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Extension of automorphisms of rational

smooth affine curves

Jérémy Blanc, Jean-Philippe Furter, and Pierre-Marie Poloni

We provide the existence, for every complex rational smooth affine
curve Γ, of a linear action of Aut(Γ) on the affine 3-dimensional
space A3, together with a Aut(Γ)-equivariant closed embedding
of Γ into A3. It is not possible to decrease the dimension of the
target, the reason for this obstruction is also precisely described.

1. Introduction

Throughout this article, all varieties are algebraic varieties defined over the
field C of complex numbers. The affine (resp. projective) n-space is denoted
by An (resp. Pn).

It is well known that any smooth affine variety X of dimension n admits
a closed embedding into Am, when m ≥ 2n+ 1 [13, Theorem 1]. If moreover
m ≥ 2n+ 2, then, by a result of Nori, Srinivas and Kaliman (see [13] and
[9]), any two closed embeddings ι, ι′ : X → Am are equivalent in the sense
that there exists f ∈ Aut(Am) such that ι′ = f ◦ ι .

In particular, if ι : X → Am is a closed embedding of a smooth affine
variety of dimension n into some affine space of dimension m ≥ 2n+ 2, then
it follows that every automorphism ϕ of X extends to an automorphism of
the ambient space Am, since the two embeddings ι ◦ ϕ and ι are equivalent.

However, Derksen, Kutzschebauch and Winkelmann showed in [5] that it
is not always possible to extend the group structure of Aut(X), i.e. to find a
closed embedding ι : X → Am and an action of Aut(X) on Am that restricts
on X to the action of Aut(X) on it. More precisely, they proved that there
does not exist, for any integer m, any injective group homomorphism from
Aut(C∗ × C∗) ∼= GL2(Z)� (C∗)2 to the group Diff(Rm) of diffeomorphisms
of Rm.

2010 Mathematics Subject Classification: 14R20, 14H45.
The authors gratefully acknowledge support by the Swiss National Science Foun-

dation Grant “Birational Geometry” PP00P2 128422 /1 and by the French National
Research Agency Grant “BirPol”, ANR-11-JS01-004-01.

43



44 J. Blanc, J.-P. Furter, and P.-M. Poloni

Recall that, if G is an algebraic group acting on an affine variety X,
then X admits a G-equivariant closed embedding into a finite dimensional
G-module (see [3, Proposition 1.12, p. 56]). In particular, there exist, for
every smooth affine curve Γ, a linear action of Aut(Γ) on an affine space
Am and a Aut(Γ)-equivariant closed embedding of Γ into Am. A natural
question is then to find the smallest possible m.

In this article, we settle the case of rational smooth affine curves. In
this setting, the proof of Borel only gives the embedding dimension m =
2 · |Aut(Γ)|, when the automorphism group Aut(Γ) is finite. However, our
main result shows that it is already possible to obtain m = 3:

Theorem 1. Every rational smooth affine curve Γ admits an Aut(Γ)-
equivariant closed embedding into the affine space A3. Furthermore, there
exist such embeddings for which the action of Aut(Γ) on A3 is linear.

It is easy to construct closed embeddings into the affine plane A2 for all
rational smooth affine curves Γ. But it is of course not possible in general
to ask for Aut(Γ)-equivariant embeddings into A2. Indeed, there exist ratio-
nal smooth affine curves whose automorphism groups are isomorphic to the
alternating group A4, to A5, or to the symmetric group S4 (see Section 6)
and it is well known that the group A4 has no faithful representation of di-
mension two. Since all finite subgroups of Aut(A2) are linearizable, it follows
that we cannot embed equivariantly such a curve into the plane, even if we
allow non linear actions on A2.

In fact, we establish stronger impossibility statements showing that it
would be also too optimistic in general to look for closed embeddings into
A2 in such a way that every single automorphism of the curve extends to an
automorphism of the ambient space (see Corollary 2.6).

Theorem 2. There exist rational smooth affine curves Γ with Aut(Γ) �= 1
and such that for every closed embedding of Γ into A2, the identity on Γ is
its only automorphism that extends to an automorphism of A2.

Let us also emphasize that Theorem 1 cannot be generalized to all
smooth affine curves. Actually, there even exist, for every natural number n,
smooth affine curves Γ which do not admit any Aut(Γ)-equivariant closed
embedding into An.

To see this, recall that every finite group G is equal to the automor-
phism group of a smooth projective curve, and thus of an affine one [8], and
take a smooth affine curve Γn whose automorphism group is isomorphic to
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(Z/2Z)n+1. Then, Γn does not admit any Aut(Γn)-equivariant embedding
into An, because (Z/2Z)n+1 does not act faithfully on An. Indeed, by Smith
theory, the action of a finite p-group on An has always a fixed point (see
e.g. [4, Th. 7.11, p 145], [10, p. 204], or [5, Proposition 1]) and the induced
tangential (linear) representation at that fixed point should be faithful too
(see e.g. [5, Lemma 4]).

It would however be interesting to know what happens in the case of
smooth affine curves of genus 1. Sathaye proved in [11] that such curves
admit closed embeddings into A2. Nevertheless, we do not know what is the
minimal m (if it exists) such that every smooth affine curve Γ of genus 1
admits an Aut(Γ)-equivariant closed embedding into Am.

The article is organized as follows.
Section 2 concerns embeddings of rational smooth affine curves into the

affine plane. We give examples of automorphisms of such curves that do not
extend, and prove Theorem 2 (see Corollary 2.6).

Section 3 is devoted to the study of embeddings of smooth rational curves
into A3 whose images are contained in a hyperplane. We prove that they
are all equivalent and thus that any two closed embeddings of a rational
smooth affine curve into A2 become equivalent, when seen as embeddings in
A3 (Proposition 3.1). This answers a question of Bhatwadekar and Srinivas
in this case.

In section 4 we realize every non-empty subset of P1 that is invariant
by a subgroup H of Aut(P1) as the fixed-point set of a H-equivariant en-
domorphism of P1 (Corollary 4.4). This result is used in Section 5 to prove
Theorem 1 (see Theorem 5.2). Explicit formulas are given in Section 6.

2. Embeddings of rational smooth affine curves
into the plane

Let us recall that every rational smooth affine curve Γ is isomorphic to
P1 \ Λ, where Λ is a finite set of r ≥ 1 points.

In particular, it admits a closed embedding into A2. Indeed, Γ can also
be seen as the complement in A1 of a finite number (possibly zero) of points
and we can consider the closed embedding τ : Γ→ A2 given by x �→ (x, 1

P (x)),

where P ∈ C[x] is a polynomial whose roots are exactly the removed points.
Note that the image of τ is the curve of A2 defined by the equation P (x)y
= 1.

Moreover, the automorphism group Aut(Γ) of the curve Γ = P1 \ Λ is
equal to the group of automorphisms of P1 that preserve the set Λ. This
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gives a group homomorphism from Aut(Γ) to the symmetric group Symr.
Note that this homomorphism is injective if and only if r ≥ 3.

If r is equal to 1 or 2, then Γ is isomorphic to A1 or A1 \ {0}, and its
automorphism group is C∗ �C or {±1}�C∗ respectively. If r ≥ 3, then
Aut(Γ) is a finite group.

The Abhyankar-Moh-Suzuki theorem claims that all closed embeddings
of A1 into A2 are equivalent to the one given by t �→ (t, 0). This implies that
every automorphism of an affine line embedded into A2 extends to an auto-
morphism of the ambiant space. If r ≥ 2 we can on the contrary construct
embeddings of the curve Γ which do not have this property. Actually, we can
choose embeddings such that, except the identity, no automorphisms of Γ
extend.

Lemma 2.1. Let Γ = A1 \Δ, where Δ is a non-empty finite set. Then,
there exist infinitely many non-equivalent closed embeddings ι : Γ→ A2 such
that the identity is the only automorphism of A2 that preserves ι(Γ).

Proof. We can assume that Δ = {0, a1, . . . , am}, where a1, . . . , am ∈ C \
{0, 1}, m ≥ 0. For every k ≥ 2, we denote by ιk : Γ→ A2 the embedding
given by

x �→
(
x,

x− 1

xk
∏m

i=1(x− ai)

)
.

It induces an isomorphism between Γ and the curve ιk(Γ) defined by the
equation

x = yxk
m∏
i=1

(x− ai) + 1.

We first remark that any automorphism of A2 that sends ιk(Γ) onto a
curve of degree at most deg(ι(Γ)) = k +m+ 1 is necessarily affine. Indeed,
if f : (x, y) �→ (f1(x, y), f2(x, y)) is the inverse of such an automorphism, we
get:

deg(f1 − f2(f1)
k

m∏
i=1

(f1 − ai)− 1) = (k +m) deg f1 + deg f2

≤ k +m+ 1.

This implies that deg(f1) = deg(f2) = 1, i.e. that f (and its inverse too) is
affine. In particular, all above embeddings are non-equivalent. We now show
that the identity is the only affine automorphism of A2 that preserves the
curve ιk(Γ).
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Any such automorphism extends to an automorphism τ of P2 preserving
the line at infinity given by z = 0 and the curve of equation

xzk+m − yxk
m∏
i=1

(x− aiz)− zk+m+1 = 0.

On the line at infinity we get the two points [0 : 1 : 0] and [1 : 0 : 0]. The point
[1 : 0 : 0] is smooth with tangent y = 0 and the point [0 : 1 : 0] is singular
with tangent cone given by xk

∏m
i=1(x− aiz) = 0. Hence, both lines x = 0

and y = 0 are invariant. Therefore, τ is given by a diagonal automorphism
of the form [x : y : z] �→ [μx : νy : z], μ, ν ∈ C∗. Replacing in the equation
yields μ = ν = 1. �

The curves A1 and A1 \ {0} admit closed embeddings into A2 such that
all their automorphisms extend to automorphisms of A2. Consider for ex-
ample the curves of equations y = 0 and xy = 1. However, it is no longer
true for the curve A1 \ {0, 1}.

Proposition 2.2. Let Γ = A1 \ {0, 1}. For every closed embedding τ : Γ→
A2, there exists an automorphism of Γ that does not extend to A2.

Before proving this statement, let us recall the following classical result
(see e.g. [7, Theorem 2]).

Lemma 2.3. Every finite subgroup of Aut(A2) is conjugate to a subgroup
of GL(2,C).

Proof of Proposition 2.2. Note that the group of automorphisms of Γ is the
group Sym3 of permutations of a set of three elements, corresponding to
the three points “at infinity”, i.e. the points of P1 \ ι(Γ), where ι is any
(open) embedding of Γ in P1. It is generated by the automorphisms ρ : x �→
1/(1− x) and σ : x �→ 1− x and we have

Aut(Γ) = 〈σ, ρ | σ2 = ρ3 = 1, σρσ−1 = ρ−1〉 = Sym3.

Suppose for contradiction that there exists a closed embedding τ : Γ→ A2

for which every automorphism of Γ extends. Since the identity is the only
automorphism of A2 that restricts to the identity on a closed curve iso-
morphic to A1 \ {0, 1} (see Lemma 2.4 below), we would have a subgroup
G ⊂ Aut(A2) isomorphic to Sym3 whose restriction to τ(Γ) yields Aut(Γ).
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We now prove that this is impossible. First, recall that G is conjugate
to a subgroup of GL(2,C) (see Lemma 2.3 above). Then, one easily checks
that G is conjugate to the subgroup G′ of GL(2,C) generated by

ρ̂ : (x, y) �→ (y,−x− y) and σ̂ : (x, y) �→ (y, x).

We let f ∈ Aut(A2) be an automorphism such that fGf−1 = G′ and we
consider the embedding τ̂ = f ◦ τ of Γ in A2. The automorphism group of Γ
extends then to G′ for this embedding.

Remark that the set {ω | ω2 − ω + 1 = 0} ⊂ Γ, which is the set of fixed
points of ρ, is an orbit of size 2 of Aut(Γ). But one checks that G′ ⊂ GL(2,C)
does not have any orbit of size 2 in the affine plane A2. This gives a contra-
diction. �

Lemma 2.4. The set of fixed points of a plane polynomial automorphism
is either a finite set of points (possibly empty), a finite disjoint union of
subvarieties isomorphic to A1, or the whole plane.

Proof. Using the amalgamated structure of Aut(A2), it is observed in [6]
that a plane polynomial automorphism is conjugate either to a triangular
automorphism (x, y) �→ (ax+ p(y), by + c) with a, b, c ∈ C and p(y) ∈ C[y],
or to some cyclically reduced element (see [12, I.1.3] or [6, p. 70] for the
definition of a cyclically reduced element). In the first case, an obvious com-
putation shows that the set of fixed points is either empty, a point, a finite
disjoint union of subvarieties isomorphic to A1, or the whole plane. In the
second case, by [6, Theorem 3.1], the set of fixed points is a non-empty finite
set of points. �

Using tools of birational geometry, we can actually specify the statement
of Proposition 2.2. Indeed, Theorem 2.5 below shows that there is no closed
embedding of the curve A1 \ {0, 1} into A2 such that the automorphism
ρ : x �→ 1/(1− x) extends to an automorphism of the affine plane.

Before we state this result, let us recall that any automorphism f of P1

of finite order n > 1 is conjugate to [x : y] �→ [x : ξy], where ξ is a primitive
n-th root of unity. In particular, it has the following properties:

1) the automorphism f fixes exactly two points of P1;

2) all other orbits under the action of f have size n.

Thus, the following holds for every automorphism g ∈ Aut(Γ) of order n > 1
of a rational smooth curve Γ.
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1) The automorphism g fixes 0, 1 or 2 points of Γ;

2) all other orbits under the action of g have size n.

Theorem 2.5. Let Γ be a rational smooth affine curve and let g ∈ Aut(Γ)
be an automorphism.

1) If g fixes at most one point of Γ, there is a closed embedding τ : Γ→ A2

such that g extends to an automorphism of A2.

2) If g is of finite order n > 1 with n odd and if it fixes exactly two points
of Γ, then there is no closed embedding τ : Γ→ A2 such that g extends
to an automorphism of A2.

Proof. (1) Let P ∈ C[x] be a non-zero polynomial such that Γ is isomor-
phic to A1 \ {x ∈ A1 | P (x) = 0}. Let g ∈ Aut(Γ) be an automorphism that
fixes at most one point of Γ. Let us denote also by g its extension as an
automorphism of P1. We can assume that g fixes the point of P1 at infinity,
so that it is of the form x �→ ax+ b, for some a ∈ C∗ and b ∈ C. Moreover
P (ax+ b) = μP (x) for some μ ∈ C∗.

When we embed Γ into A2 via the map x �→ (x, 1
P (x)), the automorphism

g extends to (x, y) �→ (ax+ b, μ−1y).
(2) Let g ∈ Aut(Γ) be of finite order n > 1 with n odd such that it fixes 2

points of Γ. Suppose, for contradiction, that there exists a closed embedding
τ : Γ→ A2 for which g extends to an automorphism h of A2. Since g has
finite order n, the automorphism hn ∈ Aut(A2) fixes pointwise the curve
τ(Γ). Because g fixes two points of Γ, τ(Γ) is not isomorphic to A1, hence
hn is trivial by Lemma 2.4.

Recall that every automorphism of A2 of finite order is conjugate to
a linear one (Lemma 2.3). Thus, there exists f ∈ Aut(A2) such that ĥ =
f ◦ h ◦ f−1 is linear. Moreover, the automorphism g ∈ Aut(Γ) extends to ĥ,
when we consider the embedding τ̂ = f ◦ τ : Γ→ A2.

The linear automorphism ĥ extends to an automorphism of P2, and the
closure of τ̂(Γ) in P2 is a projective rational curve C, having all its singular
points on the line at infinity L = P2 \ A2.

If C is smooth, it is isomorphic to P1. Hence, it is a conic or a line, and
thus intersects L into 1 or 2 points, which contradicts the fact that g acts
on C with order n > 2 and with no fixed point at infinity. This implies that
C is singular.

Denote by η1 : X1 → P2 the blow-up of the points of P2 that are singular
points of C, and write C1 ⊂ X1 the strict transform of C in X1. If C1 is
singular, we denote by η2 : X2 → X1 the blow-up of the points of X1 that
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are singular points of C1, and write C2 the strict transform of C1 in X2. We
continue like this until we end with a smooth curve Cm ⊂ Xm such that the
intersection of Cm with all curves contracted by η1η2 . . . ηm is transversal.
Note that Cm is isomorphic to P1. For i = 1, . . . ,m, the lift of ĥ yields an
automorphism hi of Xi which preserves the curve Ci. It also preserves the
pull-back of A2 in Xi, which is again isomorphic to A2.

For i = 1, . . . ,m, we denote by Bi ⊂ Ci the (finite) set of points not
lying in A2. Each point p ∈ Bi has a multiplicity m(p) as a point of Ci. This
multiplicity is a positive integer and it is equal to 1 if and only if Ci is smooth
at this point p. Denote by B0 the set of points of C0 = C ⊂ X0 = P2 not lying
in A2 and let us use the same notation as above for the multiplicities of the
points of B0.

Writing d the degree of C ⊂ P2, the geometric genus of C can be com-
puted with the following classical formula. (Note that it is equal to 0, since
C is rational.)

(�) 0 =
(d− 1)(d− 2)

2
−

m∑
i=0

∑
p∈Bi

m(p) · (m(p)− 1)

2
.

Let us now prove the following assertion by descending induction on
j ≤ m.

(
)
Let j ∈ {1, . . . ,m} and let J ⊂ Bj be an orbit under the action
of hj . Then m(p) = m(p′) for all p, p′ ∈ J, and the integer∑
p∈J

m(p) is a multiple of n.

For j = m, the assertion (
) holds for all orbits J ⊂ Bm. Indeed, Cm is
isomorphic to P1 and the action of hm on Bm ⊂ Cm is fixed-point-free, so
all orbits have size n and all multiplicities are equal to 1.

Then, we can prove (
) for j < m, assuming it holds for every integer k
with j + 1 ≤ k ≤ m. For this, let J ⊂ Bj be an orbit under the action of hj
and let us denote by mJ the multiplicity m(p) of a point p ∈ J . Note that
this multiplicity does not depend of the choice of p, since hj acts transitively
on J .

If mJ = 1, all points of J are smooth, and so the pull-back by ηj+1 of J
consists of |J | points of multiplicity mj = 1. This implies

∑
p∈J m(p) ∈ nN,

by induction hypothesis.
If mJ > 1, then all points of J are singular points of the curve Cj and

are thus blown-up by ηj+1 : Xj+1 → Xj . The number mJ is the multiplicity
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of the curve Cj at the point p ∈ J . Denoting by Ep ⊂ Xj+1 the curve con-
tracted by ηj+1 onto p, the number mJ is the intersection number Ep · Cj+1.
This latter is equal to the sum of mq(Ep) ·mq(Cj+1), where q runs through
all points infinitely near to p, and where mq(Ep) and mq(Cj+1) are the mul-
tiplicities of the strict transforms of Ep and Cj+1 at q, respectively. Note
that mq(Ep) is equal to 0 or 1.

Therefore, the sum
∑

p∈J mJ is equal to a sum of multiplicities of orbits
in Bk for k ≥ j + 1. By induction hypothesis, it is a multiple of n. This
achieves to prove (
).

In order to finish the proof, we will show how Equation (�) and Asser-

tion (
) imply that the integers (d−1)(d−2)
2 and d are both multiple of n. Since

the greatest common divisor of d and (d−1)(d−2)
2 is 1 or 2, this will contradict

the assumption n > 2.
To show that n divides (d−1)(d−2)

2 , we decompose the sum of (�) according
to orbits

(d− 1)(d− 2)

2
=

m∑
j=0

∑
J⊂Bj

∑
p∈J

m(p) · (m(p)− 1)

2
.

By Assertion (
), the multiplicities m(p) are all equal among the same orbit
J , so

∑
p∈J m(p) · (m(p)− 1) is a multiple of

∑
p∈J m(p), which is a multiple

of n by (
). Since n is odd,
∑

p∈J
m(p)·(m(p)−1)

2 is also a multiple of n, and

so is (d−1)(d−2)
2 .

It remains to show that d is also a multiple of n. For this, we observe
that the intersection number d = L · C is the sum of multiplicities of all
points of C that belong to L, as proper or infinitely near points. Since L
is invariant under the extension of the affine automorphism ĥ, the union of
these points decomposes into orbits of hj and the sum is then a multiple
of n by Assertion (
). �

Corollary 2.6. There exist rational smooth affine curves Γ with Aut(Γ) �=
1 and such that for every closed embedding of Γ in A2, the identity on Γ is
its only automorphism which extends to an automorphism of A2.

Proof. Let ω = e2iπ/3 and a1 = 1. Let a2, . . . , ak be complex numbers alge-
braically independent over Q. We consider the curve Γ = P1 \ Λ, where Λ is
the following set of 3k points

Λ =
{
[aiω

j : 1] | i = 1, . . . , k, j = 0, . . . , 2
}
.

The map h : [x : y] �→ [x : ωy] is obviously an automorphism of Γ. We will
now prove that it generates the whole automorphism group Aut(Γ) if k ≥ 3.
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This will conclude the proof, since h and h2 do not extend to automorphisms
of A2 by Theorem 2.5.

Let g ∈ Aut(Γ) be an automorphism of Γ. It extends to an automorphism
of P1 that preserves the set Λ. Let us denote this latter also by g.

Consider the 4-tuple V =
(
[1 : 1], [ω : 1], [ω2 : 1], [a2 : 1]

)
. Since a2, . . . , ak

are algebraically independent over Q, the image of V by g is a 4-tuple of
points contained in the set

S =
{
[1 : 1], [ω : 1], [ω2 : 1], [a2 : 1], [a2ω : 1], [a2ω

2 : 1]
}
.

Indeed, the cross-ratio of g(V ) must be equal to the cross-ratio of V , i.e. to
ω(ω − a2)/(a2 − 1).

The same argument with the 4-tuple
(
[1 : 1], [ω : 1], [ω2 : 1], [a3 : 1]

)
al-

lows us to conclude that g preserves the set
{
[1 : 1], [ω : 1], [ω2 : 1]

}
. There-

fore, g is either a power of h, or it is one of the maps ϕi : [x : y] �→ [y : xωi]
with i = 0 . . . 2.

Finally, note that g cannot be one of the ϕi’s, since ϕi sends the point

[a2 : 1] onto the point [
1

a2ωi
: 1], which does not belong to the set S. �

Remark 2.7. The proof of Corollary 2.6 shows that if k ≥ 3 and if the set
Λ ⊂ P1 is general among all sets of distinct 3k points invariant by the map
[x : y] �→ [x : ωy], then for all closed embeddings of the curve Γ = P1 \ Λ
into A2, the identity is the only automorphism of Γ that extends to an
automorphism of A2.

On the contrary, when k ≤ 2, every such curve Γ admits an automor-
phism of order 2 and Proposition 2.8 below implies then that this latter
extends to an automorphism of A2 for a well-chosen closed embedding of Γ
into A2.

Proposition 2.8. Let Γ be a rational smooth affine curve and let σ ∈
Aut(Γ) be an automorphism of Γ of order 2. There exists a closed embedding
of Γ in A2 and an automorphism σ̂ ∈ Aut(A2) of order 2 whose restriction
to Γ yields σ.

Proof. Let Γ = P1 \ Λ, where Λ is a finite set of points. Let us denote by σ
the extension of the automorphism σ ∈ Aut(Γ) as an automorphism of P1.
If it fixes at most one point of Λ, the result follows from Theorem 2.5.

We can thus assume that the two points of P1 fixed by (the extension
of) σ belong to Γ. Let p be a point of Λ. Its orbit {p, σ(p)} is then contained
in Λ. Let C be the curve C = P1 \ {p, σ(p)}. Note that C is isomorphic to
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A1 \ {0} and that σ restricts to an automorphism of C. Remark that all
automorphisms of A1 \ {0} of order 2 with two fixed points are conjugate
to the automorphism x �→ x−1 ∈ Aut(Spec(C[x, x−1])). Therefore, there is
a closed embedding τ : C → A2 whose image is the curve defined by the
equation

y2 − 1 = x2

and such that σ ∈ Aut(C) extends to the automorphism σ̂ : (x, y) �→ (−x, y).
Moreover, the curve τ(Γ) is then equal to a set of points of τ(C) satisfying
that

∏n
i=1(y − ai) �= 0, for some n ≥ 0 and distinct a1, . . . , an ∈ C \ {±1}.

Let Y ⊂ A2 be the closed curve defined by the equation

y2 − 1 = x2 ·
(

n∏
i=1

(y − ai)

)2

.

Consider finally the birational transformation of A2 defined by

(x, y) ���
(

x∏n
i=1(y − ai)

, y

)
,

which restricts to an isomorphism between τ(Γ) and Y . Since it commutes
with the automorphism (x, y) �→ (−x, y), this yields the result. �

3. Planar embeddings in the space

The following question of Bhatwadekar and Srinivas is asked at the end of
[13]: are any two embeddings of a smooth affine curve in A2 equivalent, when
considered as embeddings in A3?

The next result answers positively for the case of rational smooth affine
curves.

Proposition 3.1. Let Γ be a rational smooth affine curve.

1) If τ1, τ2 : Γ→ A3 are two closed embeddings whose images are con-
tained in a hyperplane (planar embeddings in the space), there exists
an automorphism α ∈ Aut(A3) such that τ2 = α ◦ τ1, i.e. any two pla-
nar embeddings in the space are equivalent.

2) In particular, fixing a planar embedding Γ→ A3, every automorphism
of Γ extends to A3.

Proof. Let Γ = A1 \ {x ∈ A1 | P (x) = 0}, where P ∈ C[x] is a polynomial
with simple roots. Note that the coordinate ring of Γ is C[Γ] = C[x, 1

P (x) ]
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and recall that the map x �→ (x, 1
P (x)) defines a closed embedding of Γ in

A2. To prove the proposition, it suffices to prove that any planar embedding
is equivalent to the one given by x �→ (x, 1

P (x) , 0).

Let τ : Γ→ A3 be a planar embedding of Γ. We can compose τ with an
affine automorphism f1 of A

3 and get an embedding τ2 = f1 ◦ τ : Γ→ A3

of the form x �→ (0, Q(x), R(x)), where Q,R ∈ C(x) are rational functions
without poles on Γ. Since τ2 is a closed embedding of the curve Γ, the equal-
ity C[x, 1

P (x) ] = C[Q(x), R(x)] holds. In particular, there exists a polynomial

A ∈ C[X,Y ] such that A(Q(x), R(x)) = x. Now, we compose τ2 with the au-
tomorphism of A3 defined by f2(X,Y, Z) = (X +A(Y, Z), Y, Z) and obtain
the embedding τ3 : Γ→ A3 given by

τ3 : x �→ (x,Q(x), R(x)) .

Because of the equality C[x, 1
P (x) ] = C[Q(x), R(x)], all zeros of P (x) are

poles of aQ(x) + bR(x) for general complex numbers a, b ∈ C. We can thus
compose τ3 with a linear automorphism of the form (X,Y, Z) �→ (X, aY +
bZ, Z) and get an embedding τ4 : Γ→ A3 of the form

τ4 : x �→
(
x,

Q1(x)

Q2(x)
,
R1(x)

R2(x)

)
,

where Q1, Q2, R1, R2 ∈ C[x] are polynomials such that Q1 and Q2 (resp. R1

and R2) have no common factor, and such that P (x) divides Q2(x).
In particular, there exist two polynomials U, V ∈ C[x] such that UQ1 +

V P = 1. It follows

1

P
=

UQ1 + V P

P
= U

Q1

P
+ V = SU

Q1

Q2
+ V,

where S ∈ C[x] satisfies PS = Q2.
This implies C[x, 1

P ] ⊂ C[x, Q1

Q2
] and thus

C

[
x,

Q1

Q2
,
R1

R2

]
= C

[
x,

1

P

]
= C

[
x,

Q1

Q2

]
.

Therefore, there exist polynomials B,C ∈ C[X,Y ] such that B(x, Q1(x)
Q2(x)

)

= 1
P (x) − R1(x)

R2(x)
and C(x, 1

P (x)) =
Q1(x)
Q2(x)

. Finally, we consider the automor-

phisms of A3 defined by f4(X,Y, Z)=(X,Y, Z +B(X,Y )) and f5(X,Y, Z)=
(X,Z, Y − C(X,Z)). One checks that f5 ◦ f4 ◦ τ4 : Γ→ A3 is the desired em-
bedding x �→ (x, 1

P (x) , 0). �
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Note that the proof above is constructive. In particular, a planar em-
bedding of a smooth rational curve Γ in A3 and an automorphism ϕ of Γ
being given, it allows us to construct an explicit automorphism of A3 which
extends ϕ.

Example 3.2. Let Γ be the curve Γ = A1 \ {0, 1} and let ρ ∈ Aut(Γ) be
the automorphism of Γ defined by ρ(x) = 1/(1− x). We saw in Section 2
that there is no closed embedding of Γ into A2 such that ρ extends to an
automorphism of A2. However, it extends to an automorphism of A3, when
we consider the embedding τ : Γ→ A3 defined by x �→ (x, 1/x(x− 1), 0).

Following the proof of Proposition 3.1, we let f1, f2, . . . , f5 be the au-
tomorphisms of A3 defined by f1(X,Y, Z) = (Z, Y,X), f2(X,Y, Z) = (X +
Y + 2− Y Z2, Y, Z), f3(X,Y, Z) = (X, aY + bZ, Z), f4(X,Y, Z) = (X,Y,
Z − 1

ab [(b+ (a− b)X)(Y − aX + 2a)− (a− b)2](1 +X)) and f5(X,Y, Z) =
(X,Z, Y − aX + 2a+ aZ + (b− a)XZ), where a, b ∈ C are general complex
numbers.

Setting F = f5 ◦ f4 ◦ · · · ◦ f1, one checks F ◦ τ ◦ ρ = τ . This implies that
F−1 is an extension of the automorphism ρ ∈ Aut(Γ).

Remark 3.3. To our knowledge, there is no known example of a smooth
affine curve admitting two non-equivalent embeddings into A3. Paradoxi-
cally, we do not know any smooth affine curve such that all its embeddings
into A3 are equivalent!

The case of the affine line is of particular interest. On one hand, all
closed embeddings of A1 into A2 are equivalent by the famous Abhyankar-
Moh-Suzuki theorem. On the other hand, all closed embeddings of A1 into
An with n ≥ 4 are also equivalent (see [13] or [9]).

4. Actions of SL(2,C) on End(A2) and of PGL(2,C) on P1

The aim of this section is to construct, for every non-empty subset Λ of P1

that is invariant by a subgroup H of Aut(P1), a H-equivariant endomor-
phism of P1 whose fixed-point set is equal to the set Λ (Corollary 4.4). We
will use this result later on to construct embeddings of every rational smooth
affine curve into A3 in such a way that the whole automorphism group of
the curve extends to a subgroup of Aut(A3).
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For the rest of the paper we will consider the following actions of the
group SL(2,C) on O(A2) = C[x, y] and End(A2) = C[x, y]× C[x, y].

SL(2,C)×O(A2) → O(A2)
(g, P ) �→ g · P := P ◦ g−1

and
SL(2,C)× End(A2) → End(A2)

(g, F ) �→ g · F := g ◦ F ◦ g−1.

Note that these actions come from the natural action of SL(2,C) on A2.
Indeed, denote by V the space A2 as a complex vector space of dimension 2
and identify the set of the linear forms on it as the dual space V ∗. The action
of SL(V ) on V yields actions on V ∗ , on the symmetric algebra S(V ∗) and on
S(V ∗)⊗ V . The natural isomorphisms between S(V ∗) and C[x, y] = O(A2)
, and between S(V ∗)⊗ V and C[x, y]× C[x, y] = End(A2), lead then to the
SL(2,C)-actions that we defined above.

Lemma 4.1. The map ρ : End(A2)→ O(A2) defined by

C[x, y]× C[x, y] → C[x, y]
(f1, f2) �→ f1y − f2x

is SL(2,C)-equivariant, when we consider the actions defined above.

Proof. The result could of course be checked by direct computations, but
let us mention that it also follows from the fact that ρ corresponds to the
morphism S(V ∗)⊗ V → S(V ∗) given by the composition τ2 ◦ τ1, where τ1
and τ2 are the two following homomorphisms of SL(V )-modules.

τ1 : S(V ∗)⊗ V → S(V ∗)⊗ V ⊗ V ∗ ⊗ V
p⊗ v �→ p⊗ v ⊗ id,

where id denotes the identity element seen as an element of V ∗ ⊗ V =
Hom(V, V ), and

τ2 : S(V ∗)⊗ V ⊗ V ∗ ⊗ V → S(V ∗)
p⊗ v1 ⊗ v∗2 ⊗ v3 �→ det(v1, v3)(pv

∗
2). �

Lemma 4.2. Let G ⊂ SL(2,C) be a finite subgroup of SL(2,C) and let
P ∈ C[x, y]. The following conditions are equivalent:
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1) The polynomial P satisfies P (0, 0) = 0 and is fixed by G.

2) There exists an endomorphism F = (f1, f2) of A2 that is fixed by G
and such that ρ(F ) = f1y − f2x = P .

Proof. Let EP ⊂ End(A2) be the set

EP = ρ−1(P ) = {(f1, f2) ∈ C[x, y]× C[x, y] | f1y − f2x = P} .

This defines an affine subset of the C-vector space End(A2), since the endo-
morphism (λf1 + (1− λ)f3, λf2 + (1− λ)f4) belongs to EP , for any (f1, f2),
(f3, f4) ∈ EP and any λ ∈ C. Moreover, EP is non-empty if and only if
P (0, 0) = 0.

If F ∈ End(A2) is fixed by G and belongs to EP , then

g · P = g · ρ(F ) = ρ(g · F ) = ρ(F ) = P

hold for any g ∈ G. This shows (2)⇒ (1).
If P is fixed by G, then the set EP is invariant by G, since

ρ(g · F ) = g · ρ(F ) = g · P = P

hold for any F ∈ EP and g ∈ G.
Therefore, if F belongs to EP , then

1
|G|

∑
g∈G g · F is an element of EP

that is fixed by G. This shows (1)⇒ (2) and concludes the proof. �

Proposition 4.3. Let H ⊂ PGL(2,C) = Aut(P1) be a finite subgroup and
set G = π−1(H), where π : SL(2,C)→ PGL(2,C) is the canonical surjective
map. Let Λ ⊂ P1 be a non-empty H-invariant finite subset.

1) There exist homogeneous polynomials f1, f2 ∈ C[x, y] of the same de-
gree such that (f1, f2) is an endomorphism of A2 fixed by G and such
that

Λ =
{
[x : y] ∈ P1 | f1(x, y)y − f2(x, y)x = 0

}
.

2) The morphism δ : P1 → P1 defined by

[x : y] �→ [f1(x, y) : f2(x, y)]

is H-equivariant, for all pairs (f1, f2) given by the statement (1) above.
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3) There exist polynomials f1, f2 satisfying the statement (1) and also the
extra property

Λ =
{
q ∈ P1 | δ(q) = q

}
.

This latter holds moreover for all pairs (f1, f2) given by the statement
(1), in the case where the set Λ consists of exactly one orbit of H.

Proof. (1) We let p ∈ C[x, y] be the (unique up a nonzero constant) square-
free homogeneous polynomial whose roots correspond to the points of Λ.
Because Λ is invariant by H, there exists a character χ : G → C∗ such that

p ◦ g = χ(g)p,

for all g ∈ G. Since G is finite, there exists a positive integer d such that the
polynomial P = pd is fixed by G.

By Lemma 4.2, there exists an endomorphism (f1, f2) ∈ C[x, y]× C[x, y]
of A2 that is fixed by G and such that f1y − f2x = P . Since P is homoge-
neous and since the action of G on End(A2) is linear and preserves the
filtration by degrees, we can assume that f1 and f2 are homogeneous of the
same degree. This proves (1).

Statement (2) follows directly from the fact that the endomorphism
(f1, f2) is fixed by G.

(3) Since δ is H-equivariant, its fixed-point set is invariant by H. Let
us denote it by Ωδ and write f1 = αf̃1 and f2 = αf̃2, where α, f̃1, f̃2 are
homogeneous polynomials such that f̃1 and f̃2 have no common root in
P1. Then, δ([x : y]) = [f̃1(x, y) : f̃2(x, y)] holds for all [x : y] ∈ P1. The set
Ωδ = {q ∈ P1 | δ(q) = q} is thus the zero set of f̃1y − f̃2x. In particular, it
is non-empty. Moreover, the equalities P = f1y − f2x = α(f̃1y − f̃2x) imply
that Ωδ is contained in Λ.

If Λ consists of exactly one orbit of H, then Ωδ = Λ follows from the fact
that Ωδ is invariant by H.

Let us now consider the general case, where Λ consists of r > 1 orbits
of H and write Λ =

⋃r
i=1 Λi, where Λ1, . . . ,Λr are disjoint orbits of H. For

each i, there exist, by the previous argument, homogeneous polynomials
fi,1, fi,2 of the same degree such that the zero set of Pi = fi,1y − fi,2x is
equal to Λi and such that the pair (fi,1, fi,2) defines an endomorphism of A2

which is fixed by G.
Set

g1 =
1

r

r∑
i=1

⎛
⎝fi,1

∏
j �=i

Pj

⎞
⎠ and g2 =

1

r

r∑
i=1

⎛
⎝fi,2

∏
j �=i

Pj

⎞
⎠ .
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Note that g1 and g2 are homogeneous of the same degree and satisfy the
equality g1y − g2x =

∏r
i=1 Pi. Moreover, the endomorphism (g1, g2) ∈

End(A2) is fixed by G. In other words, it satisfies the statement (1) of the
lemma.

We will now show that the set Ωδ̃ of fixed points of the morphism

δ̃ : P1 → P1 defined by δ̃([x : y]) = [g1(x, y) : g2(x, y)] is equal to Λ, which
will conclude the proof. Note that it is contained in Λ and invariant under
the action of H, since δ̃ is H-equivariant.

Let us write g1 = βg̃1 and g2 = βg̃2, where β, g̃1, g̃2 are homogeneous and
g̃1, g̃2 have no common root in P1. Note that the set Ωδ̃ is equal to the zero
set of the homogeneous polynomial g̃1y − g̃2x .

We claim that none of the Pi divides β. Indeed, otherwise such a Pi

would divide both g1 and g2 and thus also fi,1
∏

j �=i Pj and fi,2
∏

j �=i Pj .
Since Pi has no common root with any of the Pj , this would imply that Pi

divides fi,1 and fi,2. This is impossible, since Pi = fi,1y − fi,2x, hence Pi has
degree bigger than fi,1 and fi,2.

Therefore, it follows from the equalities

r∏
i=1

Pi = g1y − g2x = β(g̃1y − g̃2x)

that, for every index i, at least one point of Λi is contained in Ωδ̃. This latter
set being invariant by H and Λi being an orbit under the action of H, we get
that the whole set Λi is contained in Ωδ̃, for each i = 1 . . . r. This achieves
the proof. �

Corollary 4.4. Let H ⊂ PGL(2,C) = Aut(P1) be a finite subgroup and let
Λ ⊂ P1 be a finite subset. The following conditions are equivalent:

1) The set Λ is non-empty and invariant by H.

2) There exists a H-equivariant morphism δ : P1 → P1 such that

Λ = {q ∈ P1 | δ(q) = q}.

Proof. The implication (1)⇒ (2) follows directly from Proposition 4.3. Let
us prove the other one.

Let δ : P1 → P1 be a H-equivariant morphism whose fixed-point set is
equal to Λ. The set Λ is then invariant under the action of H, since δ(h(q)) =
h(δ(q)) = h(q) hold for all h ∈ H and all q ∈ Λ.

Furthermore, let f1, f2 ∈ C[x, y] be two homogeneous polynomials of the
same degree and without common root in P1 such that δ([x : y]) = [f1(x, y) :
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f2(x, y)] for all points [x : y] ∈ P1. Since Λ is the zero set of f1y − f2x, it is
clearly non-empty. �

5. Equivariant embeddings into the affine three-space

Let us recall that the following morphism

P1 × P1 ↪→ P3

([y0 : y1], [z0 : z1]) �→ [y0z0 : y0z1 : y1z0 : y1z1]

is a classical closed embedding of P1 × P1 into P3 and that it induces an
isomorphism between P1 × P1 and the quadric in P3 defined by the equation
x0x3 = x1x2. Moreover, since this embedding is canonical (it is given by
the linear system |−1

2KP1×P1 |), every automorphism of P1 × P1 extends to
a unique automorphism of P3.

Identifying A3 with the complement in P3 of the hyperplane defined by
the equation x1 = x2, we obtain a closed embedding (P1 × P1) \Δ ↪→ A3,
where Δ denotes the diagonal curve Δ = {(q, q) | q ∈ P1} ⊂ P1 × P1.

Consider the diagonal action of PGL(2,C) = Aut(P1) on P1 × P1. Note
that each automorphism of P1 × P1 coming from this action extends to an
automorphism of P3 which preserves the plane of equation x1 = x2. This
yields an action of PGL(2,C) on A3 for which the closed embedding (P1 ×
P1) \Δ ↪→ A3, that we defined above, becomes PGL(2,C)-equivariant.

After a change of coordinates in A3, we obtain a PGL(2,C)-equivariant
embedding of (P1 × P1) \Δ into A3, where the action of PGL(2,C) on A3

is linear.

Lemma 5.1. The morphism

ι : (P1 × P1) \Δ ↪→ A3

([y0 : y1], [z0 : z1]) �→
(
y0z1 + y1z0
y0z1 − y1z0

,
2y0z0

y0z1 − y1z0
,

2y1z1
y0z1 − y1z0

)

is a closed embedding whose image is the hypersurface of A3 defined by the
equation yz = x2 − 1.

Moreover, ι is PGL(2,C)-equivariant, when we consider the actions of
PGL(2,C) on (P1 × P1) \Δ and A3 defined by

PGL(2,C)× (P1 × P1) \Δ → (P1 × P1) \Δ((
a b
c d

)
, ([y0 : y1], [z0 : z1])

) �→ ([ay0 + by1 : cy0 + dy1],
[az0 + bz1 : cz0 + dz1])
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and

PGL(2,C)× A3 → A3⎛
⎝(

a b
c d

)
,

⎛
⎝ x

y
z

⎞
⎠
⎞
⎠ �→ 1

ad− bc

⎛
⎝ ad+ bc ac bd

2ab a2 b2

2cd c2 d2

⎞
⎠ ·

⎛
⎝ x

y
z

⎞
⎠ .

Proof. Let Q denotes the quadric hypersurface of A3 defined by the equa-
tion yz = x2 − 1. One checks that the morphism ι induces an isomorphism
between (P1 × P1) \Δ and Q whose inverse morphism is given by

Q → (P1 × P1) \Δ
(x, y, z) �→

{
([x+ 1 : z], [y : x+ 1]) if x �= −1,
([y : x− 1], [x− 1 : z]) if x �= 1.

It is also straightforward to check that ι is PGL(2,C)-equivariant for the
given actions. �

Combining the latter lemma with the results of the previous section, we
finally get Aut(Γ)-equivariant embeddings of every smooth affine rational
curve Γ into A3.

Theorem 5.2. For every rational smooth affine curve Γ, there exist a linear
action of Aut(Γ) on A3 and a closed embedding τ : Γ ↪→ A3 which is Aut(Γ)-
equivariant for this action.

Proof. If Γ = A1, it suffices to consider the embedding τ : A1 → A3 defined
by τ(t) = (t, 0, 0), and to let Aut(Γ) = {x �→ ax+ b | a ∈ C∗, b ∈ C} act on
A3 via the maps (x, y, z) �→ (ax+ b(y + 1), y, z).

If Γ = C∗, we consider the embedding τ : Γ→ A3 defined by τ(t) =
(t, 1/t, 0). Its image is the curve in A3 defined by the equations z = 0 and
xy = 1. Recall that

Aut(Γ) = {ϕλ : x �→ λx | λ ∈ C∗} ∪ {
ψλ : x �→ λx−1 | λ ∈ C∗} .

The embedding τ becomes Aut(Γ)-equivariant, when we let Aut(Γ) act on A3

via the maps Φλ : (x, y, z) �→ (λx, λ−1y, z) and Ψλ : (x, y, z) �→ (λy, λ−1x, z).
If Γ is equal to P1 \ Λ, where Λ is a finite set of at least 3 points, then

its automorphism group H = Aut(Γ) is the finite subgroup of PGL(2,C) =
Aut(P1) that preserves the set Λ. Applying Corollary 4.4, let δ : P1 → P1 be
a H-equivariant morphism such that Λ =

{
q ∈ P1 | δ(q) = q

}
. This allows us

to define a closed embedding τ̂ : Γ→ (P1 × P1) \Δ by letting τ̂(q) = (q, δ(q))
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for all q ∈ Γ = P1 \ Λ. The morphism τ̂ is moreover H-equivariant, when H
acts diagonally on (P1 × P1) \Δ.

Composing τ̂ with the PGL(2,C)-equivariant closed embedding ι : (P1 ×
P1) \Δ ↪→ A3 that we defined in Lemma 5.1, we obtain a closed embedding
τ : Γ→ A3 which is H-equivariant, as desired. �

6. Explicit formulas for the equivariant embeddings into A3

The proof of Theorem 5.2 is constructive and already contains explicit
Aut(Γ)-equivariant embeddings into A3 for the curves Γ = A1 and Γ =
A1 \ {0}. Let us now describe the construction for the other cases, i.e., when
the automorphism group Aut(Γ) is finite.

We consider the curves Γ = P1 \ Λ, where Λ is a set of at least 3 points
of P1. Let us denote by H the subgroup of Aut(P1) = PGL(2,C) that re-
stricts to Aut(Γ), and denote as before by G its pull-back in SL(2,C),
which is a finite group of order 2|H|. The set Λ decomposes into r orbits
Λ =

⋃r
i=1 Λi ofH. An orbit Λi ofH is given by the zero set of a homogeneous

polynomial pi ∈ C[x, y]. Some power Pi = pdi

i of pi is invariant by the action
of G on P1 defined in Section 4. For each i, Lemma 4.2 yields the existence
of a G-invariant pair (fi,1, fi,2) ∈ End(A2) which satisfy fi,1y − fi,2x = Pi.
TheH-equivariant morphism δ : P1 → P1 given by Proposition 4.3 (or Corol-
lary 4.4) is thus δ : [x : y] ��� [f1(x, y) : f2(x, y)], where

f1 =
1

r

(
r∏

i=1

Pi

)
r∑

i=1

fi,1
Pi

and f2 =
1

r

(
r∏

i=1

Pi

)
r∑

i=1

fi,2
Pi

.

Moreover, (f1, f2) is invariant by G and satisfies f1y − f2x =
∏r

i=1 Pi.
Following the proof of Theorem 5.2, we define a closed embedding Γ =

P1 \ Λ→ (P1 × P1) \Δ by [x : y] �→ ([x : y], [f1 : f2]). We compose then this
latter with the embedding ι : (P1 × P1) \Δ→ A3 defined by Lemma 5.1, and
obtain the following Aut(Γ) = H-equivariant closed embedding of Γ into A3.

Γ = P1 \ Λ → A3

[x : y] �→
(
1

r

r∑
i=1

xfi,2 + yfi,1
xfi,2 − yfi,1

,
1

r

r∑
i=1

2xfi,1
xfi,2 − yfi,1

,

1

r

r∑
i=1

2yfi,2
xfi,2 − yfi,1

)
.

So it suffices to determine the polynomials fi,1 and fi,2, which depend on H
and Λ, to get explicit embeddings.
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Recall that any finite subgroup of Aut(P1) = PGL(2,C) is isomorphic
to Z/nZ (the cyclic group of order n), D2n (the dihedral group of order 2n),
A4 (the tetrahedral group), S4 (the octahedral or cubic group) or A5 (the
icosahedral or dodecahedral group) and that there is only one conjugacy
class for each of these groups (see e.g. [1]).

1) In the cyclic case, we can assume that H ⊂ PGL(2,C) is generated
by [x : y] �→ [ξnx : y], where ξn is a primitive n-th root of unity. Its pullback

G ⊂ SL(2,C) is then generated by

(
ζ 0
0 ζ−1

)
, where ζ is a primitive 2n-

th root of unity. An orbit Λi of H is given by the zero set of a polynomial
pi = aix

n + biy
n for some (ai, bi) ∈ C2 \ {(0, 0)} (the cases where ai = 0 or

bi = 0 provide a fixed point with multiplicity n). We thus get

Pi = (pi)
2 ∈ O(A2)G

and

(fi,1, fi,2) =
(
biy

n−1(aix
n + biy

n),−aix
n−1(aix

n + biy
n)
) ∈ End(A2)G

which satisfy fi,1y − fi,2x = Pi (note that the fi,1 and fi,2 are here not
unique, and could also be chosen without common factor). The correspond-
ing embedding Γ = P1 \ Λ→ A3 is given by

[x : y] �→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

r

r∑
i=1

aix
n − biy

n

aixn + biyn

1

r

r∑
i=1

−2bixyn−1

aixn + biyn

1

r

r∑
i=1

2aix
n−1y

aixn + biyn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

2) In the dihedral case, we can assume that H is generated by the maps

[x : y] �→ [ξnx : y] and [x : y] �→ [y : x]. So G is generated by

(
ζ 0
0 ζ−1

)

and

(
0 i
i 0

)
, where i denotes the imaginary unit

√−1.
An orbit Λi of H is given by the zero set of pi = ai(x

2n + y2n) + 2bix
nyn

for some (ai, bi) ∈ C2 \ {(0, 0)} and we thus get

Pi = (pi)
2 ∈ O(A2)G
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and

(fi,1, fi,2) =
(
yn−1(bix

n + aiy
n)pi,−xn−1(aix

n + biy
n)pi

) ∈ End(A2)G

which satisfy fi,1y − fi,2x = Pi (note that Pi = pi is also possible if n is even,
and that as before the polynomials fi,1, fi,2 are not unique, and could also be
chosen without common factor). This leads to the embedding Γ = P1 \ Λ→
A3 defined by

[x : y] �→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

r

r∑
i=1

ai(x
2n − y2n)

ai(x2n + y2n) + 2bixnyn

1

r

r∑
i=1

−2xyn−1(bix
n + aiy

n)

ai(x2n + y2n) + 2bixnyn

1

r

r∑
i=1

2xn−1y(aix
n + biy

n)

ai(x2n + y2n) + 2bixnyn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

3) In the case of the tetrahedral group, we can assume that H ∼= A4

is generated by the maps [x : y] �→ [i(x+ y) : x− y] and [x : y] �→ [x : −y].

This implies that G is generated by 1
2

(
i− 1 i− 1
i+ 1 −i− 1

)
and

( −i 0
0 i

)
.

An orbit Λi of H is given by the zero set of

pi = 6ai(x
5y − xy5)2 + bi(x

4 + y4)(x8 + y8 − 34x4y4),

for some (ai, bi) ∈ C2 \ {(0, 0)}. We thus get

Pi = pi ∈ O(A2)G

fi,1 = ai(x
10y − 6x6y5 + 5x2y9) + bi(−11x8y3 − 22x4y7 + y11)

fi,2 = −ai(5x
9y2 − 6x5y6 + xy10)− bi(x

11 − 22x7y4 − 11x3y8)

which satisfy (fi,1, fi,2) ∈ End(A2)G and fi,1y − fi,2x = Pi as before. This
gives the embedding Γ = P1 \ Λ→ A3 defined by

[x : y] �→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

r

r∑
i=1

4aix
2y2(x4 + y4)(x4 − y4) + bi(x

12 − 11x8y4 + 11x4y8 − y12)

6ai(x5y − xy5)2 + bi(x4 + y4)(x8 + y8 − 34x4y4)

1

r

r∑
i=1

−2x(ai(x10y − 6x6y5 + 5x2y9) + bi(−11x8y3 − 22x4y7 + y11))

6ai(x5y − xy5)2 + bi(x4 + y4)(x8 + y8 − 34x4y4)

1

r

r∑
i=1

2y(ai(5x
9y2 − 6x5y6 + xy10) + bi(x

11 − 22x7y4 − 11x3y8))

6ai(x5y − xy5)2 + bi(x4 + y4)(x8 + y8 − 34x4y4)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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It is also possible to describe similarly the other cases (S4 and A5), but the
formulas are even more intricate.

(Added in proof. The authors have recently learned that Proposition 3.1 al-
ready appeared in [2, Proposition 3.4] by Bhatwadekar and Roy.)
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