko [21],[22]; see also [20].
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The pair-correlation conjecture (1.1), as well as its variants, found several
applications in prime number theory. Among the vast literature on this
subject we recall here the papers by Gallagher & Mueller [4], Heath-Brown
[9], Goldston & Montgomery [7] and Rudnick & Sarnak [23]. In particular,
writing

J(X,h) =

∫ 2X

X
(ψ(x+ h)− ψ(x)− h)2dx and ψ(x) = x+Δ(x),

Heath-Brown [9] showed that assuming RH and various forms of the pair-
correlation conjecture, weaker than (1.1) concerning the size and/or the
uniformity, one could get sharp bounds for the error term Δ(x), for the mean-
square of primes in short intervals J(X,h) and for the difference between
consecutive primes pn+1 − pn. The ideas and techniques in [9] were further
developed by several authors. We mention here the papers by Heath-Brown
& Goldston [10] and Liu & Ye [14], the latter assuming RH and a version
of the pair-correlation conjecture given by Rudnick & Sarnak [23]. We also
mention the earlier paper by Mueller [18] on pn+1 − pn. Moreover, we recall
that Gonek [8] proposed a conjecture related to Landau’s explicit formula
for Λ(n) and showed that such a conjecture has very strong consequences
on the distribution of primes in short intervals. We shall enter the contents
of the above quoted papers later on, while comparing to our results.

It turns out that the applications of the pair-correlation conjecture con-
tained in some of the above papers, along with further results, can be framed
in a unified way as consequences of suitable assumptions on the extended
pair-correlation function

F (X,T, τ) = 4
∑

−T≤γ,γ′≤T

Xi(γ−γ′)

4 + τ2(γ − γ′)2
,

where 0 ≤ τ ≤ 1. Note that at the extreme τ -values we have F (X,T, 1) =
F (X,T ) and F (X,T, 0) = |Σ(X,T )|2, where

(1.2) Σ(X,T ) =
∑
|γ|≤T

Xiγ

is the exponential sum over zeros appearing in Landau’s formula for Λ(n),
see Gonek [8]. We first give an interpretation of F (X,T, τ) as a suitable
pair-correlation function. Indeed, it is clear that the numbers ρ̃ = τ/2 + iτγ
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are the non-trivial zeros of the function Z(s) = ζ(s/τ), and

(1.3) F (X,T, τ) = 4
∑

−τT≤τγ,τγ′≤τT

(X1/τ )i(τγ−τγ′)

4 + (τγ − τγ′)2
.

Moreover, given a rather general L-function L(s) (namely, belonging to the
Selberg class of L-functions, see e.g. Kaczorowski & Perelli [11]) and assum-
ing the Riemann Hypothesis for L(s), Murty & Perelli [19] investigated the
pair-correlation function FL(X,T ) which, with a slightly different normal-
ization with respect to [19], is defined in analogy with F (X,T ) as

(1.4) FL(X,T ) = 4
∑

−T≤γ̃,γ̃′≤T

(Xd)i(γ̃−γ̃′)

4 + (γ̃ − γ̃′)2
.

Here the non-trivial zeros of L(s) are of the form ρ̃ = 1/2 + iγ̃, and d is
the degree of L(s) (i.e. twice the sum of the coefficients λj in the Γ-factors
Γ(λjs+ μj) appearing in its functional equation; see [11]). Since ζ(s) has
degree 1, we have Fζ(X,T ) = F (X,T ). The functional equation of Z(s),
obtained at once from the one of ζ(s), suggests that we may heuristically
regard Z(s) as an L-function of degree d and conductor q given by

(1.5) d =
1

τ
q =

(1
τ

) 1

τ

(see again [11] for the definition of conductor), although Z(s) does not belong
to the Selberg class if τ �= 1 (e.g. since it has a pole at s = τ). Hence in view
of (1.3), (1.4) and (1.5) we have

(1.6) F (X,T, τ) = FZ(X, τT ).

The pair-correlation conjecture in Murty & Perelli [19], namely

FL(X,T ) ∼ dT

π
log T

as X →∞, uniformly for Xε ≤ T ≤ X for any fixed 0 < ε < 1, is meant
for a given L-function, hence in particular for fixed degree d. In view of
the Riemann-von Mangoldt formula for the the Selberg class, a reasonable
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(d, q)-uniform version of this conjecture is

(1.7) FL(X,T ) ∼ dT

π
log q1/dT

in the same range of uniformity for X and T . Hence, in view of (1.5), (1.6)
and (1.7) we may expect that

(1.8) F (X,T, τ)� T log T

uniformly for Xε ≤ τT ≤ X, and possibly even in wider ranges for T and τ .
We refer to (1.7) as the general Montgomery conjecture.

We recall that the asymptotic behavior of F (X,T ) in (1.1) is expected
to change around T = X and that, under RH, Montgomery [16] (and Gold-
ston [5]) detected the behavior of F (X,T ) when T ≥ X. An analog of the
latter result is proved in Murty & Perelli [19] for the functions FL(X,T );
in such case the assumption T ≥ Xd is required. However, in our case the
function Z(s) is a τ -rescaling of ζ(s), and for this reason we may expect that
the role of X is played essentially by Xτ . In the companion paper [12] we
obtain, assuming certain hypotheses, the asymptotic behavior of F (X,T, τ)
in suitable ranges of T and τ , when T ≥ X. Note that the trivial bound for
F (X,T ) is O(T log2 T ) uniformly for X,T ≥ 2, hence only log T worse than
the expected size (whenXε ≤ T ≤ X), while the trivial bound for F (X,T, τ)
is for small τ much worse than the expected size (again if T ≤ X). Indeed,
we have

(1.9) F (X,T, τ)� min
(
T ;

1

τ

)
T log2 T

uniformly for X,T ≥ 2 and 0 ≤ τ ≤ 1. This is obvious for τ ≤ 1/T , while in
the opposite case we have

F (X,T, τ)� T log2 T

T∑
m=0

1

1 + τ2m2
� 1

τ
T log2 T.

In view of (1.8) and (1.9), in this paper we also consider the slightly more
conservative pair-correlation conjecture

(1.10) F (X,T, τ)� TXε

for every ε > 0, with T and τ in suitable ranges.
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The extended pair-correlation function F (X,T, τ) already appears in
Heath-Brown & Goldston [10] (as Gβ(X,T ), β = 1/τ , in their notation) and
is used there to study the size of pn+1 − pn under Montgomery’s conjecture
(1.1) with T in a certain range. To this end, F (X,T, τ) is related to F (X,T )
(see Lemma 2 in [10]), and the required bounds on F (X,T, τ) are obtained
from the asymptotic formula for F (X,T ). However, the information obtained
on F (X,T, τ) in that way reflects its expected order of magnitude only in a
rather short range of τ close to 1. Clearly, that approach allows to obtain
bounds for F (X,T, τ) from asymptotic formulae with remainder for F (X,T ),
say of the form considered in our recent paper [13] (roughly, an error of type
Tε(T ) in input gives an error of type Tε(T )/τ2 in output). We remark that,
in [10] and in subsequent works on the subject, the function F (X,T, τ) is
used essentially as an intermediate tool in order to get information on the
distribution of primes from suitable forms of Montgomery’s pair-correlation
conjecture. Our aim in this paper is, instead, to show how F (X,T, τ) directly
controls the distribution of primes, especially in short intervals, depending
on the range of uniformity in T and τ allowed in (1.10) or (1.8). Actually,
we mainly focus on the distribution of primes in short intervals of length
h ≥ Xε, with ε > 0 arbitrarily small, under the following hypotheses on the
uniformity ranges for T and τ where (1.10) is assumed to hold.

Hypothesis H(η). Assume RH, let 0 ≤ η < 1 be fixed and let X →∞. If
0 < η < 1 then (1.10) holds uniformly for Xη ≤ T ≤ X and Xη/T ≤ τ ≤ 1;
if η = 0 then for every small ε > 0, (1.10) holds uniformly for Xε ≤ T ≤ X
and 0 ≤ τ ≤ 1.

Remark 1. First we note that for any fixed 0 < η < 1, the uniformity range
of τT in hypothesisH(η) is contained in [Xε, X], which in view of (1.6)–(1.8)
may be regarded as a plausible range of a d-uniform version of the general
Montgomery conjecture. When η = 0, τT may become ≤ Xε. However, as we
remarked earlier, Gonek [8] made a conjecture on the size of the exponential
sum Σ(X,T ) in (1.2), namely

(1.11) Σ(X,T )� TX−1/2+ε + T 1/2Xε

for X,T ≥ 2. When T ≤ X the second term dominates, and hence in view
of (1.11) and F (X,T, 0) = |Σ(X,T )|2 we may expect that for Xε ≤ T ≤ X
and 0 ≤ τ ≤ 1

F (X,T, τ)� |Σ(X,T )|2 � TXε.



206 A. Languasco, A. Perelli, and A. Zaccagnini

Actually, by Lemma 5 below we have that for τT ≤ Xε

F (X,T, τ)� T 1+ε +Xεmax
t≤T

|Σ(X, t)|2,

thus (1.10) follows from Gonek’s conjecture in this range. Summarizing, we
may say that our hypothesis on the size of F (X,T, τ) is supported by the
general Montgomery conjecture in the range Xε ≤ τT ≤ X, and by Gonek’s
conjecture in the remaining range τT ≤ Xε. Actually, H(0) is equivalent to
Gonek’s conjecture restricted to the range Xε ≤ T ≤ X.

Assuming RH and the pair-correlation conjecture in the form F (X,T )�
T log T uniformly for Xε ≤ T ≤ X, Heath-Brown [9] implicitly proved (see
the proof of Theorem 2 in [9]) that J(X,h)� hX log(2X/h) uniformly for
1 ≤ h ≤ X1−ε. Later, Goldston & Montgomery [7] proved that the con-
jectural asymptotic behavior of F (X,T ) implies that of J(X,h), and vice
versa. Assuming only RH one has J(X,h)� hX log2(2X/h) uniformly for
1 ≤ h ≤ X, see Selberg [25] and Saffari & Vaughan [24]. Let

J(X,Y, h) =

∫ X+Y

X

(
ψ(x+ h)− ψ(x)− h

)2
dx.

We expect that, as X →∞,

(1.12) J(X,Y, h)� hY Xε

uniformly in suitable ranges of h and Y , for every ε > 0. We start with a
result of Heath-Brown’s type for J(X,Y, h), under the assumption of hy-
pothesis H(η); we deal in [12] with the analog of Goldston & Montgomery
[7], i.e. with the equivalence between the asymptotic behavior of J(X,Y, h)
and F (X,T, τ).

Theorem 1. Assume H(η). If 0 < η < 1 then (1.12) holds uniformly for
1 ≤ h ≤ X1−η and hXη ≤ Y ≤ X. If η = 0 then (1.12) holds uniformly for
1 ≤ h ≤ X1−ε and 0 ≤ Y ≤ X, for every small ε > 0.

By similar arguments one can get variants of Theorem 1, for example
where both the hypothesis and the result are localized, or replacingXε (both
in input and in output) by suitable powers of logX. Moreover, a standard
consequence of Theorem 1 is that

ψ(x+ h)− ψ(x) = h+O(h1/2xε)

for almost all x ∈ [X,X + Y ], with h and Y as in Theorem 1.
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Hypothesis H(η) and Theorem 1 have further consequences on the dis-
tribution of primes in short intervals. For example, using in addition the
inertia property of the function ψ(x), from Theorem 1 we can deduce re-
sults on ψ(x+ h)− ψ(x) valid for all large x. On the other hand, hypothesis
H(η) can be used in a direct way for the same purpose. It is interesting to
note that both approaches have advantages over the other, and the output
of the two approaches is given by

Theorem 2. Assume H(η) and let ε > 0 be arbitrarily small. If 0 < η <
1/2− 5ε then

ψ(x+ h)− ψ(x) = h+

{
O(h2/3xη/3+ε) for xη+5ε ≤ h ≤ x1/2

O(h1/3x1/6+η/3+ε) for x1/2 ≤ h ≤ x1−η.

If η = 0 then ψ(x+ h)− ψ(x) = h+O(h1/2xε) for x3ε ≤ h ≤ x1−ε.

Remark 2. Let 0 < η < 1/2− 5ε. The first estimate is obtained from The-
orem 1 by means of the inertia property, while the second follows by a direct
application of H(η). Both estimates are non-trivial in the stated ranges for
h, in the sense that the error terms are O(min(h1−ε, x1/2+ε)) and the ranges
are non-empty (recall that the second bound holds under RH). However, we
believe that the direct approach should always give a better result, namely

ψ(x+ h)− ψ(x) = h+O(h1/2xη/2+ε)

for xη+4ε ≤ h ≤ x1−η and 0 < η < 1/2− 2ε. At present we cannot get such
a bound because of the maximum over t in Lemma 6 below, which forces the
use of trivial bounds in a certain range, thus giving the weaker error term
in Theorem 2. Note that there is a discontinuity between the results in the
cases η > 0 and η = 0, due to an analogous discontinuity in hypothesis H(η).
Note also that hypothesis H(η) with η > 0 has two distinct consequences
on primes in short intervals, one in mean-square (Theorem 1) and the other
for each large x (Theorem 2). The situation changes when η = 0, since it is
easily seen that in this case Theorem 1 is equivalent to Theorem 2. This is
in agreement with the observation about Theorem 4 of Gonek [8] at the end
of Remark 1, and indeed our bound for ψ(x+ h)− ψ(x)− h under H(0) is
the same as Gonek’s bound under his conjecture. Finally, in the direction
of Mueller [18], Heath-Brown [9], Heath-Brown & Goldston [10] and Liu &

Ye [14], bounds for pn+1 − pn of type p
1/2
n f(pn), with suitable f(x)’s, can be

obtained from the estimate F (X,T, τ)� T log T with suitable uniformity
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ranges of T and τ . In this case T will be around X1/2 and τ around a
negative power of logX.

Now we turn to the problem of estimating Δ(x) = ψ(x)− x under suit-
able pair-correlation hypotheses. The bound Δ(x) = o(x1/2 log2 x) has been
deduced by Heath-Brown [9] from the hypothesis F (x, T ) = o(T log2 T ) uni-
formly for xε ≤ T ≤ x, and the sharper estimate Δ(x) = O(x1/2 log5/4 x) is
stated in Liu & Ye [14] as a consequence of a quantitative version of the
general pair-correlation conjecture by Rudnick & Sarnak [23], specialized to
the case of the Riemann zeta function. However, [14] contains several inac-
curacies (in part detected by Goldston [6] and Chan [1]), hence its results
are not reliable although the general strategy is clear. From the point of view
of the function F (X,T, τ), the approach in [9] and [14] may be formalized
as follows.

Theorem 3. Let x→∞, Z = x1/2 log2 x and U = U(x) ∈ [10, Z]. Assume
RH and suppose that F (x, T, τ)� T log T for some τ = τ(x) ∈ [1/Z, 1], uni-
formly for U ≤ T ≤ Z. Then

Δ(x)� x1/2(log2 U + τ1/2 log3/2 x).

We omit the proof of Theorem 3 as it follows along the lines of Theorem
1 of Heath-Brown [9] and Theorem 2 of Liu & Ye [14], using Lemma 6 below
and partial summation.

Remarks. 3. The same argument allows a more general result, where the
hypothetical bound on F (x, T, τ) is of type O(T loga T ) with 1 ≤ a ≤ 2, with
suitable uniformity ranges. This produces a continuous chain of bounds for
Δ(x) (exponents are linear in a), interpolating the classical result under RH
and Theorem 3, in particular giving back Heath-Brown’s bound.

4. Assume that the hypothesis in Theorem 3 holds with the choice

(1.13) τ = min

(
1,

log4 U

log3 x

)
,

so that

(1.14) Δ(x)� x1/2 log2 U.

Then, for example, the bound for Δ(x) in [14] follows from (1.14) if the
hypothesis in Theorem 3 holds with U = exp(log5/8 x) and τ = 1/

√
log x.
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Moreover, if such hypothesis holds with U=log log x and τ=(log log log x)4/
log3 x, then (1.14) gives

Δ(x)� x1/2(log log log x)2,

essentially Montgomery’s conjectural upper bound for Δ(x) in [17]. Note
that, apart from Heath-Brown [9], all these results require a very wide uni-
formity in T , entering the range T ≤ xε; however, the required value of τ is
not very small. In Theorem 1 we have the opposite situation, i.e. T lies in a
plausible range but we require a much wider uniformity in τ .

5. In view of the classical Ω-results in prime number theory, (1.13) and
(1.14) show that there are definite limitations to the uniformity ranges of the
bound F (x, T, τ)� T log T . A similar remark could be applied to Theorem
1 as well (once such results are refined by replacing Xε by the expected
powers of logX) in view of the oscillation results of Maier’s [15] type for
primes in short intervals.

We conclude observing that it would be desirable to have some numerical
evidence towards bounds and uniformity ranges for F (X,T, τ), but such
computations could be quite heavy.

2. Proof of Theorem 1

We assume from the beginning that 1 ≤ h ≤ X and 0 ≤ Y ≤ X. We start
with the classical explicit formula, see Davenport [3], in the form

ψ(x) = x−
∑
|γ|≤X

xρ

ρ
+O(log2X)

uniformly for X ≤ x ≤ 2X, thus obtaining

(2.1) J(X,Y, h)�
∫ X+Y

X

∣∣∣∣∣ ∑
|γ|≤X

(x+ h)ρ − xρ

ρ

∣∣∣∣∣
2

dx+ Y Xε.

Let 1 ≤ U ≤ X be a parameter to be chosen later on. We first evaluate the
contribution of the terms in (2.1) with |γ| ≤ U . Since ρ = 1/2 + iγ we have

∑
|γ|≤U

(x+ h)ρ − xρ

ρ
=

∫ x+h

x

∑
|γ|≤U

uρ−1 du� x−1/2
∫ x+h

x

∣∣∣∣∣ ∑|γ|≤U uiγ

∣∣∣∣∣ du,
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hence by the Cauchy-Schwarz inequality we have

∫ X+Y

X

∣∣∣∣∣ ∑
|γ|≤U

(x+ h)ρ − xρ

ρ

∣∣∣∣∣
2

dx(2.2)

� h

X

∫ X+Y

X

(∫ x+h

x

∣∣∣∣∣ ∑|γ|≤U uiγ

∣∣∣∣∣
2

du

)
dx.

We deal with the right hand side of (2.2) first changing the order of inte-
gration and then adapting part of the arguments in Heath-Brown [9].

Lemma 1. For Y, h ≥ 0 and a continuous function f(u) we have

∫ X+Y

X

(∫ x+h

x
f(u)du

)
dx =

∫ X+h

X

(∫ x+Y

x
f(u)du

)
dx.

Proof. Let x ≥ X and g(x) =
∫ x
X f(u)du. Then the left hand side is

∫ X+Y

X

(
g(x+ h)− g(x)

)
dx =

∫ X+Y+h

X+h
g(x)dx−

∫ X+Y

X
g(x)dx

=

∫ X+Y+h

X+Y
g(x)dx−

∫ X+h

X
g(x)dx

=

∫ X+h

X

(
g(x+ Y )− g(x)

)
dx

and the lemma follows. �

We extend the definition of Σ(X,T ) in (1.2) writing for v ∈ R

Σ(X,T ; v) =
∑
|γ|≤T

Xiγeiγv.

Lemma 2. For V, T ≥ 1 and τ ∈ (0, 1] we have∫
R

|Σ(V, T ; v)|2e−2|v|/τdv = τF (V, T, τ).
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Proof. This is a variation on Lemma 3 of [9]. Squaring out and using the
substitution v = yτ , the left hand side equals

τ
∑

−T≤γ,γ′≤T
V i(γ−γ′)

∫
R

eiyτ(γ−γ
′)e−2|y|dy = τF (V, T, τ),

thanks to the Fourier transform formula∫
R

eiyτ(γ−γ
′)e−2|y|dy =

4

4 + τ2(γ − γ′)2
;

see Lemma 3 of [9]. �

Lemma 3. For V, T ≥ 1 and τ ∈ [0, 1] we have

∫ V (1+τ)

V

∣∣∣∣∣ ∑|γ|≤T uiγ

∣∣∣∣∣
2

du� V τF (V, T, τ).

Proof. The case τ = 0 is trivial. By the substitution u = V ev, and observing
that ev ≤ e3e−2v/τ for τ ∈ (0, 1] and v ∈ [0, log(1 + τ)], similarly as in (9) of
[9] we get that the left hand side equals

V

∫ log(1+τ)

0
|Σ(V, T ; v)|2evdv

� V

∫ log(1+τ)

0
|Σ(V, T ; v)|2e−2v/τdv

� V

∫
R

|Σ(V, T ; v)|2e−2|v|/τdv = V τF (V, T, τ),

thanks to Lemma 2. �

Changing the order of integration in (2.2) by Lemma 1, and then apply-
ing Lemma 3 with V = x, T = U and τ = Y/x, from (2.2) we obtain

(2.3)

∫ X+Y

X

∣∣∣∣∣ ∑
|γ|≤U

(x+ h)ρ − xρ

ρ

∣∣∣∣∣
2

dx� h2Y

X
max

X≤x≤X+h
F (x, U,

Y

x
).

Next we consider the contribution from the terms U < |γ| ≤ X. We need
a further lemma.
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Lemma 4. For V ≥ 1 and τ ∈ [0, 1] we have

∫ V (1+τ)

V

∣∣∣∣∣ ∑
U<|γ|≤X

uiγ

ρ

∣∣∣∣∣
2

du

� V τ

(
F (V,X, τ)

X2
+

F (V,U, τ)

U2
+

1

U1/2

∫ X

U
F (V, t, τ)

dt

t5/2

)
.

Proof. Analogously to p.93-94 of [9], applying partial summation to the
inner sum, using the Cauchy-Schwarz inequality and applying Lemma 3
with U ≤ T ≤ X we have

∫ V (1+τ)

V

∣∣∣∣∣ ∑
U<|γ|≤X

uiγ

ρ

∣∣∣∣∣
2

du

� 1

X2

∫ V (1+τ)

V

∣∣∣∣∣ ∑
U<|γ|≤X

uiγ

∣∣∣∣∣
2

du+

∫ V (1+τ)

V

(∫ X

U

∣∣∣∣∣ ∑
U<|γ|≤t

uiγ

∣∣∣∣∣dtt2
)2

du

� V τ

X2

(
F (V,X, τ) + F (V,U, τ)

)

+

∫ V (1+τ)

V

(∫ X

U

∣∣∣∣∣ ∑
U<|γ|≤t

uiγ

∣∣∣∣∣
2
dt

t5/2

)(∫ X

U

dt

t3/2

)
du

� V τ

X2

(
F (V,X, τ) + F (V,U, τ)

)
+

V τ

U1/2

∫ X

U

(
F (V, t, τ) + F (V,U, τ)

)
dt

t5/2

� V τ

(
F (V,X, τ)

X2
+

F (V,U, τ)

U2
+

1

U1/2

∫ X

U
F (V, t, τ)

dt

t5/2

)
,

which proves the lemma. �

Writing

∣∣∣∣∣ ∑
U<|γ|≤X

(x+ h)ρ − xρ

ρ

∣∣∣∣∣
2

�
∣∣∣∣∣ ∑
U<|γ|≤X

(x+ h)ρ

ρ

∣∣∣∣∣
2

+

∣∣∣∣∣ ∑
U<|γ|≤X

xρ

ρ

∣∣∣∣∣
2

,
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applying Lemma 4 with V = X + h, τ = Y/(X + h) and with V = X, τ =
Y/X we obtain

∫ X+Y

X

∣∣∣∣∣ ∑
U<|γ|≤X

(x+ h)ρ − xρ

ρ

∣∣∣∣∣
2

dx(2.4)

� Y X

{
F (X + h,X, Y

X+h)

X2
+

F (X + h, U, Y
X+h)

U2

+
1

U1/2

∫ X

U
F

(
X + h, t,

Y

X + h

)
dt

t5/2
+

F (X,X, Y
X )

X2

+
F (X,U, Y

X )

U2
+

1

U1/2

∫ X

U
F

(
X, t,

Y

X

)
dt

t5/2

}
.

Assume now hypothesis H(η) with 0 < η < 1. Since we use the bound
F (X,T, τ)� TXε in the range U ≤ T ≤ X, from (2.1), (2.3) and (2.4) we
may write

J(X,Y, h)� h2Y

X
F (X,U,

Y

X
) + Y X

F (X,U, Y
X )

U2
+ Y Xε(2.5)

� h2Y UXε

X
+

Y X1+ε

U
+ Y Xε

under the conditions imposed by hypothesis H(η), namely

(2.6) Xη ≤ U ≤ X and
Xη

U
≤ Y

X
≤ 1.

The optimal choice of U in (2.5) is

(2.7) U =
X

h
,

thus getting the required bound for J(X,Y, h) in (1.12). Moreover, (2.6)
and (2.7) give the uniformity conditions on h and Y in the first part of
Theorem 1. When η = 0 we require

(2.8) Xε ≤ U ≤ X and 0 ≤ Y

X
≤ 1,

therefore (2.7) and (2.8) give the uniformity conditions in the second part
of Theorem 1.
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3. Comparing F (X, T, τ ) and Σ(X, T )

In this section we link F (X,T, τ) and Σ(X,T ), as required in Remark 1 of
Section 1 and by the applications of F (X,T, τ) in Theorem 2.

Lemma 5. Let ε > 0, Xε ≤ T ≤ X and τT ≤ Xε. Then

F (X,T, τ)� T 1+ε +Xεmax
t≤T

|Σ(X, t)|2.

Proof. For τ = 0 the result is trivial, so we assume that τ > 0. Writing δ =
(τ/2)(1− ε/2) log T and recalling the definition of Σ(X,T ; v) after Lemma
1, thanks to the trivial bound Σ(X,T ; v)� T log T we get(∫ −δ

−∞
+

∫ +∞

δ

)
|Σ(X,T ; v)|2e−2|v|/τdv � τT 1+ε.

Hence in view of Lemma 2 with V = X we obtain

τF (X,T, τ) =

∫ δ

−δ
|Σ(X,T ; v)|2e−2|v|/τdv +O(τT 1+ε).

By partial summation we have

Σ(X,T ; v) = eivT
∑
|γ|≤T

Xiγ − iv

∫ T

0

( ∑
|γ|≤t

Xiγ
)
eivtdt

� (1 + |v|T )max
t≤T

|Σ(X, t)|,

hence thanks to the hypothesis τT ≤ Xε we get∫ δ

−δ
|Σ(X,T ; v)|2e−2|v|/τdv � τ log T (1 + τ2T 2 log2 T )max

t≤T
|Σ(X, t)|2

� τXεmax
t≤T

|Σ(X, t)|2.

Lemma 5 is therefore proved. �

In the opposite direction, since F (X,T, 0) = |Σ(X,T )|2 we have that
hypothesis H(0) implies Gonek’s conjecture in the range Xε ≤ T ≤ X. We
expect that a weaker hypothesis, namely the bound (1.10) uniformly for
Xε ≤ T ≤ X and 1/T ≤ τ ≤ 1, should already imply Gonek’s conjecture in
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the range Xε ≤ T ≤ X. However, all we can prove at present is the following
modified form of Lemma 1 of Heath-Brown & Goldston [10]. Writing

(3.1) Σ(X,U, T ) =
∑

U<|γ|≤T
Xiγ

and observing that F (X,T, τ) ≥ 0 thanks to Lemma 2, we have

Lemma 6. For X,T ≥ 2, 0 ≤ U < T and 0 ≤ τ ≤ 1 we have

Σ(X,U, T )� (1 + Tτ)1/2 max
U≤t≤T

F (X, t, τ)1/2.

Proof. The case τ = 0 is trivial since |Σ(X, 0, T )|2 = F (X,T, 0), hence

|Σ(X,U, T )| ≤ |Σ(X, 0, T )|+ |Σ(X, 0, U)| � max
U≤t≤T

F (X, t, 0)1/2.

For τ > 0 we write

Σ(X,U, T ; v) =
∑

U<|γ|≤T
Xiγeivγ

and apply the Sobolev-Gallagher inequality

|f(0)| ≤ 1

2τ

∫ τ

−τ
|f(v)|dv + 1

2

∫ τ

−τ
|f ′(v)|dv

with f(v) = Σ(X,U, T ; v)2, thus obtaining

|Σ(X,U, T )|2 � 1

τ

∫ τ

−τ
|Σ(X,U, T ; v)|2dv(3.2)

+

∫ τ

−τ
|Σ(X,U, T ; v)|

∣∣∣∣∣ ∂∂vΣ(X,U, T ; v)

∣∣∣∣∣dv.
By partial summation we have∣∣∣∣∣ ∂∂vΣ(X,U, T ; v)

∣∣∣∣∣ =
∣∣∣∣∣ ∑
U<|γ|≤T

γXiγeivγ

∣∣∣∣∣
≤ T |Σ(X,U, T ; v)|+

∣∣∣∣∣
∫ T

U
Σ(X,U, t; v)dt

∣∣∣∣∣,
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hence by the Cauchy-Schwarz inequality we get∫ τ

−τ

∣∣∣∣∣ ∂∂vΣ(X,U, T ; v)

∣∣∣∣∣
2

dv � T 2

∫ τ

−τ
|Σ(X,U, T ; v)|2dv(3.3)

+ T 2 max
U≤t≤T

∫ τ

−τ
|Σ(X,U, t; v)|2dv.

But, recalling that Σ(X, 0, T ; v) = Σ(X,T ; v), for U ≤ t ≤ T Lemma 2 gives∫ τ

−τ
|Σ(X,U, t; v)|2dv(3.4)

�
∫ ∞

−∞

(|Σ(X, 0, t; v)|2 + |Σ(X, 0, U ; v)|2) e−2|v|/τdv
� τ max

U≤t≤T
F (X, t, τ),

therefore Lemma 6 follows by the Cauchy-Schwarz inequality from (3.2),
(3.3) and (3.4). �

4. Proof of Theorem 2

Let ε > 0 be arbitrarily small; in what follows the dependence on ε of the
ranges of h and η will be written in a slightly weaker but cleaner form. We
first show that the estimate for J(X,Y, h) in Theorem 1, under H(η) with
η > 0, implies

(4.1) ψ(x+ h)− ψ(x) = h+O(h2/3xη/3+ε).

Moreover, (4.1) is non-trivial (in the sense of Remark 2) for xη+5ε ≤ h ≤
x3/4−η/2 and 0 < η < 1/2− 4ε. The case η = 0 will be treated by a direct
application of H(0), since we already observed in Remark 2 that both ap-
proaches give the same result in this case. We start noticing that if there exist
x0 ∈ [X,X + Y ] and logX ≤ K = o(h) such that |ψ(x0 + h)− ψ(x0)− h| ≥
5K, then

|ψ(x+ h)− ψ(x)− h| ≥ K(4.2)

for every x ∈ [X,X + Y ] ∩
[
x0 − K

logX
,x0 +

K

logX

]
.

Indeed, clearly both ψ(x+ h) and ψ(x) may change at most by ±K with
respect to their values at x = x0, as x runs over such an interval. Assuming
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that the above inequality holds for some x0 ∈ [X,X + Y ] with K = ha and
0 < a < 1, from Theorem 1 with the choice Y = hXη we get

(4.3)
h3a

logX
� J(X,Y, h)� h2Xη+ε,

since the cardinality of the x in (4.2) is � ha/ logX. Hence (4.1) follows,
since (4.3) is contradictory if ha > ch2/3Xη/3+ε with a certain c > 0, say.
Actually, this argument gives (4.1) in a wider range of h, but a computation
shows that the bound is non-trivial essentially only in the stated range.

Next we show that a direct application of H(η) gives

(4.4) ψ(x+ h)− ψ(x)− h�
{
h1/3x1/6+η/3+ε if 0 < η < 1

h1/2xε if η = 0;

(4.4) is non-trivial (again in the sense of Remark 2) for x1/4+η/2+3ε ≤ h ≤
x1−η if 0 < η < 1/2− 2ε and for x3ε ≤ h ≤ x1−ε if η = 0. The proof of (4.4)
is along the lines of Theorem 4 in Gonek [8], especially in the case η = 0.
By the explicit formula we have

ψ(x+ h)− ψ(x) = h−
∑

|γ|≤x/h

∫ x+h

x
uρ−1du(4.5)

−
∑

x/h<|γ|≤x

(x+ h)ρ − xρ

ρ
+O(log2 x).

Assume first that 0 < η < 1 and recall (1.2), (3.1) and the trivial bound
Σ(X,T )� T log T . Hence, applying Lemma 6 with x ≤ X ≤ x+ h, xη ≤
U ≤ x/h, T = x/h and τ = xη/U , from hypothesis H(η) we obtain

∑
|γ|≤x/h

∫ x+h

x
uρ−1du(4.6)

� hx−1/2
(

max
x≤u≤x+h

|Σ(u, U)|+ max
x≤u≤x+h

|Σ(u, U, x
h
)|)

� hx−1/2+ε(U +
x1+η/2

hU1/2
)� h1/3x1/6+η/3+ε

with the optimal choice U = (x2+η/h2)1/3, provided xη ≤ x/h ≤ x. Note
that the above conditions on U are satisfied with such a choice. Let now
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u = x or u = x+ h. By partial summation and Lemma 6 with X = u, U =
x/h, x/h ≤ T ≤ x and τ = hxη−1, from hypothesis H(η) we get∑

x/h<|γ|≤x

uρ

ρ
� x−1/2|Σ(u, x

h
, x)|+ x1/2

∫ x

x/h
|Σ(u, x

h
, t)|dt

t2
(4.7)

� h1/2xη/2+ε,

again provided xη ≤ x/h ≤ x. From (4.6) and (4.7) we see that (4.5) becomes

ψ(x+ h)− ψ(x)− h� (h1/3x1/6+η/3 + h1/2xη/2)xε.

A simple computation shows that the term h1/3x1/6+η/3 dominates if h ≤
x1−η and is non-trivial in the range stated after (4.4). Moreover, the term
h1/2xη/2 dominates if h ≥ x1−η, but gives a trivial result in such a range.
Thus the bound (4.4) follows if η > 0. If η = 0 the argument is similar but
simpler, and reduces essentially to the proof of Theorem 4 of Gonek [8].
Indeed, the freedom in the choice of τ given by hypothesis H(0) allows to
choose U = xε and τ = 0 in the application of Lemma 6 to the second row
of (4.6), thus giving

(4.8)
∑

|γ|≤x/h

∫ x+h

x
uρ−1du� h1/2xε,

provided x3ε ≤ h ≤ x1−ε. Hence the bound (4.4) follows from (4.8) and (4.7)
in the case η = 0, and is non-trivial in the stated range. Theorem 2 follows
from (4.1) and (4.4).
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