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On convexity of the regular set of conical

Kähler-Einstein metrics

Ved V. Datar

In this note we prove convexity, in the sense of Colding-Naber,
of the regular set of solutions to some complex Monge-Ampère
equations with conical singularities along simple normal crossing
divisors. In particular, any two points in the regular set can be
joined by a smooth minimal geodesic lying entirely in the regular
set. As a consequence, the classical theorems of Myers and Bishop-
Gromov extend almost verbatim to this singular setting.

1. Introduction

Let (X, ω̂) be a Kähler manifold with a smooth reference Kähler metric ω̂.
Let {Dj}Nj=1 be smooth irreducible divisors, and βj ∈ (0, 1). A divisor

(1.1) D =

N∑
j=1

(1− βj)Dj

is called a simple normal crossing divisor if locally at any p ∈ D lying in
the intersection of exactly k divisors D1, . . . , Dk, there exists a coordinate
chart (U, (z1, . . . , zn)) such that Dj

∣∣
U
is cut out by [zj = 0] for j = 1, . . . , k.

A conical Kähler metric along D is a smooth Kähler metric on X \D which
is locally equivalent to the following model edge metric

(1.2) ωe =

k∑
j=1

|zj |−2(1−βj)dzj ∧ dz̄j +

N∑
j=k+1

dzj ∧ dz̄j

Of course, being a conical metric entails additional restrictions on the asymp-
totics near D; interested readers can refer to [16, 20] for more details.
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In this note, we are instead concerned with solutions to the following
singular complex Monge-Ampère equation :

(1.3)

⎧⎪⎪⎨
⎪⎪⎩
(ω̂ +

√−1∂∂ϕ)n = e−λϕΩ
∏N

j=1 |sj |
2(1−βj)

hj

ω = ω̂ +
√−1∂∂ϕ > 0

ϕ ∈ L∞(X) ∩ PSH(X, ω̂)

where λ ∈ R, sj is the defining section of Dj , hj is a smooth hermitian
metric on the line bundle generated by Dj , and Ω is a smooth volume form
satisfying

(1.4)
√−1∂∂ log Ω + λω̂ + χ =

N∑
j=1

(1− βj)
√−1∂∂ log hj

for some smooth (1, 1) form χ. The Ricci curvature of ω solves a twisted
conical Kähler-Einstein equation

(1.5) Ric(ω) = λω + χ+ [D]

where [D] is the current of integration along D. A detailed study of such
equations was carried out by Yau [31] in his celebrated work on the Calabi
conjecture. Kähler-Einstein metrics were first used by Yau to obtain Chern
number inequalities and various other results in algebraic geometry in [29,
32]. Following Yau, conical Kähler-Einstein metrics have also been applied to
obtain Chern number inequalities (cf. [26, 28]). More recently, these singular
Käher-Einstien metrics have played a crucial role in the breakthrough on
existence of smooth Kähler-Einstein metrics on Fano manifolds [7].

It is well known, since Yau’s work, that any bounded solution to (1.3) is
smooth on X \D. In the special case when the divisor is (1− β)D, i.e has
only one smooth divisorial component, substantial progress has been made
on understanding the behavior of the metric close to the divisor, starting
with the fundamental linear theory of Donaldson in [16]. Building on this,
existence and regularity results were obtained by Brendle [2] in the Ricci
flat case when β ∈ (0, 1/2), and by Jeffres-Mazzeo-Rubinstein [20] for all
β ∈ (0, 1), and all signs of curvature. In [20], the authors also prove the
existence of a polyhomogenous expansion for conical Kähler-Einstein metrics
near the divisor. An alternative proof of the existence results, relying on
Donaldson’s linear theory, also appears in the work of Chen-Donaldson-Sun
[9].
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Unfortunately, since many linear systems do not contain smooth divi-
sors, it is important to address the questions of regularity for cone angles
along normal crossing divisors. The first step in this direction are the results
of Campana-Guenancia-Păun [3], and Guenancia-Păun [18]. Amongst other
things, they prove that any ω solving (1.3) is locally equivalent to the stan-
dard edge metric (1.2) (cf. [14] for a shorter proof). While higher regularity
results are awaited, the aim of this note is to prove the convexity of X \D
with respect to the metric induced by ω. This allows the extension of the
classical comparison theorems to the conical setting, and might be useful in
studying the moduli space of Kähler-Einstein metrics with cone singularities
(cf. [13]).

Since ω is smooth on X \D, it defines a length functional Lω and in
turn, a distance function

dω(p, q) = inf{Lω(γ) | γ : [0, 1]→ X \D piecewise smooth,

γ(0) = p, γ(1) = q}

Since, ω is locally equivalent to a model edge metric [3, 14, 18], it is
easily seen that the metric completion of X \D under this distance function
is homeomorphic to X itself, and we set

(X, d) = (X \D, dω)

where the bar denotes the metric completion. We first prove an approxima-
tion theorem for ω, extending results of [8, 27] for conical Kähler-Einstein
metrics in the Fano case.

Proposition 1.1. Let ω = ω̂ +
√−1∂∂ϕ be a solution to (1.3) with ϕ ∈

PSH(X, ω̂) ∩ L∞(X). Then there exist uniform constants A,Λ� 1, and a
sequence ωη ∈ [ω] of smooth Kähler metrics such that

1) Ric(ωη) > −Aωη ; diam(X,ωη) < Λ

2) As η → 0,

(X,ωη)
dGH−−→ (X, d)

where (X, d) as above, is the metric completion of (X \D, dω).

It should be noted that in the Fano case with χ = 0 and a smooth
pluri-canonical divisor D, Chen-Donaldson-Sun [8] and Tian [27], prove a
much stronger result, namely one can approximate with the same Ricci lower
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bound as the conical metric. For such a result, it is of course necessary that
X is Fano.

Next, recall that a unit-speed path γ : [0, l]→ X joining p, q is said to be
a minimal geodesic if d(p, q) = l. It is said to be a limiting geodesic if there
exists a sub-sequence {ηj} with unit-speed ωηj

-geodesics γηj : [0, lj ]→ X
such that lj → j and γηj → γ point wise. Limiting geodesics can be usually
found in abundance. Our main theorem is :

Theorem 1.1. X\D⊂(X, d) is geodesically convex, in the following sense:
if any interior point of a limiting minimal geodesic lies in X \D, then all
the interior points must lie in X \D.

The theorem is proved by combining the above smoothening with the
results of Colding-Naber [12] on the Hölder continuity of tangent cones for
limit spaces. It must be noted that the theorem does not rule out the possibil-
ity of some geodesic connecting p, q ∈ X \D and passing through D, though
it is expected that such a scenario will not occur. A nice consequence of the
above theorem is the following

Corollary 1.1. Let p, q∈X\D with l = d(p, q). Then there exists a smooth
unit speed geodesic γ : [0, l]→ X \D with γ(0) = p and γ(l) = q.

Remark 1.1. The theorem and the corollary may also hold under slightly
milder conditions by replacing the smooth volume form Ω in (1.3) by eF ω̂n

with F ∈ C0(X) ∩ C∞(X \D), if we make an additional apriori assumption
that

Ric(ω) > −Cω

on X \D.

Notation. Distances with respect to ωη and ω are denoted by dη, d respec-
tively. Paths connecting points p, q are denoted by γpq. Minimal geodesics
are denoted with superscripts to specify the reference metric. For example,
dη-minimal and d-minimal geodesics are denoted by γηpq and γdpq respectively.
The lengths of paths are denoted by Lη and Lω respectively.

2. Approximation and smooth convergence away from D.

We need to deal with the cases λ ≤ 0 and λ > 0 separately.
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• λ > 0. We follow the same strategy as in [3, 8, 27]. By Demailly’s
regularization theorem [15], there exists a sequence ψη ∈ C∞(X) ∩
PSH(X, ω̂) such that ψη ↘ ϕ point wise as η → 0. The metrics ωη

are then constructed as the solutions to the following perturbation
of (1.3)

(2.6)

⎧⎨
⎩
(ω̂ +

√−1∂∂ϕη)
n = e−λψη+cηΩ∏N

j=1 (|sj |2hj
+η)(1−βj)

ωη = ω̂ +
√−1∂∂ϕη > 0

where cη is a constant such that the integrals on both sides are equal.
The existence of a unique smooth solution for η > 0, follows from the
work of Yau [31].

• λ ≤ 0. In this case we let ωη = ω̂ +
√−1∂∂ϕη be a solution of

(2.7)

⎧⎨
⎩
(ω̂ +

√−1∂∂ϕη)
n = e−λϕη+cηΩ∏N

j=1 (|sj |2hj
+η)(1−βj)

ωη = ω̂ +
√−1∂∂ϕη > 0

The existence is guaranteed by Yau [31] when λ = 0, and Aubin-Yau [1,
31] when λ < 0. When λ = 0 we also need an additional normalization
such as supX ϕη = 0. Also note that cη can be taken to be zero when
λ < 0.

Note that |cη| is uniformly bounded, and in fact tends to zero as η → 0. We
next obtain lower bounds for the Ricci curvatures of ωη.

Lemma 2.1. If ωη = ω̂ +
√−1∂∂ϕη is a solution to (2.6), then there exists

an A� 1 such that

1) When λ > 0,

Ric(ωη) > −Aω̂.
2) When λ ≤ 0,

Ric(ωη) > λωη −Aω̂.

Proof. We follow the computation in [8]. First observe that for any smooth
f > 0

√−1∂∂ log (f + η) ≥ f

f + η

√−1∂∂ log f
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On X \D, using this and the fact that 1− βj ≥ 0, we obtain

χη := −λω̂ −√−1∂∂ log Ω +

N∑
j=1

(1− βj)
√−1∂∂ log (|sj |2hj

+ η)

≥ −λω̂ −√−1∂∂ log Ω +

N∑
j=1

(1− βj)
|sj |2hj

(|sj |2hj
+ η)

√−1∂∂ log |sj |2hj

= −
N∑
j=1

(1− βj)
η

(|sj |2hj
+ η)

√−1∂∂ log hj + χ (by equation 1.4)

≥ −Aω̂

for some A >> 1. Now, if λ > 0, by (2.6)

Ric(ωη) = λ(ω̂ +
√−1∂∂ψη) + χη > −Aω.

On the other hand, if λ ≤ 0, by (2.7)

Ric(ωη) = λωη + χη > λωη −Aω̂.
�

Next, we obtain uniform C0 and C2 estimates on ϕη.

Proposition 2.1. There exists a constant

C = C(n, λ,A, ||ωn/Ω||L1+δ(X,Ω), ||Rm(ω̂)||)� 1

independent of η, such that

1)

||ϕη||C0(X) < C

2)

(2.8) C−1ω̂ < ωη <
Cω̂∏N

j=1 (|sj |2hj
+ η)(1−βj)

Proof. The proof is standard. We first assume that λ > 0. The other case
also follows similarly. The right hand side of equation (2.6) is uniformly in
L1+ε(X,ω) for some ε > 0, since all the βj ’s are strictly positive, ψη, |cη|
are uniformly bounded, and D is a simple normal crossing divisor. The C0
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estimate now follows directly from the work of Kolodziej [21, 22]. For the
C2 estimate, we consider the following quantity :

(2.9) Q = log trωη
ω̂ −Bϕη

By Lemma 2.1, Ric(ωη) > −Aω̂ for some A� 1. Then by the Chern-Lu
inequality [10, 23, 30], there exist constants B,C � 1 depending on A, the
dimension n, and an upper bound for the bisectional curvature of ω̂, such
that

ΔηQ ≥ trωη
ω̂ − C

By maximum principle and the uniform C0 estimate,

trωη
ω̂ ≤ C

But then using the equation (2.6), and an elementary arithmetic-geometric
mean inequality

trω̂ωη ≤ (trωη
ω̂)n−1

ωn
η

ω̂n

≤ C∏N
j=1 (|sj |2hj

+ η)(1−βj)

Note that when λ ≤ 0, Ric(ωη) > λωη −Aω̂, and Chern-Lu can still be ap-
plied. �

Higher order estimates away from the divisor follow by standard methods
(cf. [24, 31]). As a straightforward corollary we have,

Corollary 2.1. For ωη constructed above

1) There exists a uniform constant A >> 1 such that

Ric(ωη) > −Aωη

2) Locally on X \D, as η → 0,

ωη
C∞loc(X\D)−−−−−−−→ ω

3) For all open sets U ⊂ X,

V olωη
(U)

η→0−−−→ V olω(U)
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Next, we prove a uniform diameter bound along the sequence (X,ωη). In
the case of just one smooth divisorial component, this follows directly from
the C2 estimate in Proposition 2.1 (cf. [8]). For the general simple normal
crossing case, we instead use the work of Cheeger-Colding, and exploit the
fact that the limiting conical metric has a bounded diameter.

Proposition 2.2. There exists a Λ >> 1 such that

diam(X, dη) < Λ

Proof. By Gromov’s compactness theorem [17]

(X, dη, p)
dGH−−→ (X∞, d∞, p∞)

where p ∈ X \D is a fixed point, and X∞ is a metric length space. It follows
from smooth convergence away from the divisor that X \D can be identified
as an open subset of X∞. More precisely, there exists an injective local
isometry i : X \D → X∞ such that

(2.10) d∞(i(x), i(y)) ≤ dω(x, y)

and i(X \D) = X0 is an open subset of X∞. The Lipschitz bound above
follows from the fact that the intrinsic distance is bigger than the extrinsic
distance. Moreover, one has uniform non collapsing at p,

V ol(Bdη
(p, 1)) ≥ ν > 0

and hence by volume convergence theorem of Cheeger-Colding [4],

H2n
∞ (X∞) = lim

η→0
V olωη

(X)

=
[ω̂]n

n!

where H2n∞ denotes the 2n-dimensional Hausdorff measure with respect to
d∞. Again due to smooth convergence away from D and Cheeger-Colding
volume convergence, the restriction of Hausdorff measure of (X∞, d∞) on
X0 agrees with the induced Riemannian measure from X \D. But then,

H2n
∞ (X0) =

∫
X\D

ωn

n!
= lim

η→0

∫
X

ωn
η

n!
=

[ω̂]n

n!
= H2n

∞ (X∞).

This means that X0 is of full measure inside X∞, and in particular, is dense.
Then by the Lipschitz estimate (2.10) above, diam(X∞, d∞) ≤ diam(X, d),
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where recall that d is the distance induced by the conical metric ω. But
(X, d) has finite diameter, since ω is quasi-isometric to a standard cone

metric. Hence, (X∞, d∞) has a finite diameter, and since (X, dη, p)
dGH−−→

(X∞, d∞, p∞), diam(X, dη) is uniformly bounded. �

3. Almost geodesic convexity and Gromov-Hausdorff
convergence.

To complete the proof of Proposition 1.1, we need to identify X∞ with
the metric completion (X, d) of (X \D, dω). The proof follows along the
lines of [13, 27, 33]. The main technical ingredient is the following relative
comparison lemma of Gromov [17].

Lemma 3.1. Let (M, g), be a Riemannian manifold of dimension m and
T ⊂M be any compact set with a smooth boundary, such that

• Ric(g) > −Ag ; diam(M, g) < Λ

• For some points p1, p2 ∈M with B(pj , ε) ∩ T = ∅ for j = 1, 2, every
minimal geodesic from p1 to points in B(p2, ε) intersects T .

Then, there exists a constant c = c(n, ε,A,Λ) such that

V ol(∂T, g) > cV ol(B(p2, ε), g)

The next lemma proves that for almost all points, X \D is geodesic con-
vex. This was proved by Cheeger-Colding [5] for Gromov-Hausdorff limits
of Riemannian manifolds with a Ricci lower bound. In our case, we have not
yet identified the Gromov-Haudorff limit with X, and so we give an elemen-
tary proof using the above comparison lemma and smooth convergence on
X \D.

Lemma 3.2. Let K ⊂⊂ X \D, and d(∂K,D) > 4ε. Then there exists a
δ = δ(n, ε,A,Λ), such that if T is a neighborhood of D in X\K with
d(p, ∂T ) > 2ε ∀ p ∈ K, and V olω(∂T ) < δ, then, for all p, q ∈ K, there ex-
ists a q′ ∈ Bd(q, ε) and a minimal d-geodesic γdpq′ : [0, l]→ X\T connecting
p to q′.

Proof. Claim 1: If η < η0(ε), then

Bdη
(q, ε/2) ⊂ Bd(q, ε)

for all q ∈ K.
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Suppose not, then for arbitrarily small η, there exists an x ∈ X such that
dη(q, x) < ε/2, but d(q, x) > ε. The minimal η-geodesic γηqx has a first point
of contact x̃ ∈ ∂Bd(q, ε). Then Lω(γ

η
qx̃) ≥ ε, and hence dη(q, x̃) = Lη(γq,x̃) >

3ε/4 if η is sufficiently small, by uniform smooth convergence on X\T and
the fact that γηqx is minimal. This is a contradiction and the claim is proved.

Claim-2: There exists a δ = δ(n, ε,A,Λ) such that, for η < η0(δ) small, any
p, q ∈ K and any T satisfying V olω(∂T ) < δ, there exists qη ∈ Bdη

(q, ε/2)
and a minimal unit speed ωη-geodesic γηpqη : [0, lη]→ X\T .
If not, then by volume comparison, diameter bound, Lemma 3.1, and volume
convergence (cf. Lemma 2.1),

cκε2n ≤ cV olωη
(Bdη

(q, ε/2)) ≤ V olωη
(∂T ) ≤ 2V olω(∂T ) ≤ 2δ.

Pick δ = cκε2n/4 to get a contradiction.
So there is a sequence of points qη∈Bdη

(q, ε/2)⊂Bd(q, ε) and η-minimal
geodesics γηpqη ⊂ X\T . Since the convergence is smooth on X\T and the
diameter is uniformly bounded, by Ascoli-Arzela there exists a q′ ∈ Bd(q, ε)
and a limiting geodesic γpq′ : [0, l]→ X\T from p to q′.

Claim-3: γpq′ is d-minimal. i.e

Lω(γpq′) = d(p, q′).

If not, then by definition of d, there exists a path γ̃pq′ : [0, 1]→ X \D
such that Lω(γ̃pq′) < Lω(γpq′)− ζ, for some ζ > 0. For η small, d(q′, qη) <
ζ/8. The minimal d-geodesic γdq′qη does not hit ∂T . So once again by smooth

convergence Lη(γ
d
q′qη) < ζ/4. On the other hand, for η small,

Lη(γ̃pq′) < Lω(γ̃pq′) + ζ/8 < Lω(γpq′)− 7ζ/8 < Lη(γ
η
pqη)− 6ζ/8.

The final inequality follows from the fact that γpq′ → γηpqη . So the con-
catenation γ̃pq′ · γdq′qη is a path from p to qη with length Lη(γ̃pq′ · γdq′qη)<
Lη(γ

η
pqη)−6ζ/8+ζ/4=Lη(γ

η
pqη)−ζ/2, contradicting the minimality of γηpqη .

Hence Lω(γpq′) = d(p, q′). �

Proof of Proposition 1.1. Fix a small ε > 0, and choose a tubular neigh-
borhood E of D such that K = X\E is ε-dense with respect to the distance
d and V ol(E,ω) < ε4n. The proof of the Gromov-Hausdorff convergence is
completed in two steps:
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Claim-1: There exists a η0 = η0(ε) > 0 such that ∀η < η0, K is ε-dense
with respect to dη.

Proof. If not, then there exists a sequence pη ∈ E such that Bdη
(pη, ε) ⊂ E.

Using volume comparison, diameter bound and the fact that volumes of balls
converge, for some uniform κ > 0 and η small,

κε2n < V olωη
(Bdη

(pη, ε)) < V olωη
(E) < 2V olω(E) < 2ε4n

which is a contradiction if ε is small.

Claim-2: There exists a η0 = η0(ε) > 0 such that ∀η < η0 and for all p, q ∈
K,

|dη(p, q)− d(p, q)| < ε

Proof . Let ε̃ = d(∂K,D)/4, so that in particular ε̃ < ε/4. We first claim that
a neighborhood T of D can be chosen with V ol(∂T, ω) arbitrarily small. This
can be done because D has real co-dimension two. For a unit polydisc in
Cn with a model edge metric with cone angle 2πβj along [zj = 0], such
a neighborhood can be constructed explicitly. One can then glue together
these local neighborhoods to obtain a neighborhood of D in X with the
volume of the boundary arbitrarily small. In particular one can construct
a T such that d(∂T,K) > 2ε̃ and V ol(∂T, ω) < δ where δ = δ(n, ε̃, A,Λ) is
the constant in Lemma 3.2.

Next, by Lemma 3.2, for all p, q ∈ K there exists q′ ∈ Bd(q, ε̃) and a
minimal d-geodesic γdpq′ ⊂ X\T . Like in the argument for the proof of
Lemma 3.2, for η small, dη(q, q

′) < 2ε̃. Then by uniform smooth convergence
on X\T , there exists η0 > 0 such that for η < η0 and all p, q ∈ K,

dη(p, q) < Lη(γ
d
pq′) + dη(q, q

′)
< Lω(γ

d
pq′) + 3ε̃ = d(p, q′) + 3ε̃

< d(p, q) + 4ε̃ < d(p, q) + ε.

On the other hand, recall that γdpq′ is constructed as the limit of η-minimal
geodesics γηpqη ⊂ X\T with qη ∈ Bdη

(q, ε̃/2) ⊂ Bd(q, ε̃), and qη → q′. So,

d(p, q) < d(p, q′) + ε̃ < Lη(γ
η
pqη) + 2ε̃ = dη(p, qη) + 2ε̃

< dη(p, q) + 5ε̃/2 < dη(p, q) + ε.

This finishes the proof of Claim-2.
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We can now complete the proof of the theorem. For small η < η0(ε),

dGH((X, dη), (X, d))

≤ dGH((X, dη), (K, dη)) + dGH((K, dη), (K, d)) + dGH((K, d), (X, d))

< 3ε,

where we use Claim 1 to bound the first term, Claim 2 to bound the second
term, while the last term is bounded by ε from the choice of K. Now, letting
ε go to zero, we see that (X, dη) converges in Gromov-Hausdorff topology
to (X, d). �

4. Estimate on volume density and proof of
geodesic convexity

Theorem 1.1 follows from a theorem of Colding-Naber [12]. In the previous
section, we proved that (X, d) is the Gromov-Hausdorff limit of smooth
Riemannian metrics. The crucial point in proving geodesic convexity is that
the regular set in the sense of Cheeger-Colding [4] coincides with X \D, and
hence is open. To prove this, we need to show that the volume density of balls
in (X, d) centered on the divisor is strictly less than the Euclidean volume
density. We do this by reducing to the case of a smooth divisor (i.e when
N = 1), and using known regularity results in this situation [9, 20]. The
volume density function of an m-dimensional Riemannian manifold (Mm, g)
at a p ∈M is defined as

Vg(p, r) :=
V olg(Bg(p, r))

rm
.

We first observe the following elementary fact.

Lemma 4.1. Let ωβ denote the model edge metric on Cn with cone angle
2πβ along [z1 = 0] i.e

ωβ =

√−1
2

(
β2|z1|−2(1−β)dz1 ∧ dz̄1 +

n∑
j=2

dzj ∧ dz̄j

)

Then for any r > 0,

Vωβ
(0, r) = α(n)β

where α(n) = πn/n! is the volume of the unit Euclidean ball in Cn.
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Proof. The ωβ-minimal geodesic connecting the origin to any (z1, z
′) :=

(z1, z2, . . . , zn) ∈ Cn is given by γ(t) = (t1/βz1, tz2, . . . , tzn), and it is eas-
ily seen that Lωβ

(γ) = |z1|2β + |z′|2. So Bωβ
(0, r) = {z ∈ Cn | |z1|2β + |z′|2 <

r}. But then, using polar coordinates zj = ρje
iθj , and the change of variables

u = ρ2β in the third line,

r2nVωβ
(0, r) =

∫
Bωβ

(0,r)

ωn
β

n!

= β2(2π)n
∫
ρ2β
1 +···+ρ2

n<r

(ρ1dρ1)(ρ2dρ2) · · · (ρndρn)
ρ
2(1−β)
1

= β(2π)n
∫
u2+···+ρ2

n<r
(udu)(ρ2dρ2) · · · (ρndρn)

= β

∫ 2π

0
· · ·

∫ 2π

0

∫
u2+···+ρ2

n<r
(ududθ1)(ρ2dρ2dθ2) · · · (ρndρndθn)

= βα(n)r2n

�

Lemma 4.2. Suppose D is a smooth divisor with defining section s, h a
smooth Hermitian metric on [D], and ω̃ = ω +

√−1∂∂ϕ̃, a Kähler current
solving

ω̃n =
Ω̃

|s|2(1−β)h

for some smooth volume form Ω̃ with β ∈ (0, 1). Then for any p ∈ D,

lim
r→0

Vω̃(p, r) = βα(n)

Proof. By Prop. 26 in [9], for all ζ > 0, there exists an rζ > 0 such that in
some holomorphic coordinates centered at p ∈ D,

(1− ζ)ωβ < ω̃ < (1 + ζ)ωβ

on Bω̃(p, rζ). In [9], the metrics under consideration are conical Kähler-
Einstein metrics. A key technical point is a Liouville’s theorem based on
the observation that the conical re-scalings of ω̃ defined by ω̃ε = ε−2T ∗ε ω̃,
where Tε(z1, . . . , zn) = (ε1/βz1, εz2, . . . , εzn), converge to a metric cone on
Cn. In the present context, by Proposition 1.1 one can approximate ω̃ by
smooth metrics with uniform Ricci lower bound. Then the convergence of the
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re-scalings to a metric cone is a consequence of general results of Cheeger-
Colding [4]. Now it is easy to see that

(1− ζ

1 + ζ

)n
Vωβ

(0,
r√
1 + ζ

) < Vω̃(p, r) <
(1 + ζ

1− ζ

)n
Vωβ

(0,
r√
1− ζ

); ∀r < rζ

Lemma 4.1 follows by letting ζ → 0 and r → 0. �

Proposition 4.1. There exists an ζ > 0 and r(ζ) > 0, such that for any
r < r(ζ), and any p ∈ D,

Vd(p, r) :=
V ol(Bd(p, r))

r2n
< (1− ζ)α(n)

where α(n) = πn/n! is the volume of the unit Euclidean ball in Cn.

Proof. The proposition is proved by smoothening out all but one divisor,
and using Lemma 4.2. Without loss of generality, let p ∈ D1, and consider
the equation ⎧⎨

⎩
ωn
ε = e−λψε−fε+cεΩ

|s1|2(1−β1)

h1

ωε = ω̂ +
√−1∂∂ϕε > 0

where ψε is the sequence approximating ϕ from section 2,

fε = log

(
N∏
j=2

(|sj |2hj
+ ε)(1−βj)

)

and cε is a constant such that the integrals match up. By Prop. 1.1 there
exists a sequence ωε,η of smooth Kähler metrics and constants A and Λ such
that

Ric(ωε,η) > −Aωε,η ; diam(X,ωε,η) < Λ

ωε,η
C∞loc(X\D1)−−−−−−−→ ωε

(X,ωε,η)
dGH−−→ (X,ωε)

By the Bishop-Gromov comparison theorem for the metrics ωε,η and
Colding’s volume convergence theorem [11], for r′ < r

Vωε
(p, r)

V−A(p̃, r)
≤ Vωε

(p, r′)
V−A(p̃, r′)
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where V−A(p̃, r) is the volume ratio for the space form of constant sectional
curvature −A/(2n− 1). Taking r′ → 0, by Lemma 4.2

Vωε
(p, r) ≤ β1V−A(p̃, r)

≤ 1 + β1
2

α(n)

if r < r̄ = r̄(A). Moreover, since the Ricci lower bounds for ωε,η are uniform,

by an elementary diagonalization argument, ωε
dGH−−→ ω as ε→ 0. Then once

again by Coldings theorem on volume convergence, for r < r̄,

Vd(p, r) <
1 + β1

2
α(n).

This proves the proposition with ζ = 1
2max((1− β1), . . . , (1− βN )) and

r(ζ) = r̄. �
Since (X, d) is the Gromov-Hausdorff limit of (X,ωη), one can talk about
the regular set, in the sense of Cheeger-Colding. It is defined as

R = {p ∈ X | (X, r−2j d, p)
dGH−−→ (Cn, deuc, 0) for any sequence rj → 0}.

Lemma 4.3. R = X \D, and is in particular open and dense in (X, d).

Proof. By smooth convergence away from D, it is clear that X \D ⊂ R.
On the other hand, suppose p ∈ R, then by Colding’s volume convergence,
the volume density Vd(p, r) can be made arbitrarily close to the α(n) for a
small enough r > 0. But then p cannot belong to D since this would con-
tradict with Proposition 4.1. Hence R = X \D, and is consequently open.
The denseness follows from the fact that X \D has full measure. �
Proof of Theorem 1.1. We follow the line of argument in [12]. By Colding
and Naber’s result on the Hölder continuity of the tangent cones of limiting
spaces of sequences with a Ricci lower bound [12, Cor. 1.5], the set of regular
points in the interior of a limiting geodesic is closed. On the other hand, by
the above lemma, this set is also open. Therefore, as soon as one interior
point lies in X \D, all must, and the theorem is proved. �
Proof of Corollary 1.1. For every η > 0, there exists a unit speed η-
minimal geodesic γη : [0, lη]→ X connecting p and q with lη → l. By the
Ascoli-Arzela theorem for Gromov-Haudorff limits, there exists a continuous
limiting geodesic γ : [0, l]→ X connecting p and q. By Theorem 1.1, γ stays
away from D. For any γ(t0) with, there exists a small ball Bd(γ(t0), ε) ⊂ X \
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D. By the argument of Claim-1 in the proof of Lemma 3.2 Bdη
(γ(t0), ε/2) ⊂

Bd(γ(t0), ε) for η small enough. By convergence of geodesics and the fact
that the geodesics are of unit speed, there exists a δ such that, for η small
enough γη(t) ∈ Bd(γ(t0), ε) for all |t− t0| < δ. By smooth convergence of
the metrics on X \D, it is easily seen that γ|(t0−δ,t0+δ) must be smooth, and
hence all of γ must be smooth. �

5. Comparison theorems for conical metrics along simple
normal crossing divisors

For this section we fix D to be an effective simple normal crossing divisor
given by (1.1), and ω to be a conical Kähler metric along D inducing the
metric d on X. The aim of this section is to present extensions of some
classical comparison theorems to this singular setting. The crucial point is
that the cut locus has measure zero. This is already proved in [12, 19]. For
the convenience of the reader, we offer an elementary proof in the conical
case by exploiting smooth convergence away from the divisor.

Definition 5.1. We say that

Ric(ω) > −Aω

if there exists a smooth positive closed (1,1) form χ such that

Ric(ω) +Aω = χ+ [D].

For a point p ∈ X \D, let

Ep = {v ∈ TpX | ∃ geodesic γ : [0, 1]→ X \D with γ(0) = p , γ′(0) = v}

The exponential map is well defined and smooth on E . The following lemma
follows directly from Theorem 1.1.

Lemma 5.1. expp : Ep → X \D is surjective.

We define the cut locus and conjugate locus in the usual way.

Definition 5.2. 1) For a p ∈ X \D, the cut locus is defined by

Cp = {x ∈ X | ∀z ∈ X\{x}, d(p, x) + d(x, z) > d(p, z)}.
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2) The conjugate locus is defined by

Conj(p)={x∈X \D | ∃ v∈exp−1p (x) such that dexpp is degenerate at v}.

Furthermore, x = γ(t0) is said to be conjugate to p along a unit speed
geodesic γ : [0, l]→ X \D if expp is singular at v = t0γ

′(0).

The following useful characterization of the cut locus from standard
Riemannian geometry [6] also extends to this setting.

Lemma 5.2. Let γ : [0, l]→ X \D be a smooth unit-speed geodesic ema-
nating from p. Then x = γ(t0) ∈ Cp if and only if one of the following holds
at t = t0 and neither holds for any smaller value of t :

1) x is conjugate to p along γ.

2) There exists a unit speed minimal limiting geodesic σ �= γ connecting
p and x.

Proof. Suppose γ(t0) ∈ Cp, εj → 0 and σj : [0, lj ]→ X \D be a unit speed
smooth limiting minimal geodesic connecting p to xj = γ(t0 + εj). By conti-
nuity of the distance function, lj → t0. By the same argument as in the proof
of Cor. 1.1, one can show that there exists a σ : [0, t0]→ X \D connecting
p and x such that σj → σ smoothly. If σ �= γ, criteria (2) is satisfied. If not,
then arbitrarily small neighborhoods of t0γ

′(0) in Ep have two distinct vec-
tors, namely ljσ

′
j(0) and (t0 + εj)γ

′(0), mapped to the same point xj under
the exponential map. By the inverse function theorem, t0γ

′(0) is a singular
point of expp or equivalently x is a conjugate point along γ. �

As an immediate corollary we have

Corollary 5.1. Cp has measure zero with respect to ω.

Proof. From previous Lemma, Cp ⊂ {singular values of expp} ∪ {r is not
differentiable}. The first one has measure zero by Sard’s theorem, while the
second one has measure zero because r is Lipshitz. �

We now present some classical comparison theorems. We also recall the
proofs to emphasize that geodesic convexity, even of the slightly weaker kind
proved in the present article, is all that is needed for the extensions to the
conical setting.
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Theorem 5.1 (Laplacian comparison). Suppose Ric(ω) > (2n− 1)λω
for some λ ∈ R, and X̃ is the 2n-dimensional space form with constant sec-
tional curvature λ. Let r(x) and r̃(x̃) be distance functions to some fixed
points in X and X̃ respectively. Then for any x ∈ X \D where r is smooth,
and any x̃ ∈ X̃ where r̃ is smooth with r(x) = r̃(x̃),

Δr(x) ≤ Δ̃r̃(x̃).

Proof. By Bochner formula,

0 = |∇2r|2 + ∂(Δr)

∂r
+Ric(∇r,∇r)

≥ (Δr)2 +
∂(Δr)

∂r
+ (2n− 1)λ

Note that equality holds in the case of X̃. So, if γ ⊂ X \D and γ̃ are unit
speed minimal geodesics joining the reference points to x and x̃ respectively,
then u(t) = Δr(γ(t))− Δ̃r̃(γ̃(t)) satisfies the differential inequality

u̇+ gu ≤ 0

where g = Δr(γ(t)) + Δ̃r̃(γ̃(t)). Moreover

lim
t→0

|Δr(γ(t))−
(2n− 1

t

)
| = lim

t→0
|Δ̃r̃(γ̃(t))−

(2n− 1

t

)
| = 0

i.e u(0) = 0. By the method of integrating factors for first order ODEs, it is
easily seen that u(t) ≤ 0 ∀ t. �

Theorem 5.2 (Myer’s theorem). With D as above, suppose ω is a con-
ical Kähler metric along D satisfying Ric(ω) > (2n− 1)λω for some λ > 0.
Then

diam(X, d) <
π√
λ
.

Proof. By explicit calculation, if λ > 0, and X̃ is the space form with sec-
tional curvature λ, then along a unit speed minimal geodesic γ̃,

Δ̃r̃(γ̃(t)) = (2n− 1)
√
λ
cos(

√
λt)

sin(
√
λt)

.
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Fix a point p ∈ X \D. For any other point x ∈ X \D, if γ is the minimal
unit speed geodesic joining them, then

Δr(γ(t)) ≤ (2n− 1)
√
λ
cos(

√
λt)

sin(
√
λt)

.

Since right hand side goes to −∞ as t→ π/
√
λ, t, and hence the length of

γ, can be at most π/
√
λ. �

Next, the exponential map is a diffeomorphism from an open subset of
Ep onto X\(D ∪ Cp). Moreover, since Cp ∪D has measure zero, standard
arguments as in [25] can be used to prove the Bishop-Gromov volume com-
parison.

Theorem 5.3 (Bishop-Gromov volume comparison). If Ric(ω) >
(2n− 1)λω for some λ ∈ R and X̃ is the 2n-dimensional space form with
constant sectional curvature λ. Then

1) If K ⊂ X \D is any star convex set centered at x, then for 0 < r1 <
r2(< π/

√
λ if λ > 0),

V ol(Bd(x, r2) ∩K)− V ol(Bd(x, r1) ∩K)

Ṽ (r2)− Ṽ (r1)
≤ V ol(∂Bd(x, r1) ∩K)

V ol(∂B̃(r1))

where B̃(r) is a ball of radius r in X̃ and Ṽ (r) = V ol(B̃(r)).

2) For all x ∈ X, the volume ratio

V ol(Bd(x, r))

Ṽ (r)

is non-increasing in r.

Remark 5.1. As a corollary to Theorem 5.3 above, Lemma 3.1 general-
izes to Kähler currents satisfying equation (1.5), and in particular to conical
Kähler-Einstein metrics. This was very useful in [13] to study the degener-
ation of conical Kähler-Einstein metrics on toric manifolds.
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