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Collapsing of negative Kahler-Einstein
metrics

YUGUANG ZHANG

In this paper, we study the collapsing behaviour of negative Kéhler-
FEinstein metrics along degenerations of canonical polarized mani-
folds. We prove that for a toroidal degeneration of canonical polar-
ized manifolds with the total space Q-factorial, the Kéhler-Einstein
metrics on fibers collapse to a lower dimensional complete Rieman-
nian manifold in the pointed Gromov-Hausdorff sense by suitably
choosing the base points. Furthermore, the most collapsed limit is
a real affine Kéhler manifold.

1. Introduction

Let X be a complex projective n-manifold. We call X a canonical polarized
manifold if the canonical bundle x of X is ample, and call X a Calabi-
Yau manifold if Kx is trivial. The Calabi conjecture of the existence of
Kahler-Einstein metrics was solved by Aubin and Yau in the case of canon-
ical polarized manifolds (cf. [1, 40]), and by Yau for Calabi-Yau manifolds
(cf. [40]). More precisely, on a canonical polarized manifold X, there exists
a unique Kéhler-Einstein metric w with w € 2m¢;(Kx) and negative Ricci
curvature, i.e.

Ric(w) = —w,

by [1, 40]. On a Calabi-Yau manifold, there are Ricci-flat Kahler-Einstein
metrics by [40]. The goal of this paper is to study the collapsing behaviour of
families of negative Kéahler-Einstein metrics along degenerations in algebro-
geometric sense.

A degeneration of projective n-manifolds 7 : X — A is a flat morphism
from a normal Gorenstein variety X of dimension n+ 1 to a disc A C C
such that X; = 7=1(¢), t € A* = A\{0}, is smooth except the central fiber
Xo = 71(0). We denote X, = Uli:1 Xo,i and Xo1 = (;e; Xo,i» where Xo;,
i=1,...,l, is a irreducible component, and I C {1,...,l}. If the relative
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canonical bundle Ky /A = Kx ® ICgl is relatively ample, then for any smooth
fiber X;, the canonical bundle Cx, = Ky /A’ x, Is ample, and thus X; is a
canonical polarized manifold. We call such degeneration 7 : X — A a canon-
ical polarized degeneration.

In [35], Strominger, Yau and Zaslow proposed a conjecture, so called SYZ
conjecture, for constructing mirror Calabi-Yau manifolds via dual special la-
grangian fibration. Later, a new version of the SYZ conjecture was proposed
by Kontsevich, Soibelman, Gross and Wilson (cf. [17, 25, 26]) by using the
collapsing of Ricci-flat K&hler-Einstein metrics. Let X — A be a degenera-
tion of Calabi-Yau n-manifolds, i.e. the relative canonical bundle Ky /A is
trivial, and 0 € A be a large complex limit point (cf. [14]). The collapsing
version of SYZ conjecture asserts that there are Ricci-flat Kahler-Einstein
metrics w, on X; for t € A* such that (X;,diam_,*(X;)w;) converges to a
compact metric space (B,dp) in the Gromov-Hausdorff sense, when t — 0.
Furthermore, the smooth locus By of B is open dense, and is of real di-
mension n, and admits a real affine structure. The metric dp is induced by
a Monge-Ampere metric gp on By, i.e. under affine coordinates 1, ..., x,,
there is a potential function ¢ such that

% 9%
= il =1
9B - D0, dx;dr;, and det ( oz, 8$j>

Clearly it is true for Abelian varieties. This conjecture was verified by Gross
and Wilson for fibred K3 surfaces with only type I; singular fibers in [17],
and was studied for higher dimensional HyperKéhler manifolds in [15, 16]. In
[16], Gross-Wilson’s result was extended to all elliptically fibred K3 surfaces.

Inspired by this collapsing version of SYZ conjecture, we study the limits
of negative Kahler-Einstein metrics on canonical polarized manifolds degen-
erating to some singular varieties.

Let m: X — A be a canonical polarized degeneration such that X, has
only simple normal crossing singularities, i.e. Xg is reduced, locally given by
21 -+ - 21, = 0 under local coordinates z1, ..., z, on X, and any X ; is smooth.
Let w; € 2mc1(Kx,), t € A*, be the unique Kéhler-Einstein metric on Xj.
The convergence of w; was studied by various authors (cf. [19, 29, 30, 32, 36]).
In [36], it is proved that w; converges smoothly to a complete Kéhler-Einstein
wp with negative Ricci curvature on the regular locus Xg ey = Uﬁzl X0,i,req
in the Cheeger-Gromov sense, if an additional condition that any three of
the components Xy ; have empty intersection is satisfied. More precisely, for
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any smooth family of embeddings F} : X¢ ey — X, we have that
Ffw; — wp, when t— 0,

in the locally C*°-sense on X ¢4, Where wq is the complete Kahler-Einstein
metric on X ¢4 previously obtained in [5, 22, 37]. In [19, 29], the additional
assumption is removed, and furthermore, the result is generalized to the
case of toroidal degenerations in [30]. These theorems describe the the non-
collapsing part of the limit of (Xy,wy).

Since the volume of wy is finite, there must be some collapsing part when
(Xt,w) approaches to the limit, i.e. there are points p; € X; such that the
volumes of metric 1-balls satisfy

Vol,,, (Bw, (pt,1)) = 0, when t — 0.

Now by Gromov’s precompactness theorem (cf. [12]), a sequence of (X,
we, pt) converges to a pointed complete metric space (W, dy, poo) of Haus-
dorff dimension less than 2n in the pointed Gromov-Hausdorff sense, i.e. for
any R > 0, the metric R-ball (B, (pt, R),wt) converges to the metric R-ball
(Bdy (Poo, R), dw ) in the Gromov-Hausdorff sense (cf. [8]).

The following theorem is a special case of the main theorem (Theo-
rem 2.4) of the present paper, where a more general hypothesis is assumed.

Theorem 1.1. Let m: X — A be a canonical polarized degeneration such
that Xo has only simple normal crossing singularities, and w; € 2me1(Kx;,)
be the unique Kdhler-Einstein metric on X;, t € A*. For any Xo; and
any point po € Xo.1\ Ui¢1 Xo,i, there are points py € Xy such that py — po
in X when t — 0,and by passing to a sequence, (X, wy, pr) converges to a
complete Riemannian manifold (W, gw, poo) with dimgp W =2n+ 1 —41 in
the pointed Gromov-Hausdorff sense. Furthermore, if dimc Xo 1 =0, then
(W, gw) is isometric to (B, gp) by suitably choosing p;, where B is the inte-
rior of the standard simplex in R™, and there is a smooth potential function
¢ on B such that ¢|y5 = +o0,

for a constant k > 0.

Actually (X, wy) collapses smoothly in a certain sense, which is stronger
than the Gromov-Hausdorff topology (See Theorem 2.4 for details).
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This theorem shows a similar collapsing behaviour to the SYZ conjecture
for Calabi-Yau manifolds, i.e. under certain assumptions, the limit metric
space W is an affine Kéahler manifold of real dimension n, and the poten-
tial function satisfies a real Monge-Ampeére equation. However, unlike the
Calabi-Yau case, we always have the non-collapsing part of the limit, and
we do not rescale the metric to obtain the collapsing limit. Note that for
algebraic curves of higher genus, the rescaled limit exists, and is a compact
metric graph by [28]. However, we do not expect that still holds in the higher
dimensional case.

In the original SYZ conjecture (cf. [35]), the existence of special la-
grangian submanifolds is expected when Calabi-Yau manifolds are near the
large complex limit. As an application, we will construct some generalized
special lagrangian submanifolds on canonical polarized manifolds (See Sec-
tion 2.3 for details).

The understanding of the limit behaviour of negative Kéhler-Einstein
metrics is also required for other program. The moduli space M of canoni-
cal polarized manifolds with a fixed Hilbert polynomial was proven to be a
quasi-projective manifold by Viehweg in [39], and the recent progress on the
moduli space of stable varieties (cf. [23]) gives a natural algebro geometric
compactification M of M. Meanwhile, the existence of singular Kihler-
Einstein metrics on stable varieties was obtained in [2]. A natural question
is to understand such compactification from the differential geometric view-
point (cf. [2, 34]), for example in the Gromov-Hausdorff sense or the Weil-
Petersson geometry sense. However unlike the case of Calabi-Yau manifolds
(cf. [38, 41]), we would not have the coincidence of the Gromov-Hausdorff
non-collapsing convergence and the finite Weil-Petersson distance. In The-
orem 1.1, (X;,w;) diverges in the Gromov-Hausdorff sense, but the Weil-
Petersson metric on A* is not complete, i.e. {0} has finite Weil-Petersson
distance to the interior by [29, 30, 36].

This paper is organized as the followings. In Section 2, we introduce the
preliminary materiel and state the main theorems (Theorem 2.4 and Theo-
rem 2.6) of this paper. In Section 1.1, we construct some semi-flat Kahler-
Einstein metrics from those affine Kéhler metrics obtained by Cheng and
Yau previously. In Section 1.2 and Section 1.3, the main theorems (Theo-
rem 2.4 and Theorem 2.6) are given. Theorem 2.4 study the metric collaps-
ing along toroidal degenerations, and Theorem 2.6 shows the existence of
generalized special lagrangian submanifolds. Section 3 is devoted to prove
Theorem 2.4. Firstly, we construct the approximation background metrics
in Section 3.1, then we do some local calculations and prove Theorem 2.4 in
Section 3.2. The last section proves Theorem 2.6.
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2. Main Theorems

In this paper, we always denote N =2 Z"tL Np = N @z R, Ty = N ®z C*,
M =homy(N,Z) and My = M ®z R.

2.1. Semi-flat Kahler-Einstein metric

In this section, we recall a theorem due to Cheng and Yau for the existence of
affine Kéhler metrics, which induce some semi-flat Kéhler-Einstein metrics
that appear in the main theorem.

Let o be a rational strongly convex polyhedral cone in Ng, and 6 C Mg
be the dual cone. If u, € M N & satisfies (uy,v) = 1 for the primitive lattice
vector v € 7N N of any 1-dimensional face 7 of o, then we define

Ar = {v € Ng|(v,uys) =1}, B, =ArNInt(c), and A= NnNAg

where Int(o) denotes the interior of o. The closure B, of B, is a rational
convex polytope in Ag.

Let YV, be the affine toric variety associated to o, i.e. V, = Spec(C[o N
M]), and t = Z% : ), — C. We have a family of varieties Y, = div(Z" —
t) degenerating to the toric boundary Yy, i.e. Yy = Ule D, where D; is a
primitive toric Weil divisor.

If eg,...,e, € N is a basis, we denote xy, ..., z, the respecting coordi-
nates on Ng, and denote z; = Z%, j =0,...,n. If u, = Z?:o mjer, then
Y, is given by z(™ - - - zp' =t, and Ag is given by moxo + - - - + mpz, = 1.
Without loss of generality, we assume that x1,.. ., z, are coordinates on Ag,

i.e. mg # 0, which give an integral affine structure on B, .
For any t € A*, the logarithmic map is

log |z j=
log [t| ’

Log; : Ty — Ng, by zjr— xj = LM

It is clear that Log, (Y, ;) = Ar. We denote

U={pel|2up)|<Lk=1,...,d}
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which is an open subset of V,, where ux € M N & such that o = {v € Ny |
(v,ug) 20,k =1,...,d'}. We have Log,(U)=1Int(c), and moreover,
Log,(Yo: NU) = B

We define coordinates ¢q,...,0,, on Ag by 0; =dx;, j=1,...,n, un-
der the identification of the tangent bundle T'B, = B, x Ag. Then there
is a natural complex structure on B, x v/—1Ag given by complex coor-
dinates w; = x; + VasT 0;, j = ,n, which induces a complex structure
on Y; pm,(Bs) = By X F(AR/QI?”‘%‘A) for any ¢t € A*. We define a finite
covering map ¢y : Yy,m,(Bs) = Yot NU by setting z; = exp((log [t|)w;), j =
1,...,n, and

n

Tar m;
Z) = exp —log It| +v— el E m—; log |t])w
Jj=1

Furthermore, f; = Log,|y, ,ru : Yo, NU — By is a fibration such that f; o ¢,
is the projection from Y; . (B,) to B,.
Now we recall a theorem for the existence of affine Kéahler metrics in [7].

Theorem 2.1 (Theorem 4.4 in [7]). For any constant k > 0, there is a
smooth convex solution ¢ of the real Monge-Ampeére equation

¢ 2 _
(2.1) det duid, ) ke*?,  ¢lgp, = +oo
and
_ dr;de;
IB. 8.%‘@6.%] v xj

is a complete affine Kahler metric on B, .

Note that the constant x is chosen to be 1 in [7], and however, we can
obtain the general case by rescaling the coordinates. By pulling back ¢, we
regard ¢ as a function on B, x v/ —1Ag, i.e. ¢p(wy,...,w,) = ¢(x1,...,3,),
which defines a complete Kahler metric

2
(2.2) w* = 2y/=100¢ = F Z o ¢ dw; A di;

i0xj

on B, x /—1Ag. By (2.1), ¢ satisfies the complex Monge-Ampere equation
det (aigw-) = 4"ke2? on B, x v/—1Ag, and hence w®/ is a Kéhler-Einstein
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metric with Ricci curvature —1, i.e.

. Sf way 82¢ Sf
Ric(w®) = —v/—100log det waa. ) =

wiaﬂ)j

Now Proposition 5.5 in [6] implies that ¢ is the unique solution of (2.1) (See
also [18]).

Since both ¢ and w*f are invariant under the translation wj — wj +
V=1 for any A € R!, w®/ descents to a complete Kihler-Einstein metric on
Yimo(Bg) first, for any ¢ € A*, and further to a complete Kéahler-Einstein
metric on Y, ; NU denoted by w; /. Note that the corresponding Riemannian
metric of w7 is

f_N~ 0%

sf— A A0 -
= Z G, (dzidx; + db;do;).
ij=1
The first consequence is that the restriction of w; 7 on any fiber fit(2),
x € B,, is flat, so called a semi-flat Kéhler-Einstein metric. The second one
is that the diameter of the fiber

diam,.s (f; ' (2)) ~ —(log [t) ™" — 0,

and by suitably choosing a family of base points p; € Yo ¢, (Yor NU, w; r Dt)
converges to (By, 9B, ,Ps0) in the pointed Gromov-Hausdorff sense, when
t — 0. We say that (Yo, NU,w’) collapses to (By, gp, ).

In summary, we have the following proposition.

Proposition 2.2. For any t € A*, there is a unique complete Kdhler-
FEinstein metric wff on Yo NU such that the Ricci curvature is —1, i.e.

Ric(wi’) = —w}?,
and wtsf is semi-flat respecting to the torus fibration f;:Y,; NU — B,.
Furthermore, (Y, ﬂu,wtsf,pt) converges to (By, 9B, ,Pso) in the pointed
Gromov-Hausdorff sense by choosing a family of base points p; € Y51, when
t— 0.

The logarithm Log, is used to convert classical algebraic varieties to
tropical varieties (cf. [27]), and it is believed that the collapsing of Kéahler-
Einstein metrics can do the same in certain circumstances (cf. [9, 13]). This
is true in our case as a direct corollary of the previous arguments.
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Let p € C[6 N M](t), ie. p =3 e but’™ 2" for a finite set A C N M,
by, € C*,and v: A — Z, and Vi, C Y, be the variety defined by ply, , = 0.
The image A; = Log, (V) C Ag is called an amoeba, and it is proven in [27]
that A; converges to a polyhedron complex A, in the Hausdorff topology,
when ¢t € R and t — 0. Here A, is called a non-Archimedean amoeba, and
is the set of non-smooth points of the function

Poo(®) = min{v(u) + (z,u)}
on Ag. In tropical geometry, A is the tropical hypersurface defined by p
(cf. [27]). We have the following corollary by the collapsing of w; ! to 9B, -

Corollary 2.3. Whent € R andt — 0,
Vt7p ﬂu — AQO ﬂBJ

under the pointed Gromov-Hausdorff convergence of (Yo: ﬂu,wff) to
(BmgBa)'

2.2. Toroidal degeneration

A degeneration 7 : X — A is called simple toroidal, if for any point x € X,
there is an open neighborhood U satisfying that

i) U is isomorphic to an open subset of an affine toric variety ), denoted
still by U.

ii) The restriction of 7 on U is given by a regular function Z%=, where u, €
M N & satisfies (uy,v) = 1 for the primitive lattice vector v € 7N N of
any 1-dimensional face 7 of . Hence if Dy, ..., Dy are primitive toric
Weil divisors of ), then we have that XoNU = E;l:l D;NU, and
Xy is reduced.

iii) Any non-empty Xy ;s is connected and normal, which implies that any
Xo,r does not intersect with itself.

Since the canonical divisor Ky, = — Z;l:l Dj (cf. [10]), we have that Kx |y =
—div(Z%), and thus Ly is Cartier, i.e. X is Gorenstein. Degenerations with
only simple normal crossing singularities are special cases of simple toroidal
degenerations.

In Chapter II of [21], a compact polyhedral complex B with integral
structure, called the dual intersection complex, is associated to 7 : X — A



Collapsing of negative Kéhler-Einstein metrics 1851

such that cells of B are in one-to-one correspondence to those non-empty
Xo,7. More precisely, for any X # (), there is a unique polyhedral cell
Bj € B such that dimg By = n — dimg¢ Xo,1, and By is a face of By if and
only if X 1» O X 7. The cell B € B associated to Xo,1 is constructed as the
following. Let p € Xo,1\ U;¢; Xo,5, and U C X\ {J;¢; Xo,; be a neighborhood
of p isomorphic to an open subset of an affine toric variety ),. If o is the
corresponding rational convex cone in Ng, then

Br={veo|(vu,) =1}

We denote Bj the interior of Bj.
Now we state the main theorem of the present paper.

Theorem 2.4. Let m: X — A be a simple toroidal canonical polarized de-
generation of projective n-manifolds, and w; be the unique Kdhler-Einstein
metric in 2mc1(Kx,), t € A*. If X is Q-factorial, then the followings hold.

i) For any Xo with 41 > 1, and any point py € Xo 1\ Uiel Xo,i, there
are points py € X; such that py — pg in X when t — 0, and by passing
to a sequence, (X, wy, py) converges to a complete Riemannian mani-
fold (W, gw, poo) with dimg W = dimg B; + 2dimc X s in the pointed
Gromov-Hausdorff sense.

ii) If dimc Xo ;7 =0, then (W, gw) is isometric to (Br, gp,) by suitably
choosing p, where gp, is the complete affine Kdhler metric obtained
in Theorem 2.1. Furthermore, if wfj; is the semi-flat Kdhler-FEinstein
metric constructed from gp, in Pr(;position 2.2 on a neighborhood of
U N Xy, where U is a neighborhood of Xo 1 isomorphic an open subset
of a toric variety, then

[lwe — wts,j;HC” x.nuwt) = 05

loc N

for anyv >0, when t — 0, i.e. the collapsing is in the C*°-sense, and
the convergence does not need to pass any sequence.

This theorem describes the collapsed limits of wy, while the previous
results of [19, 29, 30, 36] describe the non-collapsed limits, i.e. they still
have complex dimension n.

The notion of toroidal degeneration is an algebro-geometric analogue of
F-structure introduced in [3]. An F-structure F on a smooth manifold X
consists an open covering {U,} such that for each U,, there is an effective
T™=-action on a finite cover of Uy, and on any overlap U, N Ug, these two
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torus actions 7"« and T"# are compatible in a certain sense (See [9] for the
details). For a toroidal degeneration 7 : X — A, a small neighborhood U of
a Xo,; with 1 > 1 is isomorphic to an open subset of a toric variety, and
X NVU is given by a monomial. Thus there is a natural local T">-action on
X:NU. We conjecture that there is an F-structure F on X; N4, where &
is a small neighborhood of Uﬁ1>1 Xo,7 in X, and more importantly, this F
is Hamiltonian, i.e. there is a symplectic form w; on X; such that any local
torus action of F is Hamiltonian.

Theorem 2.4 and Proposition 3.4 in Section 3.2 show that the Ké&hler-
Einstein metric wy approximates some local semi-flat Kéhler-Einstein met-
rics wf J; on small open subsets of X;, and wf ]; collapses smoothly to lower
dimensional spaces along local torus fibrations. Moreover, we would see that
the curvature of w; is bounded independent of ¢ in Section 3.1. Hence there is
an F-structure F’ on some region of X; by [4], and we again conjecture that
F’ can be made to coincide with the above F. Hamiltonian F-structures
would be studied in a separate paper.

We remark that Theorem 2.4 should hold for more general settings,
for example, toroidal degenerations without the assumption of X being Q-
factorial as in [31], or the log pair case, i.e. Ky /a + D is ample for a Cartier
divisor D, as in [19, 36]. For avoiding too many technique difficulties, we
leave those generalizations for future studies. In a recent paper [2], the ex-
istence of singular Kéhler-Einstein metrics is obtained for stable varieties,
i.e. varieties with semi-log canonical singularities and ample canonical divi-
sor. It is also expected that the convergence theorems of [19, 29, 30, 32, 36]
can be generalized to degenerations with central fiber X stable varieties
(cf. [2, 34]), which is related to the question of differential geometric under-
standing of the moduli space for stable varieties.

We finish this section by showing an example that Theorem 2.4 and
Theorem 1.1 can apply.

Example 2.5. Firstly, we recall the standard Mumford degeneration of
toric varieties. Let M’ = Z" such that M = M’ x Z, and P C M}, = M’ ®y
R be a lattice polytope. If ¢ : P — R is a piecewise linear convex function
respecting to a lattice polyhedral decomposition 3 of P with integral slopes,
we define a lattice polyhedron

P={(v,r) € Mg = M} xR | ¢(v) <},

which determines a toric variety Xp with a regular function 7 = Z(01)
X5 — C. For any t € C\{0}, X; = 7~ !(t) is isomorphic to the toric variety
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Xp associated to P, and X = 71(0) = Ure‘nmax X, where Pax denotes
the set of n-dimensional polytopes of B, and X is the toric variety associ-
ated to 7 € Pax- By choosing P and ¢ properly, we can assume that Xy has
only simple normal crossing singularities, and X; is smooth for any t # 0.
For instance, we take P, T3 and v as the following:

11+ U2
—Uu1 ’(/J(—ul) =0, T/J(—Ug) =0, ¢(U1 + 'LLQ) =1.

s

Now we follow the argument in the proof of Lemma 1.4 in [24]. Let H
be a sufficiently general very ample divisor on Xz such that x, ® O(H) is
ample, and H + X; has simple normal crossing singularities for any |t| < ¢ <
1. If ¢: Xﬁ — X5 is the double ramified cover along 2H, then the Hurwitz
formul~a shows that K¢ == ¢* (Kx, ® O(H)), and hence, K% is ample. Note
that Xo = ¢ (Xp) still has only simple normal crossing singularities, and
for any ¢ with 0 < |t| < 1, X; = ¢ }(X;) is smooth. We obtain a canonical
degeneration 7 : X — A C C satisfying the hypothesises in Theorem 2.4 and
Theorem 1.1 by letting ¥ = 7o ¢ and X = 7 1(A).

2.3. Special lagrangian submanifold

The original SYZ conjecture asserts the existence of special lagrangian sub-
manifolds when Calabi-Yau manifolds are near the large complex limit (cf.
[35]). There are some attempts to generalize the SYZ conjecture to the case
of canonical polarized manifolds (cf. [20]), which include analog notions for
special lagrangian submanifold. We also like to study a generalization of
special lagrangian submanifold.

If X is a canonical polarized projective n-manifold, then by definition,
the canonical bundle Cx is ample. Let 2 be a holomorphic n-form, and
D be the effective divisor defined by Q, i.e. D = div(Q2). The restriction of
Q on X\D is no-where vanishing, and thus Kx\p is trivial, i.e. X\D is a
quasi-projective Calabi-Yau manifold. A submanifold L of X\D is called
a generalized special lagrangian submanifold respecting to 2 and a Kéhler
metric w, if dimg L = n,

wlr =0, and Im(Q)|r = 0.
This notion of generalized special lagrangian submanifold is standard in

the case of non-Ricci flat metric (cf. [14, 31]). The real part Re(Q2) is not a
calibration respecting to the Kéahler metric w, but to a non-Kéhler Hermitian
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metric pw by Section 10.5 in [14], where p > 0 is a function defined by

plw" = g—i(—l)%Q A Q.

As an application of Theorem 2.4, we have the following theorem.

Theorem 2.6. Let m: X — A and w; be the same as in Theorem 2./.
Assume that there is a zero dimensional Xo 1. If Q4 is a section of Ky /a such
that D = div(§}) does not intersect with Xo 1, then there is a generalized
special lagrangian torus Ly C (X \Dy) respecting to wy and e‘/jthtbgt for
any 0 < |t| < 1 and a phase ¥9; € R, where Dy = D N X;.

3. Proof of Theorem 2.4
3.1. Background metric

In this section, we use the construction in [29] to obtain some approxima-
tion background Kéahler metrics, which are uniformly equivalent to Kéhler-
Einstein metrics.

Let m: X — A be a simple toroidal canonical polarized degeneration of
projective n-manifolds such that X" is Q-factorial. Since Ky /4 is relative am-
ple, there is an embedding ® : X < CP™» x A for two integers m > 0 and

Ny, > 0 such that IC7’)§/A = ®@*Ocpym (1). There are sections Uy, ..., ¥y, of

K'¥ /A such that, by abusing notions, hps = (Zg;”o |W|2) " is the Hermi-
tian metric whose curvature is the Fubini-Study metric, i.e.

N, "
1 R . m
(3.1) w’=09o" <mwpg + v —1dt A dt> =+ —100log ( |\Ilk]2> .
k=0

By regarding volume forms as Hermitian metrics of the anti-canonical bun-
dle, we obtain a volume form V = ( évgo Uy|?)= on X. For any t € A*,

Vi =V @ (dt Adt)~! is a smooth volume form on Xy, and let

(3.2) w? = w°|x, = V/~190log V;.

Since & is Q-factorial, there is a ¢ € N such that all of X ;,7=1,...,1,
are Cartier divisors. Let || - |; be a smooth Hermitian metric of O(uXo;)
on X, and s; be a defining section of uXo;, i.e. div(s;) = uXo,. Here the
Hermitian metric || - ||; being smooth means that || - ||; is locally given by
the restriction of a smooth positive function ¢ on the ambient space C” for
a local embedding of an open subset U of X into C”, and a trivialization of
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O(pXo;) on U. In this case, Ric(|| - ||;) is the restriction of the smooth form
—+/—10010g o on C".

We assume that sj---s; = t# by choosing the parameter ¢t € A appro-
priately. Let

l

1 —
(33) Qi = ﬁlogHSZHsz Xt = (10g|t|2)2Hai 2’
i=1

and
(3.4) @ = V/—109log x+V;

= wy 4+ v/~109log x;

l . _
—wp 42y (RIC(”'”Z)JF\QW)
=1 i a;g X,

on X; for t # 0. We can assume that [|s;]|; < e < 1 such that

1 2
w0’ S+ Z; a—iRic(H i) < 2w°
1=

on X\ X, by multiplying certain constants if necessary. We denote X0 =
Xo,/\U;¢s Xo,i, and define a complete Kéhler metric

- Ri 4 0 i/\g i
(35)  Gos=wxg, +23 (10(””) N q@fé)

(67 o
il ‘

i XS,I
on X .

The Kahler metric @, is the background metric we need. Note that our
assumption of X is stronger than the one in [29], and however is weaker than
that in [30]. Nevertheless, the arguments in Section 3 of [29] and Section 4
of [30] show that the curvature of @; and the Ricci potential log( L) are
bounded independent of ¢, which can also be obtained by the calculatlon in
Section 3.2. Thus we have the CY and C? estimates for the potential function
of the Kéahler-Einstein metric by the standard estimates for Monge-Ampere
equations (cf. [1, 40]).
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Proposition 3.1. Let ¢; be the unique solution of Monge-Ampére equation
(3.6) (@1 + V—100p,)" = e\ Vi,
and wy = W + \/?135901: be the Kdhler-FEinstein metric on Xy. Then
lpr] < C1, and Cy'dy < wp < Coly,
for constants C1 > 0 and Cy > 0 independent of t.

Once Proposition 3.1 is obtained, [19, 29, 30, 36] prove the convergence
of w; to a complete Kéhler-Einstein metric wp on the regular locus Xo req
in the Cheeger-Gromov sense, i.e. for any smooth family of embeddings
Fy : Xoreg — Xt, Fjw; converges to wp in the locally C*°-sense when ¢t — 0.
When #I =1, @p r is uniformly equivalent to the Kahler-Einstein metric wo
on X¢ 1 C Xoreg-

3.2. Proof of Theorem 2.4

Now we study the local collapsing behaviour of Kéhler-Einstein metrics w;.

For a point p € X 1, let U C X be a neighborhood of p isomorphic to an
open subset of a toric variety )V, denoted still by U, such that U N Xq ; is
empty for any I’ ¢ T ={1,...,s+ 1}. Since X is Q-factorial, so is },, and
YV, has only orbifold singularities, which is equivalent to the rational cone o
being simplicial (cf. [10]).

If vg,...,vs € N are primitive vectors belonging to 1-dimensional faces
and generating o in Ng, we denote N/ = Spanj{vo,...,vs} which is a sub-
lattice of N, = Z- (6 N N), and M(0) = o+ N M = 7" 5. Then M = M, &
M (o) where M, = homy(N,,Z) = M/M (o), and M, is a sublattice of M/ =
homy (Ng, Z) = Spang(vg, . .., v5), where v} is the dual vector of v;. Note
that the restriction of m on U is given by a monomial Z%, where u, €
& N M, satisfies (uq,v;) =1for j =0,...,s,1.e u, = ijo vy

If G = N,/N., and J! = Spec(C[s N M/]) = C**!, then the finite group
G acts on Y, by v Z% = exp(2ny/—1(v,u)) - Z* for any v € N, and u €
M., and Y. /G x (C*)"—5 =2 ),. We denote ¢, : V.. x (C*)"° — ), the quo-
tient map of the G-action. Let z; = 2ZY%,j=0,...,s, be coordinates on

0, and zg1,..., 2, be coordinates on (C*)"~*. The restriction ¢, : T, x
(C*)"=* = Ty is a finite covering map, where Ty = N ®z C* and Ty, =
Né ®qz C*.
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If we denote Y, ; =div(Z% —t), t € C, then Y,,NU = X; NU, and
Yoo = ijo Dj; where D; is a primitive toric Weil divisor of Y,. The re-
striction ¢, : q; ' (Yot) — Yo is a finite covering map as X; N U C Ty when
t#0, and q;'(Y,4) is given by the equation zp---zs =t in Y. x (C*)"~%.
We can regard zi,...,z, as coordinates of q;l(Yg,t) for any t# 0. We
assume that U C Y, satisfies ¢; 1 (U) = {(20,...,25) € V}||zj| <€,0<j <
s} x (UNXo,r) for an € < 1 without loss of generality.

Let xg,...,xs be coordinates on NC’LR = N! ®7 R = R**! respecting to
the basis vg, ..., vs. Note that the interior of the s-dimensional cell By € B
associated to Xg  is given by

(3.7) Br ={v € int(o) | (v,us) =1}

S
> ay=1,2;>0,j=0,...,s
j=0

= (zg,...,x5) € REH

S
=< (x1,...,25) €R® Z:nj<1,:uj>0,j:1,...,s

Jj=1

Here we regard z1,...,zs as coordinates on Bj.
For any t € A*, we define the covering map

(3.8) P C* x (CY" = ¢, (Vo)
by letting z; = eloglthw; and xzj = Re(w;j), j=1,...,s, ie.
Prwy, ... Wsy Zgi1y vy 2n) = (e(log thws . ellos ‘tl)w*",zsﬂ, ey Zn)-

The fundamental domains of P; are
(3.9)

2 1
saw:{ml,...,ws)ecs 2y 2nlv +1)

< Im(wj) <

)

log 1 } ()

for v € Z, and naturally (C®/v/ —112()7?';') x (C*)"~* is biholomorphic to

¢; ' (Y,) by further setting 2o = tz; - 251 = texp(— > 5—1(log [t))w;).
Note that if |zj| <€, j=0,...,s, then z; > 1LOgg|§|
log [t|(1 = >2%_; ;) = log|20] < loge, which implies

for j=1,...,s, and

P Ng, WYy NU)) = By x V=1R® x (C*)"7%,
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where
loge . - loge
By =X (z1,...,15) € R® $j>bgm’jzl’”"s’l_;mj>10g|t\
C Bj.
Hence

- s 2nZ® *\N—s -
¢, (Yo, NU) C Br x v/—1 (]R /log|t|> x (C)"% C g5 (You)

Lemma 3.2. Let K C By be a compact subset such that K C By for|t| < 1.
On K x /—1R* x (UN Xg 1) C (qo 0 )" (UNY,4), when t — 0,

i)

1 dw; A dw;
PV = g e L A

in the C*°-sense, where Vi is a smooth volume form on U N X .

Jj=1

ii)
N V=1 [~ dw; Adw; iy dw;i A diw;
P — whp+ -~ [ Y L+ = = &°
b —_ . 2
2 ) Z; (1 =251 %)
in the C™>°-sense, where Wf],] is the pull-back of the complete Kdhler
metric wo,; on U N X .

Proof. Let wg =1+ \/_1?52(\2 —w) — - —ws on (gy o Pt)_l(Ymt), and
rzo=1—x1—---— x5 on B;y. We have zy = elogltlwo and dwg = —dwy —

e — dws on (qo- e} Pt)_l(Ymt).

Now, we claim that for a smooth function A on Y, x (C*)"~5 Ao P, —
N'= X0, zs41,- .., 2n) and dzj = %dwj —0,j=0,...,s, in the C*-sense
on any compact subset of (g, o P;)~1(U N Yy+), when ¢t — 0. Since

k., .
0% z;
k
8wj

9z
811]]'

_ |00

— |(1Og|t|)ke(log|t\)xj| < |(10g|t|)k’eej loglt| _ 0,

N 8’[1)0

for a e; >0, 0 < j < s, the claim follows by |8 kb | < C for some con-

k1 ]
£ --~Bzis/

stants C' > 0.
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Since ), has only Gorenstein orbifold singularities, for the generator
Qy € O(Ky,), ¢:9Q4 is a G-invariant no-where vanishing holomorphic (n +
1,0)-form on Y, x (C*)"~*, and thus

n
oV =n H dzj N dzj,
§=0

where 1 > 0 is a smooth function on ¢, !(U). We obtain

Sodz NdE
qéwzanlgﬁéﬁflA [T dzindz
j=1 J i=s+1

on ¢; Y (X NU).

Without loss of generality, we assume that I = {1,...,s+ 1}. Under a
local trivialization of O(uXo;), ¢ € I, on U, we have that qysi = 25, where
j =1 —1, and the Hermitian metric || - ||; is a given by restricting a smooth
function p on an open subset C” for a local embeddmg U — C¥. Thus
o = log pjlzj> for j =0,...,s, where p; = p; 0 gs > 0 are smooth func-
tion on ¢, Y(U), and ¢ty < 0, 1=s+2,...,1, are also smooth functions.
By (3.3),

Vi = 1" (log [t]?)? H dzj N\ dz; A f[ Ao A d5
= (3 (2
7 (log(pol=0[?))? -7 |2[* (o (pjl=?))* 22,

where 7 > 0 is a smooth function on ¢, }(U), and

"oP o dw; Adw; n
‘Pt*qZ'Xt‘/t = logZO i 9 H logpj 2 9 A H dZZ' VAN dz
“ogﬁP +210) j=1 Qogup +225)% 2

By taking ¢t — 0, we obtain the convergence of volume forms.
We have g*w® is a smooth (1, 1)-form on ¢, !(U), and

Prqiw? = V/—1Pfq 001og V; = \/—1001logn — v/—1091og 7,

in the C*°-sense, when ¢t — 0, where ' = 7(0, 2541, ..., 2,) > 0. Note that
vV/—100logn is the pull-back of w’|x, ,nU- Since q*M and q*m,
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i=s+2,...,1, are also smooth (1,1)-forms on ¢, (U), we have

« « (Ric(]] - ||s da; N Doy
Ptqa<w+v—1oﬂ)—>ﬂi,

in the C"°°-sense, where (3; is the pull-back of the smooth Kéhler form
(‘Rlcgj["‘i) + /122800y, on U N Xg 7. Thus

l
wip = V—199logn +2 Z Bi

1=5+2
is the pull-back of the restriction of &g ; on U N Xq 1 by (3.5).
On K, (loglt|)z; - —o0, j =0,...,s, and thus,

Ric(|| - [lj+1) _  V/~190logp;
Q1 log p; + 2(log [t])z;

Prq; — 0,

in the C"*°-sense. Furthermore,

doji1 NDajpr  (Olog pj + logt|dw;) A (Dlog pj + log |t|dw;)
d =

P*q*
a2y (log p;j + 2(log [t])z;)?
dw; A dw;
- Wy . w37
41:].

in the C*°-sense, when ¢t — 0. Thus we obtain the conclusion by (3.4), and

dwo A dwg D=1 dw; A di;

4x% a 4(1 - Zj‘:l x])Q . 0

Lemma 3.3. Let @; be the unique solution of (3.6), and w; = &y + /—100p;.
For any sequence ti, — 0, a subsequence of ¢y, © q» © Py, converges to @g in
the C®-sense on K x /—1R® x (U N Xo1), where ¢q is a smooth function
on Br x /—1R® x (U N Xy ;) satisfying the complex Monge-Ampére equa-
tion

(3.10) (@° + V—=100pp)" = e?°Vj,

with |po| < Cs, and CZIG)O < Q% 4+ vV—=100py < Cya°.
Furthermore, ¢q is independent of Im(w;), 7 =1,...,s, i.e.

00 = ©0(T1y ..oy Ty Zst1ye--s2n)-
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Proof. By Proposition 3.1, we have that
el < C, and CflPt*q(’iCut < Prgy (@ + V—190¢1) < CP/ gz

for a constant C' > 0. We obtain the C%“-estimates for ¢y, i.e. ||p; 0 g, ©
Pylc2e < C, by Lemma 3.2 and the Evans-Krylov theory (cf. [11, 33]), and
the higher order estimates ||¢; 0 ¢, © Pi||cv < C(v) by the standard Schauder
estimates on any compact subset K’ C K x /—1R® x (U N Xo 7). Thus by
passing to a subsequence of ty, ¢, 0 ¢, o P, converges to a smooth function
o in the locally C"*°-sense, and (g satisfies the the complex Monge-Ampere
equation (3.10) by Lemma 3.2.

Since ¢y 0 g, 0 P, is a periodic function with period /—1 2%

fog [1]7 1+

2mm
@tOQGOPt(WaZ):@tOQOOPt <W+ V_llog‘t‘?Z)v

for any m € Z*, where w = (w1,...,ws) and z = (zs41,...,2,), We obtain
that g is independent of Im(w;), j =1,...,s, by the smooth convergence.
O

: Py _ Py
Since awiéfuj = 48xiaf)xj,

AV 185g00 is

the corresponding Riemannian metric of @° +

° Oii 1 824,00
3.11 = - dx;dx; + db;dl; ,
S 1;1(%2 = 2 5=175)° " 20w, (s + dBidfy) + o
where 0; = Im(wj), j =1,...,n, and Gy denotes the remaining terms that

do not involve any df;df; and dx;dx;.

Note that both &° and ¢g are invariant under the translation w; —
wj+AjvV—1, j=1,....,s, for any (A1,...,As) € R®. Hence for any ¢ # 0,
W% 4+ v/—100¢( descents to a Kahler metric w; 7 on Y, N U, which satisfies
that

(3.12) Pigiwy’ = @° + vV=189pp, and |wi, — wi?||c

loc

Voo Uiy 0

for any v > 0, when t; — 0 by Lemma 3.3.
Define a fibration

275
log [t|

JooBrx V=1 <RS/ ( )) x (C*)"* = By x (C*)"*
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by the projection. Note that ft is G-equivariant, ft induces a T*-fibration
(3.13) fi :UNY,s — By x (C)"%, with f; = f; 0 qo.

For a point (x,z) € By x (C*)"™*, where x = (z1,...,25) € B; and z =
(Zs41,- -5 2n) € (C)"7% the fiber f;!(x,7) satisfies that

(40 P) 7 (£ (x,2)) = {(x + V—10,2) | 6 = (81.....6,) € R*}.

Hence the restriction of the Kahler metric w; ! on fi1(x,2) is a flat Rieman-
nian metric, i.e. w; 7 is a semi-flat metric, and

2 CX Z
diam,,,, (fi7'(x,2)) ~ diamg/ (f;}(x,2) < Y22,

when t — 0, by (3.12) and (3.11), where

s

B 51’]’ 1 82g00
o= |2+ O a)? " 20m0u; b))

ij=11""1

We denote Wy = By x (U N Xy 1), and naturally regard Wy C By x
\/—1(112{8/(1207;;%;)) x (UNXor) given by 6, =0, j =1,...,n. We let gy, =
golwy- If p € Wy, and r > 0 such that the metric ball By, (p,7) C K" for

a compact subset K” C Wy, then

(314) (Bwtk (ptk’ 7"), wtk) and (Bwfkf (ptk ’ T)v wfkf) - (BQWU (p> ’l“), gWU)

in the Gromov-Hausdorff sense by (3.12), when ¢, — 0, for some p, € X; N U.
By Gromov’s precompactness theorem (cf. [12]), (X¢,,wt,,pt,) converges
to a complete metric space (W, dw,poo) of Hausdorff dimension g in the
pointed Gromov-Hausdorff sense, and there is a local isometric embedding
(Bguy,, (Poos7); gw,, ) = (W, dy ), which implies ¢ = dimg By x Xo 7.

In summary, we have the following proposition.

Proposition 3.4. There is a semi-flat Kdhler-FEinstein metric wff on XN
U respecting to fi such that

[—d e

v
loc

Vo Uwil) = 0

for any v >0, and a sequence t, — 0. Furthermore, (Xy,,ws, ,pt,) converges
to a complete metric space (W, dw,pso) in the pointed Gromov-Hausdorff
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sense by choosing some base points py € Xz, and the Hausdorff dimension of
W equals to dimg By + 2dimc Xo 7.

Now we are ready to prove Theorem 2.4.

Proof of Theorem 2.4. Let {U,} be an open cover of X0 1 such that any
U, C X is isomorphic to an open subset of a toric variety, and does not inter-
sect with U 7 Xo,i- By applying the above arguments to U, we have Wy, =

Br x (U, ﬂXoj) C Br x v—=1(R®*/(Z2)) x (Uy N Xo,1), and a metric gy, =

log ||
9v,0|wy., » where gy 0 is the Riemannian metric given by (3.11). If (.u7 t| X,AU,
denotes the seml-ﬂat Kéhler-Einstein metric satisfying (3.12), then, by
Lemma 3.3, Pfqiw vt is uniformly equivalent to @° on By x v/—1R® x (U, N
Xo,7). For any U,, since there are finite Uy,...,Us € {Uy} such that (U U
UyU---UU; UU,) N X, is connected, we have a point Dty € Xt MUy such
that distw, (pt,,pt,) < Cy for a constant independent of t; by Proposi-
tion 3.4. Thus there is a local isometric embedding ¢t : (Wy, gu,) = (W, dw).
Note that the restriction of gy on any By x {q} is complete, gu. |v.nx,, is
uniformly equivalent to @°|y,nx,, = @o,7|lv,nx,,, and o is complete on
X¢ ;1 by (3.5). Therefore, |, ty(Wu,, gu,) C (W,dw) is a complete Rieman-
nian manifold, which implies that (. ¢+, (Wu,, gu,) = (W, dw).
Now we assume dimg Xo 7 =0, i.e. s =n. Then Wy = By, po = ¢o(z1,

., Tp) is a function on By, and we denote g, = gw,,. We need the following

lemma to finish the proof.

Lemma 3.5. If

—anloga:j—log 1—zn:3:j ,
j=1 Jj=1

then
n 82(]5
axial'j

9B, = dx;dx;
ij=1

on By, and ¢ is the unique solution of the real Monge-Ampeére equation

¢ 2
det <8xi3xj> =re™®,  @lyp, = +oo,

for a constant k > 0, i.e. ¢ is obtained in Theorem 2.1.
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Proof. Note that g—f]:’_ = 288“;‘;, and

¢ g +5ﬂ+;
O0x;0x; N 20x;0x; (1 —E] 1 75)?

By (3.11), gB,ij = (%?ax By Lemma 3.2 and Lemma 3.3, we have

8ii 1 2 Pognp!
zi (1

- Zj:l zj)? 2070z 4nti(1 — Z?:l ;) H;L 1 5527

where 1’ > 0 is a constant.
Now Proposition 5.5 in [6] implies that ¢ is the unique solution of (3.10),
which implies the uniqueness of ¢. O

Note that gp, is a complete metric on By, and thus (W, dy) is isometric
to (Br, 9B, ). By the uniqueness of gp,, we have the convergence of Proposi-
tion 3.4 without passing to any sequence t;. We obtain the conclusion. [J

4. Proof of Theorem 2.6

Proof of Theorem 2.6. Since Ky is ample, there is a section 2 of Ky /a
such that D N Xo; =0 where D = div(€;). Let U C X’ be a neighborhood
of Xo,; isomorphic to an open subset of a toric variety )V, denoted still by
U, such that U N X 1 is empty for any I' ¢ I = {1,...,s+ 1}. We assume
that D NU = () by shrinking U if necessary.

We adopt the construction in Section 3.2. There is a toric variety )’ =
C"*! with coordinates zg, . . ., z,, and a finite group G = N/N’ acting on )"
Let ¢, : Y, — Y, be the finite quotient by G = N/N’, and Y,; C )V, such
that Y, NU = X; NU as in Section 3.2. Recall that q;l(ngt) is given by
20+ zn =t,and ¢, (Yo NU) C By X \/jl(R”/fogZ':‘) C ¢, *(Yy1), where By
is given by (3.13).

For a p = (p1,...,pn) € By, we define an embedding

2n"”
log [t]

i;: By x V-1 (R"/ > — C"/(2nV/—1Z") = Yoo

by letting w; = (log |t])(w; —pj), j =1,...,n. We identify By x v/—1(R"/
2127y with the image i;(Br x /—1(R"/2%2")) C Y, by i; without any con-

log [{] log []
fusion.
Assume that )\t = )\t(wl, ...,wy) is a family of functions convergence

smoothly to A\g = Ao(z1, . . ., 2,) under the coordinates wi, . . ., w, when ¢t —
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: kX, %X _ % Xo : _ 1~

i.e. — = / . Sin =pi+ (1 ;
0,1e Bwfll Bwf;z” Bwfll Bwf;z” 2’”‘336;'11 Bzf:: Since Wi p; ( 08 |t|) Wi
and ggz = (log|t|)_lg{>;, we have Ay — Ao(p1,...,pn) in the C*-sense on

any on any compact subset K’ Ci;(Br x /—1(R"/ 1207;2';)) C Yy, when
t— 0.

Since ), has only Gorenstein orbifold singularities, for the local gener-
ator Q, € O(Ky,), i€ is a G-invariant no-where vanishing holomorphic
(n+1,0)-form on Y/, and thus

d o Adzy,
Q= Q, @ (dt) ™ :<M7

21" 2n

on ¢, }(X;NU), where ¢ > 0 is a holomorphic function on )’. Note that
C(wy,...,wy) — €(0) in the C*-sense by the argument in the proof of
Lemma 3.2. Thus

G = Cdiby A+ A didy — Qoo = C(0)diby A - A iy,

in the C*°-sense, when t — 0.
If we denote Ly = {0} x /—1(R™/(27Z™)), then for any |¢| < 1, there
is a 9; € R such that eV 17 J Lo q» € R, which implies that

/ Im(eV =10 ) =0,
Lo

[ (e g <o,
Lo

and [Im(eﬁﬁ*qéﬁt)],; ]=0

in H"(Lg,R). Since e¥~1¢(0) is a constant, we have
Im(eV 10|, = Im(e¥ " C(0)diby A - - - A diiy)|1, = 0.
By Lemma 3.2 and Lemma 3.3,

V=1 <~ [ 8;; 1 &0 ~ =
log [t])2q; ~— = di; A dibj
(ot = 5= 2 \ 32+ T Bomon; ) ) 0

= Woo,

in the C*°-sense on any compact subset K’ on Y., when ¢ — 0. Since the
curvature of w; are uniformly bounded independent of ¢, we have that we,
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is a flat metric on Y. A direct calculation shows we|r, = 0. Note that for
any A € HQ(L(),Z),

(log |1])? /A gl — | /A woo| = 0, and

/ Qowt = 27?/ a(Kx,) € 2nZ.
A qa(A)

Thus [, ¢iw: =0, and [giwe|r,] = 0 in H?(Lo, R). By Theorem 10.8 in [14],
we obtain a family of generalized special lagrangian submanifolds L; C By X

conc

— ) respecting to ¢fw; and eV~ g (), for [t| < 1. We obtain the

VIR B ting to giw; and e¥ =1V Q, for [¢| < 1. We obtain th

lusion by letting L; = ¢, (L;). O
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