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On the number of outer automorphisms

of the automorphism group of a

right-angled Artin group

Neil J. Fullarton

We show that for any natural number N there exists a right-
angled Artin group AΓ for which Out(Aut(AΓ)) has order at least
N . This is in contrast with the cases where AΓ is free or free
abelian: for all n, Dyer–Formanek and Bridson–Vogtmann showed
that Out(Aut(Fn)) = 1, while Hua–Reiner showed |Out(Aut(Zn))|
≤ 4. We also prove the analogous theorem for Out(Out(AΓ)). These
theorems fit into a wider context of algebraic rigidity results in ge-
ometric group theory. We establish our results by giving explicit
examples; one useful tool is a new class of graphs called austere
graphs.

1. Overview

A finite simplicial graph Γ with vertex set V and edge set E ⊂ V × V defines
the right-angled Artin group AΓ via the presentation

〈v ∈ V | [v, w] = 1 if (v, w) ∈ E〉.

The class of right-angled Artin groups contains all finite rank free and free
abelian groups, and allows us to interpolate between these two classically
well-studied classes of groups.

A centreless group G is complete if the natural embedding Inn(G) ↪→
Aut(G) is an isomorphism. Dyer–Formanek [7] showed that Aut(Fn) is com-
plete for Fn a free group of rank n ≥ 2, giving Out(Aut(Fn)) = 1. Bridson–
Vogtmann [2] later proved this for n ≥ 3 using geometric methods, and
showed that Out(Fn) is also complete, as did Khramtsov [13]. Although
Aut(Zn) = GL(n,Z) is not complete (its centre is Z/2), we observe simi-
lar behaviour for free abelian groups. Hua–Reiner [11] explicitly determined
Out(GL(n,Z)); in particular, |Out(GL(n,Z))| ≤ 4 for all n. In other words,
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for free or free abelian AΓ, the orders of Out(Aut(AΓ)) and Out(Out(AΓ))
are both uniformly bounded above. The main result of this paper is that
no such uniform upper bounds exist when AΓ ranges over all right-angled
Artin groups.

Theorem A. For any N ∈ N, there exists a right-angled Artin group AΓ

such that |Out(Aut(AΓ))| > N. Moreover, we may choose AΓ to have trivial
or non-trivial centre.

We also prove the analogous result regarding the order of Out(Out(AΓ)).

Theorem B. For any N ∈ N, there exists a right-angled Artin group AΓ

such that Out(Out(AΓ)) contains a finite subgroup of order greater than N .

Improving upon Theorem B, in joint work with Corey Bregman, we have
exhibited right-angled Artin groups AΓ for which Out(Out(AΓ)) is infinite;
this work will appear in a forthcoming paper.

We remark that neither Theorem A nor B follows from the other, since
in general, given a quotient G/N , the groups Aut(G/N) and Aut(G) may
behave very differently.

Many of the groups that arise in geometric group theory display ‘alge-
braic rigidity’, in the sense that their outer automorphism groups are small.
The aforementioned results of Dyer–Formanek [7], Bridson–Vogtmann [2]
and Hua–Reiner [11] are examples of this phenomenon. Further examples
are given by braid groups [8] and many mapping class groups [12], as these
groups have Z/2 as their outer automorphism groups. Theorems A and B
thus fit into a more general framework of the study of algebraic rigidity
within geometric group theory.

We prove the three theorems by exhibiting classes of right-angled Artin
groups over which the groups in question grow without bound. We intro-
duce the notions of an austere graph and a weakly austere graph in Sections
2 and 4, respectively. These lead to tractable decompositions of Aut(AΓ)
and Out(AΓ), which then yield numerous members of Out(Aut(AΓ)) and
Out(Out(AΓ)). Our methods do not obviously yield infinite order elements
of Out(Aut(AΓ)); we discuss this further in Section 5.

Outline of paper. In Section 2, we recall the finite generating set of
Aut(AΓ) and give the proof of Theorem B. Sections 3 and 4 contain two
proofs of Theorem A; first for right-angled Artin groups with non-trivial cen-
tre, then for those with trivial centre. In Section 5, we discuss generalisations
of this work, including the question of extremal behaviour of Out(Aut(AΓ)).
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The potential existence of infinite order members of Out(Aut(AΓ)) is also
discussed in Section 5, along with some difficulties of approaching this ques-
tion. The Appendix contains a calculation used in the proof of Proposi-
tion 3.2.

2. Proof of Theorem B

Let Γ be a finite simplicial graph with vertex set V and edge set E ⊂ V × V .
We write Γ = (V,E). We abuse notation and consider v ∈ V as both a vertex
and a generator of AΓ. We will also often consider a subset S ⊆ V as the
full subgraph of Γ which it spans. For a vertex v ∈ V , we define its link,
lk(v), to be the set of vertices in V adjacent to v, and its star, st(v), to be
lk(v) ∪ {v}.
The LS generators. Laurence [14] and Servatius [16] gave a finite gener-
ating set for Aut(AΓ), which we now recall. We specify the action of the
generator on the elements of V . If a vertex v ∈ V is omitted, it is assumed
to be fixed. There are four types of generators:

1) Inversions, ιv: for each v ∈ V , ιv maps v to v−1.

2) Graph symmetries, φ: each φ ∈ Aut(Γ) induces an automorphism of
AΓ, which we also denote by φ, mapping v ∈ V to φ(v).

3) Dominated transvections, τxy: for x, y ∈ V , whenever lk(y) ⊆ st(x), we
write y ≤ x, and say y is dominated by x (see Figure 1a). In this case,
τxy is well-defined, and maps y to yx. The vertex x may be adjacent
to y, but it need not be.

4) Partial conjugations, γc,D: fix c ∈ V , and select a connected component
D of Γ \ st(c) (see Figure 1b). The partial conjugation γc,D maps every
d ∈ D to cdc−1.

We refer to the generators on this list as the LS generators of Aut(AΓ).

Austere graphs. We say that a graph Γ = (V,E) is austere if it has trivial
symmetry group, no dominated vertices, and for each v ∈ V , the graph Γ \
st(v) is connected. We use examples of austere graphs to prove Theorem B.

Proof of Theorem B. For an austere graph Γ = (V,E), the only well-defined
LS generators of Aut(AΓ) are the inversions and the partial conjugations.
Let n = |V |. Note that each partial conjugation is an inner automorphism.
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(a) (b)

Figure 1. (a) The local picture of a vertex α being dominated by a vertex
β. (b) Removing the star of the vertex σ leaves two connected components,
D1 and D2.

Figure 2. The Frucht graph, an example of a graph which is austere.

We have the decomposition

Aut(AΓ) ∼= Inn(AΓ)� IΓ,

where IΓ ∼= (Z/2)n is the group generated by the inversions. The inversions
act on Inn(AΓ) ∼= AΓ in the obvious way, either inverting or fixing (con-
jugation by) each v ∈ V . We have Out(AΓ) ∼= IΓ, and so Aut(Out(AΓ)) ∼=
Out(Out(AΓ)) ∼= GL(n,Z/2). If we can find austere graphs for which n is as
large as we like, then we will have proved Theorem B.

The Frucht graph, seen in Figure 2, was constructed by Frucht [9] as
an example of a 3-regular graph with trivial symmetry group. In fact, it is
easily checked that the Frucht graph is austere. Baron–Imrich [1] generalised
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the Frucht graph to produce a family of finite, 3-regular graphs with trivial
symmetry groups, over which n = |V | is unbounded. Like the Frucht graph,
these graphs may also be shown to be austere, and so they define a class of
right-angled Artin groups which proves Theorem B. �

3. Proof of Theorem A: right-angled Artin groups with
non-trivial centre

In this section, we assume that AΓ has non-trivial centre. Let {Γi} be a
collection of graphs. The join, J {Γi}, of {Γi} is the graph obtained from
the disjoint union of {Γi} by adding an edge (vi, vj) for all vertices vi of
Γi and vj of Γj , for all i �= j. Observe that for a finite collection of finite
simplicial graphs {Γi}, we have

AJ{Γi} ∼=
∏

i

AΓi
.

When we take the join of only two graphs, Γ and Δ, we write J (Γ,Δ) for
their join.

3.1. Decomposing Aut(AΓ)

A vertex s ∈ V is said to be social if it is adjacent to every vertex of V \ {s}.
Let S denote the set of social vertices of Γ and set k = |S|. Let Δ = Γ \ S.
We have Γ = J (S,Δ), so AΓ

∼= Z
k ×AΔ, and by The Centralizer Theorem

of Servatius [16], the centre of AΓ is AS = Z
k.

No vertex v ∈ Δ can dominate any vertex of S (otherwise v would be so-
cial), and any φ ∈ Aut(Γ) must preserve S and Δ as sets. Determining the LS
generators, we see that Aut(AΓ) has GL(k,Z)×Aut(AΔ) as a proper sub-
group. The only LS generators not contained in this proper subgroup are of
the form τsa, where s ∈ S and a ∈ Δ. Note that this dominated transvection
is defined for any pair (s, a) ∈ S ×Δ. We will refer to this type of transvec-
tion as a lateral transvection, as they occur ‘between’ the two graphs, S
and Δ.

Proposition 3.1. Let Γ = J (S,Δ) define a right-angled Artin group, AΓ,
with non-trivial centre. The group L generated by the lateral transvections
is isomorphic to Z

k|Δ|.
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Proof. It is clear the lateral transvections τsa and τtb commute if a �= b. The
only case left to check is τsa and τta, for s, t ∈ S and a ∈ Δ. We see that

τtaτsaτ
−1
ta (a) = τtaτsa(at

−1) = τta(ast
−1) = atst−1 = as,

since s and t commute. Therefore τtaτsaτ
−1
ta = τsa, and hence L is abelian.

That it has no torsion follows from the fact that Z
k has no torsion. A

straightforward calculation verifies that the lateral transvections form a Z-
basis for L. To deduce the rank, observe there is a bijection between {τsa |
S ∈ S, a ∈ Δ} and S ×Δ. �

We now show that L is the kernel of a semi-direct product decomposition of
Aut(AΓ). This is an Aut(AΓ) version of a decomposition of Out(AΓ) given
by Charney–Vogtmann [5].

Proposition 3.2. Let Γ = J (S,Δ) define a right-angled Artin group, AΓ,
with non-trivial centre. The group Aut(AΓ) splits as the product

Z
k|Δ|

� [GL(k,Z)×Aut(AΔ)] .

Proof. Standard computations show that L ∼= Z
k|Δ| is closed under conju-

gation by the LS generators: these calculations are summarised in the Ap-
pendix. We observe that the intersection of L and GL(k,Z)×Aut(AΔ) is
trivial: the elements of L transvect vertices of Δ by vertices of S, whereas
the elements of GL(k,Z)×Aut(AΔ) carry Z

k and AΔ back into themselves.
Thus, Aut(AΓ) splits as in the statement of the proposition. �

We look to the Z
k|Δ| kernel as a source of automorphisms of Aut(AΓ).

We must however ensure that the semi-direct product action is preserved;
this is achieved using the theory of automorphisms of semi-direct products,
which we now recall.

Automorphisms of semi-direct products. Let G = N �H be a semi-
direct product, where N is abelian, with the action of H on N being encoded
by a homomorphism α : H → Aut(N), writing h 
→ αh. We will often write
(n, h) ∈ G simply as nh. Let Aut(G,N) ≤ Aut(G) be the subgroup of au-
tomorphisms which preserve N as a set. For each γ ∈ Aut(G,N), we get
an induced automorphism φ, say, of G/N , and an automorphism θ, say, of
N , by restriction. The map P : Aut(G,N)→ Aut(N)×Aut(H) given by
P (γ) = (θ, φ) is a homomorphism.

An element (θ, φ) ∈ Aut(N)×Aut(H) is said to be a compatible pair if
θαhθ

−1 = αφ(h), for all h ∈ H. Let C ≤ Aut(N)×Aut(H) be the subgroup
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of all compatible pairs. This is a special (split, abelian kernel) case of the
notion of compatibility for group extensions [15], [19]. Notice that the im-
age of P is contained in C, since γ ∈ Aut(G,N) must preserve the relation
hnh−1 = αh(n) for all h ∈ H,n ∈ N . We therefore restrict the codomain of
P to C. Note that while P (with its new codomain) is surjective, it need
not be injective: consider, for example, any automorphism of Z× Z that
preserves one copy of Z but not the other. We map C back into Aut(G,N)
using the homomorphism R, defined by

R(θ, φ)(nh) = θ(n)φ(h).

Let AutH(G,N) be the subgroup of Aut(G,N) of maps which induce
the identity on H. This group is mapped via P onto

C1 := {θ ∈ Aut(N) | θα(h)θ−1 = α(h) ∀h ∈ H}.

Note C1 is the centraliser of im(α) in Aut(N). We determine C1 for the semi-
direct product decomposition of Aut(AΓ) given by Proposition 3.2, and use
R to map C1 into Aut(Aut(AΓ)).

3.2. Ordering the lateral transvections

In order to determine the image of α for our semi-direct product, Zk|Δ|
�

[GL(k,Z)×Aut(AΔ)], we specify an ordering on the lateral transvections.
Let s1 ≤ · · · ≤ sk be a total order on the vertices of S. For lateral transvec-
tions τsia, τsjb, we say τsia ≤ τsjb if si ≤ sj . For a fixed i, we refer to the set
{τsia | a ∈ Δ} as a Δ-block.

We now use properties of the graph Δ to determine the rest of the
ordering on the lateral transvections. Recall that for vertices x, y ∈ V , x
dominates y if lk(y) ⊆ st(x), and we write y ≤ x. Charney–Vogtmann [5]
show that ≤ is a pre-order (that is, a reflexive, transitive relation) on V ,
and use it to define the following equivalence relation. Let v, w ∈ V . We say
v and w are domination equivalent if v ≤ w and w ≤ v. If this is the case,
we write v ∼ w, and let [v] denote the domination equivalence class of v.

The pre-order on V descends to a partial order on V/ ∼. We also denote
this partial order by ≤. The group Aut(Δ) acts on the set of domination
classes of Δ. Let O be the set of orbits of this action, writing O[v] for the
orbit of the class [v]. We wish to define a partial order � on O which
respects the partial order on the domination classes. That is, if [v] ≤ [w],
then O[v] � O[w], for domination classes [v] and [w].
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We achieve this by defining a relation � on O by the rule O[v] � O[w] if
and only if there exists [w′] ∈ O[w] such that [v] ≤ [w′]. This is well-defined,
since Aut(Δ) acts transitively on each O[v] ∈ O. The properties of ≤ dis-
cussed above give us the following proposition.

Proposition 3.3. The relation � on O is a partial order.

Proof. We utilise the transitive action of Aut(Δ) on each O[v] ∈ O. The only
work lies in establishing the anti-symmetry of �. This can be achieved by
noting that if [v] ≤ [w], then |st(v)| ≤ |st(w)|, and if [v] ≤ [w] with |st(v)| =
|st(w)| then [v] = [w]. �

We use � to define a total order on the vertices of Δ, by first extending �
to a total order on O. We also place total orders on the domination classes
within each O[v] ∈ O, and on the vertices within each domination class. Now
each vertex is relabelled T (p, q, r) to indicate its place in the order: T (p, q, r)
is the rth vertex of the qth domination class of the pth orbit. When working
with a given Δ-block, we can identify the lateral transvections with the
vertices of Δ, allowing us to think of T (p, q, r) as a lateral transvection.
Thus, we may think of a specific Δ-block as inheriting an order from the
ordering on Δ.

The centraliser of the image of α. We now explicitly determine the
image of α, and its centraliser, in GL(k|Δ|,Z). Looking at how GL(k,Z)×
Aut(AΔ) acts on Z

k|Δ| (see the Appendix), we see that the image of α is

Q := GL(k,Z)× ΦΔ,

where ΦΔ ≤ GL(|Δ|,Z) is the image of Aut(AΔ) under the homomorphism
induced by abelianising AΔ. The action of Q on Z

k|Δ| factors through
GL(k + |Δ|,Z) via the canonical map Aut(AΓ)→ GL(k + |Δ|). Working in
GL(k + |Δ|,Z) instead of GL(k|Δ|,Z) is simpler (as pointed out to us by
an anonymous referee), however it does not allow us to fully determine the
group C1, as the following does.

The matrices in Q have a natural block decomposition given by the
Δ-blocks: each M ∈ Q may be partitioned into k horizontal blocks and k
vertical blocks, each of which has size |Δ| × |Δ|. We writeM = (Aij), where
Aij is the block entry in the ith row and jth column. Under this decompo-
sition, we see that the GL(k,Z) factor of Q is embedded as

GL(k,Z) ∼= {(aij · I|Δ|) | (aij) ∈ GL(k,Z)},
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where I|Δ| is the identity matrix in GL(|Δ|,Z). We write Diag(D1, . . . , Dk)
to denote the block diagonal matrix (Bij) where Bii = Di and Bij = 0 if
i �= j. The ΦΔ factor of Q embeds as

ΦΔ ∼= {Diag(M, . . . ,M) | M ∈ ΦΔ} ≤ Q.

We now determine the centraliser, C(Q), of Q in GL(k|Δ|,Z). The proof
is similar to the standard computation of Z(GL(k,Z)).

Lemma 3.4. The centraliser C(Q) is a subgroup of {Diag(M, . . . ,M) |
M ∈ GL(|Δ|,Z)}.

Proof. Clearly an element of C(Q) must centralise the GL(k,Z) factor of Q.
Let D be the subgroup of diagonal matrices in GL(k,Z), and define

D̂ := {(εij · I|Δ|) | (εij) ∈ D} ≤ Q.

Suppose (Aij) ∈ C(Q) centralises D̂. Then for each (εij · I|Δ|) ∈ D̂, we must
have

(Aij) = (εij · I|Δ|)(Aij)(εij · I|Δ|) = (εiiεjjAij),

since (εij · I|Δ|) is block diagonal. Since εii ∈ {−1, 1} for 1 ≤ i ≤ k, we must
have Aij = 0 if i �= j, so (Aij) is block diagonal. By considering which block
diagonal matrices centralise (Eij · I|Δ|), where (Eij) ∈ GL(k,Z) is an ele-
mentary matrix, we see that any block diagonal matrix centralising the
GL(k,Z) factor of Q must have the same matrix M ∈ GL(|Δ|,Z) in each
diagonal block. It is then a standard calculation to verify that any choice of
M ∈ GL(|Δ|,Z) will centralise the GL(k,Z) factor of Q. �

The problem of determining C(Q) has therefore been reduced to deter-
mining the centraliser of ΦΔ in GL(|Δ|,Z). The total order we specified on
the vertices of Δ gives a block lower triangular decomposition of M ∈ ΦΔ,
which we utilise in the proof of Proposition 3.5. This builds upon a matrix
decomposition given by Day [6] and Wade [18].

Observe that ΦΔ contains the diagonal matrices of GL(|Δ|,Z). As in
the above proof, anything centralising ΦΔ must be a diagonal matrix. For a
diagonal matrix E ∈ GL(|Δ|,Z), we write E(p, q, r) for the diagonal entry
corresponding to the vertex T (p, q, r) of Δ.

Proposition 3.5. A diagonal matrix E ∈ GL(|Δ|,Z) centralises ΦΔ if and
only if the following conditions hold:
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(1): If p = p′, then E(p, q, r) = E(p′, q′, r′), and,

(2): If T (p, q, r) is dominated by T (p′, q′, r′), then E(p, q, r) = E(p′, q′, r′)

Proof. We define a block decomposition of the matrices in GL(|Δ|,Z) using
the sizes of the orbits, O[v1] � · · · � O[vl]. Let mi = |O[vi]|. We partition
M ∈ GL(|Δ|,Z) into l horizontal blocks and l vertical blocks, writing M =
(Mij), where Mij is an mi ×mj matrix. Observe that due to the ordering
on the lateral transvections, if i < j, then Mij = 0.

Let E ∈ GL(|Δ|,Z) satisfy the conditions in the statement of the propo-
sition. We may write E = Diag(ε1 · Im1×m1

, . . . , εl · Iml×ml
), where each εi ∈

{−1, 1} (1 ≤ i ≤ l). Then EM = (εi ·Mij) andME = (εj ·Mij).We see that
ME and EM agree on the diagonal blocks, and on the blocks whereMij = 0.
If i > j and Mij �= 0, then there must be a vertex T (j, q, r) being dominated
by a vertex T (i, q′, r′). By assumption, εi = εj . Therefore EM =ME and
E ∈ C(Q).

Suppose now that E ∈ GL(|Δ|,Z) fails the first condition. Without loss
of generality, suppose E(p, q, 1) �= E(p, q′, 1). Since, by definition, Aut(Δ)
acts transitively on the elements of O[vp], there is some P ∈ GL(|Δ|,Z)
induced by some φ ∈ Aut(Δ) which acts by exchanging the qth and q′th
domination classes. A standard calculation shows that [E,P ] �= 1.

Finally, suppose E ∈ GL(|Δ|,Z) fails the second condition. Assume that
T (p, q, r) is dominated by T (p′, q′, r′), but that E(p, q, r) �= E(p′, q′, r′). In
this case, E fails to centralise the elementary matrix which is the result of
transvecting T (p, q, r) by T (p′, q′, r′). �

Extending elements of C(Q) to automorphisms of Aut(AΓ). Us-
ing the map R from section 3.1, for A ∈ C(Q) = C1 we obtain R(A) ∈
Aut(Aut(AΓ)) which acts as A on Z

k|Δ| and as the identity on GL(k,Z)×
Aut(AΔ). Note that R(A) acts on Aut(AΓ) by inverting some collection of
lateral transvections: the group R(C1) is hence a direct sum of finitely many
copies of Z/2.If there are d domination classes in Δ, then |C1| ≤ 2d. We now
determine R̂(C1), the image of R(C1) in Out(Aut(AΓ)).

Let nh ∈ Z
k|Δ|

� [GL(k,Z)×Aut(AΔ)], with h �= 1. Conjugating
Aut(AΓ) by nh fixes GL(k,Z)×Aut(AΔ) pointwise only if h is central in
GL(k,Z)×Aut(AΔ). The only such non-trivial central element is ι, the
automorphism inverting each generator of Zk (see Proposition 5.1). Given
that αι(n) = −n for each n ∈ Z

k|Δ|, we see that for any m ∈ Z
k|Δ|, we have

(m, 1)(n,ι) = (−m, 1).
So, regardless of which n we choose, conjugation by nι is equal to

R(−Ik|Δ|). In other words, when we conjugate by nι, we map each lateral
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transvection to its inverse. Thus, for A,B ∈ C1, R(AB
−1) is inner if and

only if A(p, q, r) = −B(p, q, r) for every p, q, and r. This means |R(C1)| =
2|R̂(C1)|.
First proof of Theorem A. We are now able to prove Theorem A for
right-angled Artin groups with non-trivial centre.

Proof (1) of Theorem A. By Proposition 3.2, we have a semi-direct product
decomposition of Aut(AΓ), whose kernel is Z

k|Δ|. The structure of C1 =
C(Q) is given by Proposition 3.5. We have fewest constraints on C1 if Δ is
such that domination occurs only between vertices in the same domination
class, and when each domination class lies in an Aut(Δ)-orbit by itself.
This is achieved, for example, if Δ = X, a disjoint union of pairwise non-
isomorphic complete graphs, each of rank at least two. Suppose X has d
connected components. For A ∈ C(Q), Proposition 3.5 implies A is entirely
determined by the entries A(p, 1, 1) (1 ≤ p ≤ d). This gives |C(Q)| = 2d, and
so the image of C(Q) in Out(Aut(AΓ)) has order 2

d−1. As we may choose d
to be as large as we like, the result follows. �

4. Proof of Theorem A: centreless right-angled Artin groups

In this section, we demonstrate that Theorem A also holds for classes of
centreless right-angled Artin groups. From now on, we assume that the graph
Γ has no social vertices, so that AΓ, has trivial centre. A simplicial graph
Γ = (V,E) is said to have no separating intersection of links (‘no SILs’)
if for all v, w ∈ V with v not adjacent to w, each connected component of
Γ \ (lk(v) ∩ lk(w)) contains either v or w. We have the following theorem.

Theorem 4.1 (Charney–Ruane–Stambaugh–Vijayan [3]). Let Γ be a
finite simplicial graph with no SILs. Then PC(AΓ), the subgroup of Aut(AΓ)
generated by partial conjugations, is a right-angled Artin group, whose defin-
ing graph has vertices in bijection with the partial conjugations of AΓ.

We restrict ourselves to looking at certain no SILs graphs, to obtain a
nice decomposition of Aut(AΓ). We say a graph Γ is weakly austere if it
has trivial symmetry group and no dominated vertices. Note that this is a
loosening of the definition of an austere graph: removing a vertex star need
no longer leave the graph connected.
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Lemma 4.2. Let Γ = (V,E) be weakly austere and have no SILs. For c ∈
V , let Kc = |π0(Γ \ st(c))|. Then

|Out(Aut(AΓ))| ≥ 2Kc−1.

Proof. Since Γ is weakly austere, the only LS generators which are defined
are the inversions and the partial conjugations. Letting IΓ denote the finite
subgroup generated by the inversions ιv (v ∈ V ), we obtain the decomposi-
tion

Aut(AΓ) ∼= PC(AΓ)� IΓ,

where the inversions act by inverting partial conjugations in the obvious
way. Since Γ has no SILs, it follows from Theorem 4.1 that PC(AΓ) ∼= AΔ

for some simplicial graph Δ whose vertices are in bijection with the partial
conjugations of AΓ.

Fix c ∈ V and let {γc,Di
| 1 ≤ i ≤ Kc} be the set of partial conjugations

by c. Let ηc,j be the LS generator of Aut(AΔ) which inverts γc,Dj
, but fixes

the other vertex-generators of AΔ. This extends to an automorphism of
Aut(AΓ), by specifying that IΓ is fixed pointwise: all that needs to be checked
is that the action of IΓ on PC(AΓ) is preserved, which is a straightforward
calculation. We abuse notation, and write ηc,j ∈ Aut(Aut(AΓ)).

If Kc > 1, we see ηc,j is not inner. Assume ηc,j is equal to conjugation by
pκ ∈ PC(AΓ)� IΓ. For γ ∈ PC(AΓ), we have (γ, 1)

(p,κ) = (pγκp−1, 1). Since
ηc,j(γc,Dj

) = γc,Dj

−1, an exponent sum argument tells us that κ must act by
inverting γc,Dj

, and so κ must invert c in AΓ. However, ηc,j fixes γc,Di
for

all i �= j, by definition, and a similar exponent sum argument implies that
κ cannot invert c in AΓ. Thus, by contradiction, ηc,j cannot be inner.

As above, we may choose a subset of {γc,Di
} to invert, and extend this

to an automorphism of Aut(AΓ). Take two distinct such automorphisms, η1
and η2. Their difference η1η

−1
2 is inner if and only if it inverts every element

of {γc,Di
}. Otherwise, we would get the same contradiction as before. A

counting argument gives the desired lower bound of 2Kc−1. �

Observe that if Γ is austere, we cannot find a vertex c with Kc > 1. This
is the reason we loosen the definition and consider weakly austere graphs.

Second proof of Theorem A. By exhibiting an infinite family of graphs
over which the size of |{γc,Di

}| is unbounded, applying Lemma 4.2 will give
a second proof of Theorem A.

Proof (2) of Theorem A. Fix t ∈ Z with t ≥ 3. Define e0 = 0 and choose
{e1 < · · · < et} ⊂ Z

+ subject to the conditions:
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(1): For each 0 < i ≤ t, we have ei − ei−1 > 2, and

(2): If i �= j, then ei − ei−1 �= ej − ej−1.

We use the set E := {ei} to construct a graph. Begin with a cycle on et
vertices, labelled 0, 1, . . . , et − 1 in the natural way. Join one extra vertex,
labelled c, to those labelled ei, for 0 ≤ i < t. We denote the resulting graph
by ΓE . Figure 3 shows an example of such a ΓE .

Figure 3. The graph ΓE , for E = {3, 7, 12}.

For E ⊂ Z
+ satisfying the above conditions, we see that ΓE is weakly

austere and has no SILs. Condition (1) ensures that no vertex is dominated
by another. Observe that c is fixed by any φ ∈ Aut(ΓE). Since each connected
component of Γ \ st(c) has ei − ei−1 − 1 elements (for some 1 ≤ i ≤ t), con-
dition (2) implies that Aut(ΓE) = 1. To see that ΓE has no SILs, observe
that the intersection of the links of any two vertices has order at most 1.
When a single vertex is removed, ΓE remains connected, and so it has no
SILs.

Lemma 4.2 applied to the family of graphs {ΓE} proves the theorem. �

5. Extremal behaviour and generalisations

In Sections 3 and 4, we gave examples of AΓ for which Out(Aut(AΓ)) was
non-trivial, but not necessarily infinite. Currently, there are very few known
AΓ for which Out(Aut(AΓ)) exhibits ‘extremal behaviour’, that is, AΓ for
which Out(Aut(AΓ))) is trivial or infinite. In this final section, we discuss
the possibility of such behaviour, and generalisations of the current work to
automorphism towers.
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Complete automorphisms groups. Recall that a group G is said to be
complete if it has trivial centre and every automorphism of G is inner. Our
proofs of Theorems A and B relied upon us being able to exhibit large
families of right-angled Artin groups whose automorphisms groups are not
complete. It is worth noting that if AΓ is not free abelian, then Aut(AΓ) has
trivial centre, and so a priori, Aut(AΓ) could be complete.

Proposition 5.1. Let AΓ be a right-angled Artin group. Then Z(Aut(AΓ))
has order at most two. In particular, if AΓ is not free abelian, then Aut(AΓ)
is centreless.

Proof. For brevity of proof, we assume that AΓ
∼= Z

k ×AΔ, taking k =
0, and Z

k = 1 if AΓ is centreless. If AΓ is free abelian of rank k, then
Z(Aut(AΓ)) ∼= Z(GL(k,Z)) ∼= Z/2. From now on, we assume the centre of
AΓ is proper.

We now adapt the standard proof that a centreless group has centre-
less automorphism group. Suppose that φ ∈ Aut(AΓ) is central. We know
that Inn(AΓ) ∼= AΓ/Z

k ∼= AΔ. For any γw ∈ Inn(AΓ), we must have γw =
φγwφ

−1 = γφ(w). So, for φ to be central, it must fix every element of AΔ.
Observe that if k = 0, then φ must be trivial, and we are done.

Assume now that k ≥ 1. For any φ ∈ Aut(AΓ), we also have φ(u) ∈ Z
k,

for all u ∈ Z
k. So, a central φ must simply be an element of GL(k,Z), since

it must be the identity on AΔ, and take Z
k into itself.

In particular, we have that Z(Aut(AΓ)) ≤ Z(GL(k,Z)) = {1, ι}, where
ι is the automorphism inverting each generator of Z

k. However, lateral
transvections are not centralised by ι, and so the centre of Aut(AΓ) is triv-
ial. �

In this paper, we have focused on finding right-angled Artin groups whose
automorphism groups are not complete: an equally interesting question is
which right-angled Artin groups do have complete automorphism groups,
beyond the obvious examples of ones built out of direct products of free
groups. In an earlier version of this paper, we conjectured that when Γ is
austere, the group Aut(AΓ) would be complete. However, Corey Bregman
has since constructed non-trivial members of Out(Aut(AΓ)) of order 2 when
Γ is austere; this work will appear in a forthcoming paper.

It may be possible to adapt Bridson–Vogtmann’s geometric proof [2]
of the completeness of Out(Fn) to find examples of AΓ for which Out(AΓ)
is complete, using Charney–Stambaugh–Vogtmann’s newly developed outer
space for right-angled Artin groups [4].
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Infinite order automorphisms. Theorem C showed that it is possible for
Out(Out(AΓ)) to be infinite, however the question of whether Out(Aut(AΓ))
can be infinite is still open. An obvious approach to this problem is to exhibit
an element α ∈ Out(Aut(AΓ)) of infinite order. The approach taken in Sec-
tion 4, involving graphs Γ with no SILs, might seem hopeful, as we certainly
know of infinite order non-inner elements of Aut(PC(AΓ)): in particular,
dominated transvections and partial conjugations. A key property that al-
lowed us to extend ηc,j ∈ Aut(PC(AΓ)) to an element of Aut(Aut(AΓ)) was
that it respected the natural partition of the partial conjugations by their
conjugating vertex. More precisely, ηc,j sent a partial conjugation by v ∈ V
to a string of partial conjugations, also by v. This ensured that the action of
IΓ on PC(AΓ) was preserved when we extended ηc,j to be the identity on IΓ.

It might be hoped that we could find a transvection τ ∈ Aut(PC(AΓ))
which also respected this partition, as τ could then easily be extended to
an infinite order element of Aut(Aut(AΓ)). However, it is not difficult to
verify that whenever Γ has no dominated vertices, as in Section 4, no such
τ will be well-defined. Similarly, the only obvious way to extend a partial
conjugation γ ∈ PC(PC(AΓ)) is to an element of Inn(Aut(AΓ)). This leads
us to formulate the following open question.

Question: Does there exist a simplicial graph Γ such that Out(Aut(AΓ)) is
infinite?

It seems possible that such a Γ could exist, however the methods used in
this paper do not find one. Our main approach was to find elements of
Aut(Aut(AΓ)) which preserve some nice decomposition of Aut(AΓ). To find
infinite order elements of Aut(Aut(AΓ)), it may be fruitful, but more un-
wieldy, to loosen this constraint.

While it is possible to find groups Aut(AΓ) and Out(AΓ) that contain
finite index subgroups whose automorphism groups are infinite, it is a dif-
ficult problem in general to extend such automorphisms to induce mem-
bers of Out(Aut(AΓ)) and Out(Out(AΓ)). For example, for AΓ = F2 × F2,
the four well-defined dominated transvections in Aut(AΓ) generate a finite
index copy of AΓ inside Out(AΓ). However, this copy of F2 × F2 lies in
Out(F2)×Out(F2) ≤ Out(AΓ), and the interplay between the dominated
transvections and the remaining LS generators prevents any infinite order
automorphisms of the copy of AΓ = F2 × F2 extending in the obvious way.
Indeed, Out(F2) = GL(2,Z), and Hua–Reiner [11] have already established
that the outer automorphism group of this group is finite.

Automorphism towers. Let G be a centreless group. Then G embeds into
its automorphism group, Aut(G), as the subgroup of inner automorphisms,
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Inn(G), and Aut(G) is also centreless. We inductively define

Auti(G) = Aut(Auti−1(G))

for i ≥ 0, with Aut0(G) = G. This yields the following chain of normal sub-
groups:

G�Aut(G)�Aut(Aut(G))� · · ·�Auti(G)� · · · ,

which we refer to as the automorphism tower of G. This sequence of groups
is extended transfinitely using direct limits in the obvious way. An auto-
morphism tower is said to terminate if there exists a group A in the tower
for which the embedding into the next group in the tower is an isomor-
phism. Observe that a complete group’s automorphism tower terminates at
the first step. Thomas [17] showed that any centreless group has a termi-
nating automorphism tower, although it may not terminate after a finite
number of steps. Hamkins [10] showed that the automorphism tower of any
group terminates, although in the above definition, we have only considered
automorphism towers of centreless groups.

Problem: Determine the automorphism tower of AΓ for an arbitrary Γ.

This seems a difficult problem in general. A first approach might be to find
AΓ for which Out(Aut(AΓ)) is finite. It would then perhaps be easier to
study the structure of Aut2(AΓ).

λ ∈ T ∪ T−1 λ · τsa · λ−1 λ ∈ T ∪ T−1 λ · τsa · λ−1
ιt τsa ιb τsa
ιs −τsa ιa −τsa
τst τsa τbd τsa
τrt τsa τab τsa − τsb
τts τsa + τta τ−1ab τsa + τsb
τ−1ts τsa − τta φ ∈ Aut(Δ) τsφ(a)

γc,D τsa

Table 1. The conjugates of a lateral transvection τsa. The vertices a, b, d, r, s
and t are taken to be distinct, with c ∈ Δ and D being any connected com-
ponent of Γ \ st(c).
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Appendix A. Appendix: Conjugating the lateral
transvections

Table 1 shows the conjugates of the lateral transvection τsa by members of
a set T that suffices to generate Aut(AΓ). We decompose any φ ∈ Aut(Γ)
into its actions on S and Δ.
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