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Collapsing of negative Kähler-Einstein

metrics

Yuguang Zhang

In this paper, we study the collapsing behaviour of negative Kähler-
Einstein metrics along degenerations of canonical polarized mani-
folds. We prove that for a toroidal degeneration of canonical polar-
ized manifolds with the total space Q-factorial, the Kähler-Einstein
metrics on fibers collapse to a lower dimensional complete Rieman-
nian manifold in the pointed Gromov-Hausdorff sense by suitably
choosing the base points. Furthermore, the most collapsed limit is
a real affine Kähler manifold.

1. Introduction

Let X be a complex projective n-manifold. We call X a canonical polarized
manifold if the canonical bundle KX of X is ample, and call X a Calabi-
Yau manifold if KX is trivial. The Calabi conjecture of the existence of
Kähler-Einstein metrics was solved by Aubin and Yau in the case of canon-
ical polarized manifolds (cf. [1, 40]), and by Yau for Calabi-Yau manifolds
(cf. [40]). More precisely, on a canonical polarized manifold X, there exists
a unique Kähler-Einstein metric ω with ω ∈ 2πc1(KX) and negative Ricci
curvature, i.e.

Ric(ω) = −ω,
by [1, 40]. On a Calabi-Yau manifold, there are Ricci-flat Kähler-Einstein
metrics by [40]. The goal of this paper is to study the collapsing behaviour of
families of negative Kähler-Einstein metrics along degenerations in algebro-
geometric sense.

A degeneration of projective n-manifolds π : X → Δ is a flat morphism
from a normal Gorenstein variety X of dimension n+ 1 to a disc Δ ⊂ C
such that Xt = π−1(t), t ∈ Δ∗ = Δ\{0}, is smooth except the central fiber
X0 = π−1(0). We denote X0 =

⋃l
i=1X0,i and X0,I =

⋂
i∈I X0,i, where X0,i,

i = 1, . . . , l, is a irreducible component, and I ⊂ {1, . . . , l}. If the relative
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canonical bundleKX/Δ = KX ⊗K−1Δ is relatively ample, then for any smooth
fiber Xt, the canonical bundle KXt

∼= KX/Δ|Xt
is ample, and thus Xt is a

canonical polarized manifold. We call such degeneration π : X → Δ a canon-
ical polarized degeneration.

In [35], Strominger, Yau and Zaslow proposed a conjecture, so called SYZ
conjecture, for constructing mirror Calabi-Yau manifolds via dual special la-
grangian fibration. Later, a new version of the SYZ conjecture was proposed
by Kontsevich, Soibelman, Gross and Wilson (cf. [17, 25, 26]) by using the
collapsing of Ricci-flat Kähler-Einstein metrics. Let X → Δ be a degenera-
tion of Calabi-Yau n-manifolds, i.e. the relative canonical bundle KX/Δ is
trivial, and 0 ∈ Δ be a large complex limit point (cf. [14]). The collapsing
version of SYZ conjecture asserts that there are Ricci-flat Kähler-Einstein
metrics ωt on Xt for t ∈ Δ∗ such that (Xt, diam

−2
ωt

(Xt)ωt) converges to a
compact metric space (B, dB) in the Gromov-Hausdorff sense, when t→ 0.
Furthermore, the smooth locus B0 of B is open dense, and is of real di-
mension n, and admits a real affine structure. The metric dB is induced by
a Monge-Ampère metric gB on B0, i.e. under affine coordinates x1, . . . , xn,
there is a potential function φ such that

gB =
∑
ij

∂2φ

∂xi∂xj
dxidxj , and det

(
∂2φ

∂xi∂xj

)
= 1.

Clearly it is true for Abelian varieties. This conjecture was verified by Gross
and Wilson for fibred K3 surfaces with only type I1 singular fibers in [17],
and was studied for higher dimensional HyperKähler manifolds in [15, 16]. In
[16], Gross-Wilson’s result was extended to all elliptically fibred K3 surfaces.

Inspired by this collapsing version of SYZ conjecture, we study the limits
of negative Kähler-Einstein metrics on canonical polarized manifolds degen-
erating to some singular varieties.

Let π : X → Δ be a canonical polarized degeneration such that X0 has
only simple normal crossing singularities, i.e. X0 is reduced, locally given by
z1 · · · zk = 0 under local coordinates z1, . . . , zn on X , and anyX0,I is smooth.
Let ωt ∈ 2πc1(KXt

), t ∈ Δ∗, be the unique Kähler-Einstein metric on Xt.
The convergence of ωt was studied by various authors (cf. [19, 29, 30, 32, 36]).
In [36], it is proved that ωt converges smoothly to a complete Kähler-Einstein
ω0 with negative Ricci curvature on the regular locus X0,reg =

⋃l
i=1X0,i,reg

in the Cheeger-Gromov sense, if an additional condition that any three of
the components X0,i have empty intersection is satisfied. More precisely, for
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any smooth family of embeddings Ft : X0,reg → Xt, we have that

F ∗t ωt → ω0, when t→ 0,

in the locally C∞-sense on X0,reg, where ω0 is the complete Kähler-Einstein
metric on X0,reg previously obtained in [5, 22, 37]. In [19, 29], the additional
assumption is removed, and furthermore, the result is generalized to the
case of toroidal degenerations in [30]. These theorems describe the the non-
collapsing part of the limit of (Xt, ωt).

Since the volume of ω0 is finite, there must be some collapsing part when
(Xt, ωt) approaches to the limit, i.e. there are points pt ∈ Xt such that the
volumes of metric 1-balls satisfy

Volωt
(Bωt

(pt, 1))→ 0, when t→ 0.

Now by Gromov’s precompactness theorem (cf. [12]), a sequence of (Xt,
ωt, pt) converges to a pointed complete metric space (W,dW , p∞) of Haus-
dorff dimension less than 2n in the pointed Gromov-Hausdorff sense, i.e. for
any R > 0, the metric R-ball (Bωt

(pt, R), ωt) converges to the metric R-ball
(BdW

(p∞, R), dW ) in the Gromov-Hausdorff sense (cf. [8]).
The following theorem is a special case of the main theorem (Theo-

rem 2.4) of the present paper, where a more general hypothesis is assumed.

Theorem 1.1. Let π : X → Δ be a canonical polarized degeneration such
that X0 has only simple normal crossing singularities, and ωt ∈ 2πc1(KXt

)
be the unique Kähler-Einstein metric on Xt, t ∈ Δ∗. For any X0,I and
any point p0 ∈ X0,I\

⋃
i/∈I X0,i, there are points pt ∈ Xt such that pt → p0

in X when t→ 0,and by passing to a sequence, (Xt, ωt, pt) converges to a
complete Riemannian manifold (W, gW , p∞) with dimRW = 2n+ 1− �I in
the pointed Gromov-Hausdorff sense. Furthermore, if dimCX0,I = 0, then
(W, gW ) is isometric to (B, gB) by suitably choosing pt, where B is the inte-
rior of the standard simplex in Rn, and there is a smooth potential function
φ on B such that φ|∂B = +∞,

gB =

n∑
ij=1

∂2φ

∂xi∂xj
dxidxj , and det

(
∂2φ

∂xi∂xj

)
= κe2φ,

for a constant κ > 0.

Actually (Xt, ωt) collapses smoothly in a certain sense, which is stronger
than the Gromov-Hausdorff topology (See Theorem 2.4 for details).
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This theorem shows a similar collapsing behaviour to the SYZ conjecture
for Calabi-Yau manifolds, i.e. under certain assumptions, the limit metric
space W is an affine Kähler manifold of real dimension n, and the poten-
tial function satisfies a real Monge-Ampère equation. However, unlike the
Calabi-Yau case, we always have the non-collapsing part of the limit, and
we do not rescale the metric to obtain the collapsing limit. Note that for
algebraic curves of higher genus, the rescaled limit exists, and is a compact
metric graph by [28]. However, we do not expect that still holds in the higher
dimensional case.

In the original SYZ conjecture (cf. [35]), the existence of special la-
grangian submanifolds is expected when Calabi-Yau manifolds are near the
large complex limit. As an application, we will construct some generalized
special lagrangian submanifolds on canonical polarized manifolds (See Sec-
tion 2.3 for details).

The understanding of the limit behaviour of negative Kähler-Einstein
metrics is also required for other program. The moduli space M of canoni-
cal polarized manifolds with a fixed Hilbert polynomial was proven to be a
quasi-projective manifold by Viehweg in [39], and the recent progress on the
moduli space of stable varieties (cf. [23]) gives a natural algebro geometric
compactification M of M. Meanwhile, the existence of singular Kähler-
Einstein metrics on stable varieties was obtained in [2]. A natural question
is to understand such compactification from the differential geometric view-
point (cf. [2, 34]), for example in the Gromov-Hausdorff sense or the Weil-
Petersson geometry sense. However unlike the case of Calabi-Yau manifolds
(cf. [38, 41]), we would not have the coincidence of the Gromov-Hausdorff
non-collapsing convergence and the finite Weil-Petersson distance. In The-
orem 1.1, (Xt, ωt) diverges in the Gromov-Hausdorff sense, but the Weil-
Petersson metric on Δ∗ is not complete, i.e. {0} has finite Weil-Petersson
distance to the interior by [29, 30, 36].

This paper is organized as the followings. In Section 2, we introduce the
preliminary materiel and state the main theorems (Theorem 2.4 and Theo-
rem 2.6) of this paper. In Section 1.1, we construct some semi-flat Kähler-
Einstein metrics from those affine Kähler metrics obtained by Cheng and
Yau previously. In Section 1.2 and Section 1.3, the main theorems (Theo-
rem 2.4 and Theorem 2.6) are given. Theorem 2.4 study the metric collaps-
ing along toroidal degenerations, and Theorem 2.6 shows the existence of
generalized special lagrangian submanifolds. Section 3 is devoted to prove
Theorem 2.4. Firstly, we construct the approximation background metrics
in Section 3.1, then we do some local calculations and prove Theorem 2.4 in
Section 3.2. The last section proves Theorem 2.6.
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2. Main Theorems

In this paper, we always denote N ∼= Zn+1, NR = N ⊗Z R, TN = N ⊗Z C∗,
M = homZ(N,Z) and MR = M ⊗Z R.

2.1. Semi-flat Kähler-Einstein metric

In this section, we recall a theorem due to Cheng and Yau for the existence of
affine Kähler metrics, which induce some semi-flat Kähler-Einstein metrics
that appear in the main theorem.

Let σ be a rational strongly convex polyhedral cone in NR, and σ̌ ⊂MR

be the dual cone. If uσ ∈M ∩ σ̌ satisfies 〈uσ, v〉 = 1 for the primitive lattice
vector v ∈ τ ∩N of any 1-dimensional face τ of σ, then we define

ΛR = {v ∈ NR|〈v, uσ〉 = 1}, Bσ = ΛR ∩ Int(σ), and Λ = N ∩ ΛR

where Int(σ) denotes the interior of σ. The closure Bσ of Bσ is a rational
convex polytope in ΛR.

Let Yσ be the affine toric variety associated to σ, i.e. Yσ = Spec(C[σ̌ ∩
M ]), and t = Zuσ : Yσ → C. We have a family of varieties Yσ,t = div(Zuσ −
t) degenerating to the toric boundary Y0, i.e. Y0 =

⋃d
i=1Di where Di is a

primitive toric Weil divisor.
If e0, . . . , en ∈ N is a basis, we denote x0, . . . , xn the respecting coordi-

nates on NR, and denote zj = Ze∗j , j = 0, . . . , n. If uσ =
∑n

j=0mje
∗
j , then

Yσ,t is given by zm0

0 · · · zmn
n = t, and ΛR is given by m0x0 + · · ·+mnxn = 1.

Without loss of generality, we assume that x1, . . . , xn are coordinates on ΛR,
i.e. m0 �= 0, which give an integral affine structure on Bσ.

For any t ∈ Δ∗, the logarithmic map is

Logt : TN → NR, by zj �→ xj =
log |zj |
log |t| , j = 0, . . . , n.

It is clear that Logt(Yσ,t) = ΛR. We denote

U = {p ∈ Yσ||Zuk(p)| < 1, k = 1, . . . , d′},
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which is an open subset of Yσ, where uk ∈M ∩ σ̌ such that σ = {v ∈ NR |
〈v, uk〉 � 0, k = 1, . . . , d′}. We have Logt(U) = Int(σ), and moreover,
Logt(Yσ,t ∩ U) = Bσ.

We define coordinates θ1, . . . , θn on ΛR by θj = dxj , j = 1, . . . , n, un-
der the identification of the tangent bundle TBσ

∼= Bσ × ΛR. Then there
is a natural complex structure on Bσ ×

√−1ΛR given by complex coor-
dinates wj = xj +

√−1θj , j = 1, . . . , n, which induces a complex structure
on Yt,m0

(Bσ) = Bσ ×
√−1(ΛR/

2πm0Λ
log |t| ) for any t ∈ Δ∗. We define a finite

covering map qσ : Yt,m0
(Bσ)→ Yσ,t ∩ U by setting zj = exp((log |t|)wj), j =

1, . . . , n, and

z0 = exp

⎛
⎝ 1

m0
log |t|+√−1arg(t)

m0
−

n∑
j=1

mj

m0
(log |t|)wj

⎞
⎠ .

Furthermore, ft = Logt|Yσ,t∩U : Yσ,t ∩ U → Bσ is a fibration such that ft ◦ qσ
is the projection from Yt,m0

(Bσ) to Bσ.
Now we recall a theorem for the existence of affine Kähler metrics in [7].

Theorem 2.1 (Theorem 4.4 in [7]). For any constant κ > 0, there is a
smooth convex solution φ of the real Monge-Ampère equation

(2.1) det

(
∂2φ

∂xi∂xj

)
= κe2φ, φ|∂Bσ

= +∞,

and

gBσ
=

n∑
ij=1

∂2φ

∂xi∂xj
dxidxj

is a complete affine Kähler metric on Bσ.

Note that the constant κ is chosen to be 1 in [7], and however, we can
obtain the general case by rescaling the coordinates. By pulling back φ, we
regard φ as a function on Bσ ×

√−1ΛR, i.e. φ(w1, . . . , wn) = φ(x1, . . . , xn),
which defines a complete Kähler metric

(2.2) ωsf = 2
√−1∂∂φ =

√−1
2

n∑
ij=1

∂2φ

∂xi∂xj
dwi ∧ dw̄j

on Bσ ×
√−1ΛR. By (2.1), φ satisfies the complex Monge-Ampère equation

det
( ∂2φ
∂wi∂w̄j

)
= 4nκe2φ on Bσ ×

√−1ΛR, and hence ωsf is a Kähler-Einstein
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metric with Ricci curvature −1, i.e.

Ric(ωsf ) = −√−1∂∂ log det

(
∂2φ

∂wi∂w̄j

)
= −ωsf .

Now Proposition 5.5 in [6] implies that φ is the unique solution of (2.1) (See
also [18]).

Since both φ and ωsf are invariant under the translation wj �→ wj +√−1λ for any λ ∈ R1, ωsf descents to a complete Kähler-Einstein metric on
Yt,m0

(Bσ) first, for any t ∈ Δ∗, and further to a complete Kähler-Einstein

metric on Yσ,t ∩ U denoted by ωsf
t . Note that the corresponding Riemannian

metric of ωsf is

gsf =

n∑
ij=1

∂2φ

∂xi∂xj
(dxidxj + dθidθj).

The first consequence is that the restriction of ωsf
t on any fiber f−1t (x),

x ∈ Bσ, is flat, so called a semi-flat Kähler-Einstein metric. The second one
is that the diameter of the fiber

diamωsf
t
(f−1t (x)) ∼ −(log |t|)−1 → 0,

and by suitably choosing a family of base points pt ∈ Yσ,t, (Yσ,t ∩ U , ωsf
t , pt)

converges to (Bσ, gBσ
, p∞) in the pointed Gromov-Hausdorff sense, when

t→ 0. We say that (Yσ,t ∩ U , ωsf
t ) collapses to (Bσ, gBσ

).
In summary, we have the following proposition.

Proposition 2.2. For any t ∈ Δ∗, there is a unique complete Kähler-
Einstein metric ωsf

t on Yσ,t ∩ U such that the Ricci curvature is −1, i.e.

Ric(ωsf
t ) = −ωsf

t ,

and ωsf
t is semi-flat respecting to the torus fibration ft : Yσ,t ∩ U → Bσ.

Furthermore, (Yσ,t ∩ U , ωsf
t , pt) converges to (Bσ, gBσ

, p∞) in the pointed
Gromov-Hausdorff sense by choosing a family of base points pt ∈ Yσ,t, when
t→ 0.

The logarithm Logt is used to convert classical algebraic varieties to
tropical varieties (cf. [27]), and it is believed that the collapsing of Kähler-
Einstein metrics can do the same in certain circumstances (cf. [9, 13]). This
is true in our case as a direct corollary of the previous arguments.
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Let p ∈ C[σ̌ ∩M ](t), i.e. p =
∑

u∈A but
υ(u)Zu for a finite set A ⊂ σ̌ ∩M ,

bu ∈ C∗, and υ : A→ Z, and Vt,p ⊂ Yσ,t be the variety defined by p|Yσ,t
= 0.

The image At = Logt(Vt,p) ⊂ ΛR is called an amoeba, and it is proven in [27]
that At converges to a polyhedron complex A∞ in the Hausdorff topology,
when t ∈ R and t→ 0. Here A∞ is called a non-Archimedean amoeba, and
is the set of non-smooth points of the function

p∞(x) = min
u∈A

{υ(u) + 〈x, u〉}

on ΛR. In tropical geometry, A∞ is the tropical hypersurface defined by p
(cf. [27]). We have the following corollary by the collapsing of ωsf

t to gBσ
.

Corollary 2.3. When t ∈ R and t→ 0,

Vt,p ∩ U → A∞ ∩Bσ

under the pointed Gromov-Hausdorff convergence of (Yσ,t ∩ U , ωsf
t ) to

(Bσ, gBσ
).

2.2. Toroidal degeneration

A degeneration π : X → Δ is called simple toroidal, if for any point x ∈ X ,
there is an open neighborhood U satisfying that

i) U is isomorphic to an open subset of an affine toric variety Yσ, denoted
still by U .

ii) The restriction of π on U is given by a regular function Zuσ , where uσ ∈
M ∩ σ̌ satisfies 〈uσ, v〉 = 1 for the primitive lattice vector v ∈ τ ∩N of
any 1-dimensional face τ of σ. Hence if D1, . . . , Dd are primitive toric
Weil divisors of Yσ, then we have that X0 ∩ U =

∑d
j=1Dj ∩ U , and

X0 is reduced.

iii) Any non-empty X0,I is connected and normal, which implies that any
X0,I does not intersect with itself.

Since the canonical divisor KYσ
= −∑d

j=1Dj (cf. [10]), we have that KX |U =
−div(Zuσ), and thus KX is Cartier, i.e. X is Gorenstein. Degenerations with
only simple normal crossing singularities are special cases of simple toroidal
degenerations.

In Chapter II of [21], a compact polyhedral complex B with integral
structure, called the dual intersection complex, is associated to π : X → Δ
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such that cells of B are in one-to-one correspondence to those non-empty
X0,I . More precisely, for any X0,I �= ∅, there is a unique polyhedral cell
BI ∈ B such that dimRBI = n− dimCX0,I , and BI′ is a face of BI if and
only if X0,I′ ⊃ X0,I . The cell BI ∈ B associated to X0,I is constructed as the
following. Let p ∈ X0,I\

⋃
j /∈I X0,j , and U ⊂ X\⋃j /∈I X0,j be a neighborhood

of p isomorphic to an open subset of an affine toric variety Yσ. If σ is the
corresponding rational convex cone in NR, then

BI = {v ∈ σ | 〈v, uσ〉 = 1}.

We denote BI the interior of BI .
Now we state the main theorem of the present paper.

Theorem 2.4. Let π : X → Δ be a simple toroidal canonical polarized de-
generation of projective n-manifolds, and ωt be the unique Kähler-Einstein
metric in 2πc1(KXt

), t ∈ Δ∗. If X is Q-factorial, then the followings hold.

i) For any X0,I with �I > 1, and any point p0 ∈ X0,I\
⋃

i/∈I X0,i, there
are points pt ∈ Xt such that pt → p0 in X when t→ 0, and by passing
to a sequence, (Xt, ωt, pt) converges to a complete Riemannian mani-
fold (W, gW , p∞) with dimRW = dimRBI + 2dimCX0,I in the pointed
Gromov-Hausdorff sense.

ii) If dimCX0,I = 0, then (W, gW ) is isometric to (BI , gBI
) by suitably

choosing pt, where gBI
is the complete affine Kähler metric obtained

in Theorem 2.1. Furthermore, if ωsf
t,I is the semi-flat Kähler-Einstein

metric constructed from gBI
in Proposition 2.2 on a neighborhood of

U ∩Xt, where U is a neighborhood of X0,I isomorphic an open subset
of a toric variety, then

‖ωt − ωsf
t,I‖Cν

loc(Xt∩U,ωsf
t,I)
→ 0,

for any ν > 0, when t→ 0, i.e. the collapsing is in the C∞-sense, and
the convergence does not need to pass any sequence.

This theorem describes the collapsed limits of ωt, while the previous
results of [19, 29, 30, 36] describe the non-collapsed limits, i.e. they still
have complex dimension n.

The notion of toroidal degeneration is an algebro-geometric analogue of
F -structure introduced in [3]. An F -structure F on a smooth manifold X
consists an open covering {Uα} such that for each Uα, there is an effective
Tnα-action on a finite cover of Uα, and on any overlap Uα ∩ Uβ , these two
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torus actions Tnα and Tnβ are compatible in a certain sense (See [9] for the
details). For a toroidal degeneration π : X → Δ, a small neighborhood U of
a X0,I with �I > 1 is isomorphic to an open subset of a toric variety, and
Xt ∩ U is given by a monomial. Thus there is a natural local Tnα-action on
Xt ∩ U . We conjecture that there is an F -structure F on Xt ∩ U, where U
is a small neighborhood of

⋃

I>1X0,I in X , and more importantly, this F

is Hamiltonian, i.e. there is a symplectic form �t on Xt such that any local
torus action of F is Hamiltonian.

Theorem 2.4 and Proposition 3.4 in Section 3.2 show that the Kähler-
Einstein metric ωt approximates some local semi-flat Kähler-Einstein met-
rics ωsf

t,I on small open subsets of Xt, and ωsf
t,I collapses smoothly to lower

dimensional spaces along local torus fibrations. Moreover, we would see that
the curvature of ωt is bounded independent of t in Section 3.1. Hence there is
an F -structure F ′ on some region of Xt by [4], and we again conjecture that
F ′ can be made to coincide with the above F . Hamiltonian F -structures
would be studied in a separate paper.

We remark that Theorem 2.4 should hold for more general settings,
for example, toroidal degenerations without the assumption of X being Q-
factorial as in [31], or the log pair case, i.e. KX/Δ +D is ample for a Cartier
divisor D, as in [19, 36]. For avoiding too many technique difficulties, we
leave those generalizations for future studies. In a recent paper [2], the ex-
istence of singular Kähler-Einstein metrics is obtained for stable varieties,
i.e. varieties with semi-log canonical singularities and ample canonical divi-
sor. It is also expected that the convergence theorems of [19, 29, 30, 32, 36]
can be generalized to degenerations with central fiber X0 stable varieties
(cf. [2, 34]), which is related to the question of differential geometric under-
standing of the moduli space for stable varieties.

We finish this section by showing an example that Theorem 2.4 and
Theorem 1.1 can apply.

Example 2.5. Firstly, we recall the standard Mumford degeneration of
toric varieties. Let M ′ ∼= Zn such that M ∼= M ′ × Z, and P ⊂M ′

R
= M ′ ⊗Z

R be a lattice polytope. If ψ : P → R is a piecewise linear convex function
respecting to a lattice polyhedral decomposition P of P with integral slopes,
we define a lattice polyhedron

P̃ = {(v, r) ∈MR
∼= M ′

R × R | ψ(v) � r},

which determines a toric variety XP with a regular function π = Z(0,1) :
XP̃ → C. For any t ∈ C\{0}, Xt = π−1(t) is isomorphic to the toric variety
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XP associated to P, and X0 = π−1(0) =
⋃

τ∈Pmax
Xτ , where Pmax denotes

the set of n-dimensional polytopes of P, and Xτ is the toric variety associ-
ated to τ ∈ Pmax. By choosing P and ψ properly, we can assume that X0 has
only simple normal crossing singularities, and Xt is smooth for any t �= 0.
For instance, we take P, P and ψ as the following:

��
�

�

�

�

�

�

�

�

�

−u1
−u2

u1 + u2
ψ(−u1) = 0, ψ(−u2) = 0, ψ(u1 + u2) = 1.

Now we follow the argument in the proof of Lemma 1.4 in [24]. Let H
be a sufficiently general very ample divisor on XP̃ such that KXP̃ ⊗O(H) is
ample, andH +Xt has simple normal crossing singularities for any |t| < ε�
1. If c : X̃P̃ → XP̃ is the double ramified cover along 2H, then the Hurwitz
formula shows that KX̃P̃

∼= c∗(KXP̃ ⊗O(H)), and hence, KX̃P̃
is ample. Note

that X̃0 = c−1(X0) still has only simple normal crossing singularities, and
for any t with 0 < |t| � 1, X̃t = c−1(Xt) is smooth. We obtain a canonical
degeneration π̃ : X → Δ ⊂ C satisfying the hypothesises in Theorem 2.4 and
Theorem 1.1 by letting π̃ = π ◦ c and X = π̃−1(Δ).

2.3. Special lagrangian submanifold

The original SYZ conjecture asserts the existence of special lagrangian sub-
manifolds when Calabi-Yau manifolds are near the large complex limit (cf.
[35]). There are some attempts to generalize the SYZ conjecture to the case
of canonical polarized manifolds (cf. [20]), which include analog notions for
special lagrangian submanifold. We also like to study a generalization of
special lagrangian submanifold.

If X is a canonical polarized projective n-manifold, then by definition,
the canonical bundle KX is ample. Let Ω be a holomorphic n-form, and
D be the effective divisor defined by Ω, i.e. D = div(Ω). The restriction of
Ω on X\D is no-where vanishing, and thus KX\D is trivial, i.e. X\D is a
quasi-projective Calabi-Yau manifold. A submanifold L of X\D is called
a generalized special lagrangian submanifold respecting to Ω and a Kähler
metric ω, if dimR L = n,

ω|L ≡ 0, and Im(Ω)|L ≡ 0.

This notion of generalized special lagrangian submanifold is standard in
the case of non-Ricci flat metric (cf. [14, 31]). The real part Re(Ω) is not a
calibration respecting to the Kähler metric ω, but to a non-Kähler Hermitian
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metric ρω by Section 10.5 in [14], where ρ > 0 is a function defined by

ρnωn = n!
2n (−1)n2

2 Ω ∧ Ω.
As an application of Theorem 2.4, we have the following theorem.

Theorem 2.6. Let π : X → Δ and ωt be the same as in Theorem 2.4.
Assume that there is a zero dimensional X0,I . If Ωt is a section of KX/Δ such
that D = div(Ωt) does not intersect with X0,I , then there is a generalized

special lagrangian torus Lt ⊂ (Xt\Dt) respecting to ωt and e
√−1ϑtΩt|Xt

for
any 0 < |t| � 1 and a phase ϑt ∈ R, where Dt = D ∩Xt.

3. Proof of Theorem 2.4

3.1. Background metric

In this section, we use the construction in [29] to obtain some approxima-
tion background Kähler metrics, which are uniformly equivalent to Kähler-
Einstein metrics.

Let π : X → Δ be a simple toroidal canonical polarized degeneration of
projective n-manifolds such that X is Q-factorial. Since KX/Δ is relative am-

ple, there is an embedding Φ : X ↪→ CPNm ×Δ for two integers m > 0 and
Nm > 0 such that Km

X/Δ
∼= Φ∗OCP

Nm (1). There are sections Ψ0, . . . ,ΨNm
of

Km
X/Δ such that, by abusing notions, hFS = (

∑Nm

k=0 |Ψk|2)− 1

m is the Hermi-
tian metric whose curvature is the Fubini-Study metric, i.e.

(3.1) ωo = Φ∗
(

1

m
ωFS +

√−1dt ∧ dt̄

)
=
√−1∂∂ log

(
Nm∑
k=0

|Ψk|2
) 1

m

.

By regarding volume forms as Hermitian metrics of the anti-canonical bun-
dle, we obtain a volume form V = (

∑Nm

k=0 |Ψk|2) 1

m on X . For any t ∈ Δ∗,
Vt = V ⊗ (dt ∧ dt)−1 is a smooth volume form on Xt, and let

(3.2) ωo
t = ωo|Xt

=
√−1∂∂ log Vt.

Since X is Q-factorial, there is a μ ∈ N such that all of μX0,i, i = 1, . . . , l,
are Cartier divisors. Let ‖ · ‖i be a smooth Hermitian metric of O(μX0,i)
on X , and si be a defining section of μX0,i, i.e. div(si) = μX0,i. Here the
Hermitian metric ‖ · ‖i being smooth means that ‖ · ‖i is locally given by
the restriction of a smooth positive function � on the ambient space Cν for
a local embedding of an open subset U of X into Cν , and a trivialization of
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O(μX0,i) on U . In this case, Ric(‖ · ‖i) is the restriction of the smooth form
−√−1∂∂ log � on Cν .

We assume that s1 · · · sl = tμ by choosing the parameter t ∈ Δ appro-
priately. Let

(3.3) αi =
1

μ
log ‖si‖2i , χt = (log |t|2)2

l∏
i=1

α−2i ,

and

ω̃t =
√−1∂∂ logχtVt(3.4)

= ωo
t +

√−1∂∂ logχt

= ωo
t + 2

l∑
i=1

(
Ric(‖ · ‖i)

αi
+
√−1∂αi ∧ ∂αi

α2
i

) ∣∣∣∣
Xt

on Xt for t �= 0. We can assume that ‖si‖i � ε� 1 such that

1

2
ωo � ωo +

l∑
i=1

2

αi
Ric(‖ · ‖i) � 2ωo

on X\X0 by multiplying certain constants if necessary. We denote Xo
0,I =

X0,I\
⋃

i/∈I X0,i, and define a complete Kähler metric

(3.5) ω̃0,I = ωo|Xo
0,I

+ 2
∑
i/∈I

(
Ric(‖ · ‖i)

αi
+
√−1∂αi ∧ ∂αi

α2
i

) ∣∣∣∣
Xo

0,I

on Xo
0,I .

The Kähler metric ω̃t is the background metric we need. Note that our
assumption of X is stronger than the one in [29], and however is weaker than
that in [30]. Nevertheless, the arguments in Section 3 of [29] and Section 4
of [30] show that the curvature of ω̃t and the Ricci potential log( Vt

ω̃n
t
) are

bounded independent of t, which can also be obtained by the calculation in
Section 3.2. Thus we have the C0 and C2 estimates for the potential function
of the Kähler-Einstein metric by the standard estimates for Monge-Ampère
equations (cf. [1, 40]).
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Proposition 3.1. Let ϕt be the unique solution of Monge-Ampère equation

(3.6) (ω̃t +
√−1∂∂ϕt)

n = eϕtχtVt,

and ωt = ω̃t +
√−1∂∂ϕt be the Kähler-Einstein metric on Xt. Then

|ϕt| � C1, and C−12 ω̃t � ωt � C2ω̃t,

for constants C1 > 0 and C2 > 0 independent of t.

Once Proposition 3.1 is obtained, [19, 29, 30, 36] prove the convergence
of ωt to a complete Kähler-Einstein metric ω0 on the regular locus X0,reg

in the Cheeger-Gromov sense, i.e. for any smooth family of embeddings
Ft : X0,reg → Xt, F

∗
t ωt converges to ω0 in the locally C∞-sense when t→ 0.

When �I = 1, ω̃0,I is uniformly equivalent to the Kähler-Einstein metric ω0

on Xo
0,I ⊂ X0,reg.

3.2. Proof of Theorem 2.4

Now we study the local collapsing behaviour of Kähler-Einstein metrics ωt.
For a point p ∈ X0,I , let U ⊂ X be a neighborhood of p isomorphic to an

open subset of a toric variety Yσ, denoted still by U , such that U ∩X0,I′ is
empty for any I ′ � I = {1, . . . , s+ 1}. Since X is Q-factorial, so is Yσ, and
Yσ has only orbifold singularities, which is equivalent to the rational cone σ
being simplicial (cf. [10]).

If v0, . . . , vs ∈ N are primitive vectors belonging to 1-dimensional faces
and generating σ in NR, we denote N ′

σ = SpanZ{v0, . . . , vs} which is a sub-
lattice of Nσ = Z · (σ ∩N), and M(σ) = σ⊥ ∩M ∼= Zn−s. Then M ∼= Mσ ⊕
M(σ) whereMσ = homZ(Nσ,Z) ∼= M/M(σ), andMσ is a sublattice ofM ′

σ =
homZ(N

′
σ,Z) = SpanZ(v

∗
0, . . . , v

∗
s), where v∗j is the dual vector of vj . Note

that the restriction of π on U is given by a monomial Zuσ , where uσ ∈
σ̌ ∩Mσ satisfies 〈uσ, vj〉 = 1 for j = 0, . . . , s, i.e. uσ =

∑s
j=0 v

∗
j .

If G = Nσ/N
′
σ, and Y ′σ = Spec(C[σ̌ ∩M ′

σ])
∼= Cs+1, then the finite group

G acts on Y ′σ by v · Zu = exp(2π
√−1〈v, u〉) · Zu for any v ∈ Nσ and u ∈

M ′
σ, and Y ′σ/G× (C∗)n−s ∼= Yσ. We denote qσ : Y ′σ × (C∗)n−s → Yσ the quo-

tient map of the G-action. Let zj = Zv∗
j , j = 0, . . . , s, be coordinates on

Y ′σ, and zs+1, . . . , zn be coordinates on (C∗)n−s. The restriction qσ : TN ′
σ
×

(C∗)n−s → TN is a finite covering map, where TN = N ⊗Z C∗ and TN ′
σ
=

N ′
σ ⊗Z C∗.
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If we denote Yσ,t = div(Zuσ − t), t ∈ C, then Yσ,t ∩ U = Xt ∩ U , and
Yσ,0 =

∑s
j=0Dj where Dj is a primitive toric Weil divisor of Yσ. The re-

striction qσ : q−1σ (Yσ,t)→ Yσ,t is a finite covering map as Xt ∩ U ⊂ TN when
t �= 0, and q−1σ (Yσ,t) is given by the equation z0 · · · zs = t in Y ′σ × (C∗)n−s.
We can regard z1, . . . , zn as coordinates of q−1σ (Yσ,t) for any t �= 0. We
assume that U ⊂ Yσ satisfies q−1σ (U) = {(z0, . . . , zs) ∈ Y ′σ||zj | < ε, 0 � j �
s} × (U ∩X0,I) for an ε < 1 without loss of generality.

Let x0, . . . , xs be coordinates on N ′
σ,R = N ′

σ ⊗Z R ∼= Rs+1 respecting to

the basis v0, . . . , vs. Note that the interior of the s-dimensional cell BI ∈ B
associated to X0,I is given by

BI = {v ∈ int(σ) | 〈v, uσ〉 = 1}(3.7)

=

⎧⎨
⎩(x0, . . . , xs) ∈ Rs+1

∣∣∣∣
s∑

j=0

xj = 1, xj > 0, j = 0, . . . , s

⎫⎬
⎭

=

⎧⎨
⎩(x1, . . . , xs) ∈ Rs

∣∣∣∣
s∑

j=1

xj < 1, xj > 0, j = 1, . . . , s

⎫⎬
⎭ .

Here we regard x1, . . . , xs as coordinates on BI .
For any t ∈ Δ∗, we define the covering map

(3.8) Pt : C
s × (C∗)n−s → q−1σ (Yσ,t)

by letting zj = e(log |t|)wj and xj = Re(wj), j = 1, . . . , s, i.e.

Pt(w1, . . . , ws, zs+1, . . . , zn) = (e(log |t|)w1 , . . . , e(log |t|)ws , zs+1, . . . , zn).

The fundamental domains of Pt are
(3.9)

Dt,ν =

{
(w1, . . . , ws) ∈ Cs

∣∣∣∣ 2πν

log |t| � Im(wj) �
2π(ν + 1)

log |t|
}
× (C∗)n−s

for ν ∈ Z, and naturally (Cs/
√−1 2πZs

log |t|)× (C∗)n−s is biholomorphic to

q−1σ (Yσ,t) by further setting z0 = tz−11 · · · z−1s = t exp(−∑s
j=1(log |t|)wj).

Note that if |zj | < ε, j = 0, . . . , s, then xj >
log ε
log |t| for j = 1, . . . , s, and

log |t|(1−∑s
j=1 xj) = log |z0| < log ε, which implies

P−1t (q−1σ (Yσ,t ∩ U)) = Bt ×
√−1Rs × (C∗)n−s,
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where

Bt =

⎧⎨
⎩(x1, . . . , xs) ∈ Rs

∣∣∣∣ xj > log ε

log |t| , j = 1, . . . , s, 1−
s∑

j=1

xj >
log ε

log |t|

⎫⎬
⎭

⊂ BI .

Hence

q−1σ (Yσ,t ∩ U) ⊂ BI ×
√−1

(
Rs/

2πZs

log |t|
)
× (C∗)n−s ⊂ q−1σ (Yσ,t).

Lemma 3.2. Let K ⊂ BI be a compact subset such that K ⊂ Bt for |t| � 1.
On K ×√−1Rs × (U ∩X0,I) ⊂ (qσ ◦ Pt)

−1(U ∩ Yσ,t), when t→ 0,

i)

P ∗t q
∗
σχtVt → V ′0 =

1

4(1−∑s
j=1 xj)

2

s∏
j=1

dwj ∧ dw̄j

4x2j
∧ VI ,

in the C∞-sense, where VI is a smooth volume form on U ∩X0,I .

ii)

P ∗t q
∗
σω̃t → ωo

U,I +

√−1
2

⎛
⎝ s∑

j=1

dwj ∧ dw̄j

x2j
+

∑s
ij=1 dwi ∧ dw̄j

(1−∑s
j=1 xj)

2

⎞
⎠ = ω̃o

in the C∞-sense, where ωo
U,I is the pull-back of the complete Kähler

metric ω̃0,I on U ∩X0,I .

Proof. Let w0 = 1 +
√−1arg(t)

log |t| − w1 − · · · − ws on (qσ ◦ Pt)
−1(Yσ,t), and

x0 = 1− x1 − · · · − xs on BI . We have z0 = elog |t|w0 and dw0 = −dw1 −
· · · − dws on (qσ ◦ Pt)

−1(Yσ,t).
Now, we claim that for a smooth function λ on Y ′σ × (C∗)n−s, λ ◦ Pt →

λ′ = λ(0, zs+1, . . . , zn) and dzj =
∂zj
∂wj

dwj → 0, j = 0, . . . , s, in the C∞-sense

on any compact subset of (qσ ◦ Pt)
−1(U ∩ Yσ,t), when t→ 0. Since∣∣∣∣∣∂

kzj

∂wk
j

∣∣∣∣∣ = |(log |t|)ke(log |t|)xj | � |(log |t|)k|eεj log |t| → 0,

∣∣∣∣ ∂z0∂wj

∣∣∣∣ =
∣∣∣∣ ∂z0∂w0

∣∣∣∣
for a εj > 0, 0 � j � s, the claim follows by | ∂kλ

∂z
k1
i1
···∂zk

s′
i
s′
| � C for some con-

stants C > 0.
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Since Yσ has only Gorenstein orbifold singularities, for the generator
Ωσ ∈ O(KYσ

), q∗σΩσ is a G-invariant no-where vanishing holomorphic (n+
1, 0)-form on Y ′σ × (C∗)n−s, and thus

q∗σV = η

n∏
j=0

dzj ∧ dz̄j ,

where η > 0 is a smooth function on q−1σ (U). We obtain

q∗σVt = η

s∏
j=1

dzj ∧ dz̄j
|zj |2 ∧

n∏
i=s+1

dzi ∧ dz̄i

on q−1σ (Xt ∩ U).
Without loss of generality, we assume that I = {1, . . . , s+ 1}. Under a

local trivialization of O(μX0,i), i ∈ I, on U , we have that q∗σsi = zμj , where
j = i− 1, and the Hermitian metric ‖ · ‖i is a given by restricting a smooth
function ρ′j on an open subset Cν for a local embedding U ↪→ Cν . Thus

q∗σαj+1 = log ρj |zj |2 for j = 0, . . . , s, where ρj = ρ′j ◦ qσ > 0 are smooth func-

tion on q−1σ (U), and q∗σαi < 0, i = s+ 2, . . . , l, are also smooth functions.
By (3.3),

q∗σχtVt = η′′
(log |t|2)2

(log(ρ0|z0|2))2
s∏

j=1

dzj ∧ dz̄j
|zj |2(log(ρj |zj |2))2 ∧

n∏
i=s+1

dzi ∧ dz̄i,

where η′′ > 0 is a smooth function on q−1σ (U), and

P ∗t q
∗
σχtVt =

η′′ ◦ Pt

( log ρ0

log |t|2 + 2x0)2

s∏
j=1

dwj ∧ dw̄j

( log ρj

log |t|2 + 2xj)2
∧

n∏
i=s+1

dzi ∧ dz̄i.

By taking t→ 0, we obtain the convergence of volume forms.
We have q∗σωo is a smooth (1, 1)-form on q−1σ (U), and

P ∗t q
∗
σω

o
t =

√−1P ∗t q∗σ∂∂ log Vt =
√−1∂∂ log η → √−1∂∂ log η′,

in the C∞-sense, when t→ 0, where η′ = η(0, zs+1, . . . , zn) > 0. Note that√−1∂∂ log η′ is the pull-back of ωo|X0,I∩U . Since q∗σ
Ric(‖·‖i)

αi
and q∗σ

∂αi∧∂αi

α2
i

,
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i = s+ 2, . . . , l, are also smooth (1, 1)-forms on q−1σ (U), we have

P ∗t q
∗
σ

(
Ric(‖ · ‖i)

αi
+
√−1∂αi ∧ ∂αi

α2
i

)
→ βi,

in the C∞-sense, where βi is the pull-back of the smooth Kähler form

(Ric(‖·‖i)
αi

+
√−1∂αi∧∂αi

α2
i

)|U∩X0,I
on U ∩X0,I . Thus

ωo
U,I =

√−1∂∂ log η′ + 2

l∑
i=s+2

βi

is the pull-back of the restriction of ω̃0,I on U ∩X0,I by (3.5).
On K, (log |t|)xj → −∞, j = 0, . . . , s, and thus,

P ∗t q
∗
σ

Ric(‖ · ‖j+1)

αj+1
=

√−1∂∂ log ρi
log ρi + 2(log |t|)xi → 0,

in the C∞-sense. Furthermore,

P ∗t q
∗
σ

∂αj+1 ∧ ∂αj+1

α2
j+1

=
(∂ log ρj + log |t|dwj) ∧ (∂ log ρj + log |t|dw̄j)

(log ρj + 2(log |t|)xj)2

→ dwj ∧ dw̄j

4x2j
,

in the C∞-sense, when t→ 0. Thus we obtain the conclusion by (3.4), and

dw0 ∧ dw̄0

4x20
=

∑s
ij=1 dwi ∧ dw̄j

4(1−∑s
j=1 xj)

2
.

�

Lemma 3.3. Let ϕt be the unique solution of (3.6), and ωt = ω̃t +
√−1∂∂ϕt.

For any sequence tk → 0, a subsequence of ϕtk ◦ qσ ◦ Ptk converges to ϕ0 in
the C∞-sense on K ×√−1Rs × (U ∩X0,I), where ϕ0 is a smooth function
on BI ×

√−1Rs × (U ∩X0,I) satisfying the complex Monge-Ampère equa-
tion

(3.10) (ω̃o +
√−1∂∂ϕ0)

n = eϕ0V ′0 ,

with |ϕ0| � C3, and C−14 ω̃o � ω̃o +
√−1∂∂ϕ0 � C4ω̃

o.
Furthermore, ϕ0 is independent of Im(wj), j = 1, . . . , s, i.e.

ϕ0 = ϕ0(x1, . . . , xs, zs+1, . . . , zn).
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Proof. By Proposition 3.1, we have that

|ϕt| � C, and C−1P ∗t q
∗
σω̃t � P ∗t q

∗
σ(ω̃t +

√−1∂∂ϕt) � CP ∗t q
∗
σω̃t

for a constant C > 0. We obtain the C2,α-estimates for ϕt, i.e. ‖ϕt ◦ qσ ◦
Pt‖C2,α � C̄, by Lemma 3.2 and the Evans-Krylov theory (cf. [11, 33]), and
the higher order estimates ‖ϕt ◦ qσ ◦ Pt‖Cν � C(ν) by the standard Schauder
estimates on any compact subset K ′ ⊂ K ×√−1Rs × (U ∩X0,I). Thus by
passing to a subsequence of tk, ϕtk ◦ qσ ◦ Ptk converges to a smooth function
ϕ0 in the locally C∞-sense, and ϕ0 satisfies the the complex Monge-Ampère
equation (3.10) by Lemma 3.2.

Since ϕt ◦ qσ ◦ Pt is a periodic function with period
√−1 2πZs

log |t| , i.e.

ϕt ◦ qσ ◦ Pt(w, z) = ϕt ◦ qσ ◦ Pt

(
w+

√−1 2πm

log |t| , z
)
,

for any m ∈ Zs, where w = (w1, . . . , ws) and z = (zs+1, . . . , zn), we obtain
that ϕ0 is independent of Im(wj), j = 1, . . . , s, by the smooth convergence.

�

Since ∂2ϕ0

∂wi∂wj
= ∂2ϕ0

4∂xi∂xj
, the corresponding Riemannian metric of ω̃o +√−1∂∂ϕ0 is

(3.11) g0 =

s∑
ij=1

(
δij
x2i

+
1

(1−∑s
j=1 xj)

2
+

∂2ϕ0

2∂xi∂xj

)
(dxidxj + dθidθj) + G0,

where θj = Im(wj), j = 1, . . . , n, and G0 denotes the remaining terms that
do not involve any dθidθj and dxidxj .

Note that both ω̃o and ϕ0 are invariant under the translation wj �→
wj + λj

√−1, j = 1, . . . , s, for any (λ1, . . . , λs) ∈ Rs. Hence for any t �= 0,

ω̃o +
√−1∂∂ϕ0 descents to a Kähler metric ωsf

t on Yσ,t ∩ U , which satisfies
that

(3.12) P ∗t q
∗
σω

sf
t = ω̃o +

√−1∂∂ϕ0, and ‖ωtk − ωsf
tk ‖Cν

loc(Yσ,tk
∩U,ωsf

tk
) → 0,

for any ν > 0, when tk → 0 by Lemma 3.3.
Define a fibration

f̃t : BI ×
√−1

(
Rs/

(
2πZs

log |t|
))

× (C∗)n−s → BI × (C∗)n−s
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by the projection. Note that f̃t is G-equivariant, f̃t induces a T s-fibration

(3.13) ft : U ∩ Yσ,t → Bt × (C∗)n−s, with f̃t = ft ◦ qσ.

For a point (x, z) ∈ Bt × (C∗)n−s, where x = (x1, . . . , xs) ∈ Bt and z =
(zs+1, . . . , zn) ∈ (C∗)n−s, the fiber f−1t (x, z) satisfies that

(qσ ◦ Pt)
−1(f−1t (x, z)) = {(x +√−1θ, z) | θ = (θ1, . . . , θs) ∈ Rs}.

Hence the restriction of the Kähler metric ωsf
t on f−1t (x, z) is a flat Rieman-

nian metric, i.e. ωsf
t is a semi-flat metric, and

diamωtk

(
f−1tk (x, z)

) ∼ diamωsf
tk

(f−1tk (x, z)) �
2πs

√
Cx,z

− log |t| → 0,

when t→ 0, by (3.12) and (3.11), where

Cx,z =

s∑
ij=1

∣∣∣∣∣δijx2i +
1

(1−∑s
j=1 xj)

2
+

∂2ϕ0

2∂xi∂xj
(x, z)

∣∣∣∣∣ .
We denote WU = BI × (U ∩X0,I), and naturally regard WU ⊂ BI ×√−1(Rs/( 2πZ

s

log |t|))× (U ∩X0,I) given by θj = 0, j = 1, . . . , n. We let gWU
=

g0|WU
. If p ∈WU , and r > 0 such that the metric ball BgWU

(p, r) ⊂ K ′′ for
a compact subset K ′′ ⊂WU , then

(3.14) (Bωtk
(ptk , r), ωtk) and (Bωsf

tk

(ptk , r), ω
sf
tk )→ (BgWU

(p, r), gWU
)

in the Gromov-Hausdorff sense by (3.12), when tk → 0, for some pt ∈ Xt ∩ U .
By Gromov’s precompactness theorem (cf. [12]), (Xtk , ωtk , ptk) converges
to a complete metric space (W,dW , p∞) of Hausdorff dimension � in the
pointed Gromov-Hausdorff sense, and there is a local isometric embedding
(BgWU

(p∞, r), gWU
) ↪→ (W,dW ), which implies � = dimRBI ×X0,I .

In summary, we have the following proposition.

Proposition 3.4. There is a semi-flat Kähler-Einstein metric ωsf
t on Xt ∩

U respecting to ft such that

‖ωtk − ωsf
tk ‖Cν

loc(Yσ,tk
∩U,ωsf

tk
) → 0,

for any ν > 0, and a sequence tk → 0. Furthermore, (Xtk , ωtk , ptk) converges
to a complete metric space (W,dW , p∞) in the pointed Gromov-Hausdorff
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sense by choosing some base points pt ∈ Xt, and the Hausdorff dimension of
W equals to dimRBI + 2dimCX0,I .

Now we are ready to prove Theorem 2.4.

Proof of Theorem 2.4. Let {Uγ} be an open cover of Xo
0,I such that any

Uγ ⊂ X is isomorphic to an open subset of a toric variety, and does not inter-
sect with

⋃
i/∈I X0,i. By applying the above arguments to Uγ , we have WUγ

=
BI × (Uγ ∩X0,I) ⊂ BI ×

√−1(Rs/( 2πZ
s

log |t|))× (Uγ ∩X0,I), and a metric gUγ
=

gγ,0|WUγ
, where gγ,0 is the Riemannian metric given by (3.11). If ωsf

γ,t|Xt∩Uγ

denotes the semi-flat Kähler-Einstein metric satisfying (3.12), then, by
Lemma 3.3, P ∗t q∗σω

sf
γ,t is uniformly equivalent to ω̃o on BI ×

√−1Rs × (Uγ ∩
X0,I). For any Uγ , since there are finite U1, . . . , Uς ∈ {Uγ} such that (U ∪
U1 ∪ · · · ∪ Uς ∪ Uγ) ∩Xt is connected, we have a point ptk,γ ∈ Xtk ∩ Uγ such
that distωtk

(ptk,γ , ptk) � Cγ for a constant independent of tk by Proposi-
tion 3.4. Thus there is a local isometric embedding ιγ : (WUγ

, gUγ
) ↪→ (W,dW ).

Note that the restriction of gUγ
on any BI × {q} is complete, gUγ

|Uγ∩X0,I
is

uniformly equivalent to ω̃o|Uγ∩X0,I
= ω̃0,I |Uγ∩X0,I

, and ω̃0,I is complete on
Xo

0,I by (3.5). Therefore,
⋃

γ ιγ(WUγ
, gUγ

) ⊂ (W,dW ) is a complete Rieman-
nian manifold, which implies that

⋃
γ ιγ(WUγ

, gUγ
) = (W,dW ).

Now we assume dimCX0,I = 0, i.e. s = n. Then WU = BI , ϕ0 = ϕ0(x1,
. . . , xn) is a function on BI , and we denote gBI

= gWU
. We need the following

lemma to finish the proof.

Lemma 3.5. If

φ =
ϕ0

2
−

n∑
j=1

log xj − log

⎛
⎝1−

n∑
j=1

xj

⎞
⎠ ,

then

gBI
=

n∑
ij=1

∂2φ

∂xi∂xj
dxidxj

on BI , and φ is the unique solution of the real Monge-Ampère equation

det

(
∂2φ

∂xi∂xj

)
= κe2φ, φ|∂BI

= +∞,

for a constant κ > 0, i.e. φ is obtained in Theorem 2.1.
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Proof. Note that ∂ϕ0

∂wj
= ∂ϕ0

2∂xj
, and

∂2φ

∂xi∂xj
=

∂2ϕ0

2∂xi∂xj
+

δij
x2j

+
1

(1−∑n
j=1 xj)

2
.

By (3.11), gBI ,ij =
∂2φ

∂xi∂xj
. By Lemma 3.2 and Lemma 3.3, we have

det

(
δij
x2j

+
1

(1−∑n
j=1 xj)

2
+

∂2ϕ0

2∂xi∂xj

)
=

eϕ02nη′

4n+1(1−∑n
j=1 xj)

2
∏n

j=1 x
2
j

,

where η′ > 0 is a constant.
Now Proposition 5.5 in [6] implies that ϕ0 is the unique solution of (3.10),

which implies the uniqueness of φ. �
Note that gBI

is a complete metric on BI , and thus (W,dW ) is isometric
to (BI , gBI

). By the uniqueness of gBI
, we have the convergence of Proposi-

tion 3.4 without passing to any sequence tk. We obtain the conclusion. �

4. Proof of Theorem 2.6

Proof of Theorem 2.6. Since KX/Δ is ample, there is a section Ωt of KX/Δ

such that D ∩X0,I = ∅ where D = div(Ωt). Let U ⊂ X be a neighborhood
of X0,I isomorphic to an open subset of a toric variety Yσ, denoted still by
U , such that U ∩X0,I′ is empty for any I ′ � I = {1, . . . , s+ 1}. We assume
that D ∩ U = ∅ by shrinking U if necessary.

We adopt the construction in Section 3.2. There is a toric variety Y ′σ ∼=
Cn+1 with coordinates z0, . . . , zn, and a finite group G = N/N ′ acting on Y ′σ.
Let qσ : Y ′σ → Yσ be the finite quotient by G = N/N ′, and Yσ,t ⊂ Yσ such
that Yσ,t ∩ U = Xt ∩ U as in Section 3.2. Recall that q−1σ (Yσ,t) is given by
z0 · · · zn = t, and q−1σ (Yσ,t ∩ U) ⊂ BI ×

√−1(Rn/ 2πZn

log |t|) ⊂ q−1σ (Yσ,t), whereBI

is given by (3.13).
For a p = (p1, . . . , pn) ∈ BI , we define an embedding

it : BI ×
√−1

(
Rn/

2πZn

log |t|
)

↪→ Cn/(2π
√−1Zn) = Y∞

by letting w̃j = (log |t|)(wj − pj), j = 1, . . . , n. We identify BI ×
√−1(Rn/

2πZn

log |t|) with the image it(BI ×
√−1(Rn/ 2πZn

log |t|)) ⊂ Y∞ by it without any con-
fusion.

Assume that λ̃t = λ̃t(w1, . . . , wn) is a family of functions convergence
smoothly to λ̃0 = λ̃0(x1, . . . , xn) under the coordinates w1, . . . , wn when t→
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0, i.e. ∂kλ̃t

∂w
k1
j1
···∂wkm

jm

→ ∂kλ̃0

∂w
k1
j1
···∂wkm

jm

= ∂kλ̃0

2k∂x
k1
j1
···∂xkm

jm

. Since wj = pj + (log |t|)−1w̃j

and ∂λ̃t

∂w̃j
= (log |t|)−1 ∂λ̃t

∂wj
, we have λ̃t → λ̃0(p1, . . . , pn) in the C∞-sense on

any on any compact subset K ′ ⊂ it(BI ×
√−1(Rn/ 2πZn

log |t|)) ⊂ Y∞, when
t→ 0.

Since Yσ has only Gorenstein orbifold singularities, for the local gener-
ator Ωσ ∈ O(KYσ

), q∗σΩσ is a G-invariant no-where vanishing holomorphic
(n+ 1, 0)-form on Y ′σ, and thus

q∗σΩt = Ωσ ⊗ (dt)−1 = ζ
dz1 ∧ · · · ∧ dzn

z1 · · · zn ,

on q−1σ (Xt ∩ U), where ζ > 0 is a holomorphic function on Y ′σ. Note that
ζ(w1, . . . , wn)→ ζ(0) in the C∞-sense by the argument in the proof of
Lemma 3.2. Thus

q∗σΩt = ζdw̃1 ∧ · · · ∧ dw̃n → Ω∞ = ζ(0)dw̃1 ∧ · · · ∧ dw̃n,

in the C∞-sense, when t→ 0.
If we denote L0 = {0} ×

√−1(Rn/(2πZn)), then for any |t| � 1, there
is a ϑt ∈ R such that e

√−1ϑt
∫
L0

q∗σΩt ∈ R, which implies that

∫
L0

Im(e
√−1ϑ0Ω∞) = 0,∫

L0

Im(e
√−1ϑtq∗σΩt) = 0,

and [Im(e
√−1ϑtq∗σΩt)|L0

] = 0

in Hn(L0,R). Since e
√−1ϑ0ζ(0) is a constant, we have

Im(e
√−1ϑ0Ω∞)|L0

= Im(e
√−1ϑ0ζ(0)dw̃1 ∧ · · · ∧ dw̃n)|L0

≡ 0.

By Lemma 3.2 and Lemma 3.3,

(log |t|)2q∗σωt →
√−1
2

n∑
ij=1

(
δij
p2j

+
1

(1−∑s
j=1 pj)

2
+

∂2ϕ0

2∂xi∂xj
(p)

)
dw̃i ∧ d ¯̃wj

= ω∞,

in the C∞-sense on any compact subset K ′ on Y∞, when t→ 0. Since the
curvature of ωt are uniformly bounded independent of t, we have that ω∞
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is a flat metric on Y∞. A direct calculation shows ω∞|L0
≡ 0. Note that for

any A ∈ H2(L0,Z),

|(log |t|)2
∫
A
q∗σωt| → |

∫
A
ω∞| = 0, and

∫
A
q∗σωt = 2π

∫
qσ(A)

c1(KXt
) ∈ 2πZ.

Thus
∫
A q∗σωt = 0, and [q∗σωt|L0

] = 0 in H2(L0,R). By Theorem 10.8 in [14],

we obtain a family of generalized special lagrangian submanifolds L̃t ⊂ BI ×√−1(Rn/ 2πZn

log |t|) respecting to q
∗
σωt and e

√−1ϑtq∗σΩt for |t| � 1. We obtain the

conclusion by letting Lt = qσ(L̃t). �
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[13] M. Gross, Mirror symmetry and the Strominger-Yau-Zaslow conjecture.
In: Current developments in mathematics 2012, 133–191, Int. Press,
Somerville, MA, 2013.

[14] M. Gross, D. Huybrechts and D. Joyce, Calabi-Yau manifolds and re-
lated geometries. Universitext, Springer, Berlin, 2003.

[15] M. Gross, V. Tosatti and Y. Zhang, Collapsing of Abelian Fibred Calabi-
Yau Manifolds. Duke Math. J., 162 (2013), 517–551.

[16] M. Gross, V. Tosatti and Y. Zhang, Gromov-Hausdorff collapsing of
Calabi-Yau manifolds. arXiv:1304.1820, to appear in: Comm. Anal.
Geom.

[17] M. Gross and P. M. H. Wilson, Large complex structure limits of K3
surfaces. J. Diff. Geom., 55 (2000), 475–546.

[18] R. Hildebrand, Canonical Barriers on Convex Cones. Mathematics of
Operations Research, 39 no. 3, (2014), 841–850.

[19] N. Leung and P. Lu, Degeneration of Kähler Einstein metrics on com-
plete Kähler manifolds. Comm. Analysis and Geom., 7 (1999), 431–449.

[20] N. Leung and T. Wan, Calabi-Yau components in general type hyper-
surfaces. J. Differential Geometry, 83 (2009), 43–74.

[21] G. Kempf, F. Knudsen, D. Mumford and B. Saint-Donat, Toroidal Em-
beddings I. Lecture Notes in Mathematics 339, Springer-Verlag 1973.

[22] R. Kobayashi, Kähler-Einstein metric on an open algebraic manifolds.
Osaka J. Math., 21 (1984), 399–418.



1868 Yuguang Zhang

[23] J. Kollár, Moduli of varieties of general type. In: Handbook of Moduli,
Volume II, Adv. Lec. Math., 25, Int. Press, (2013), 131–157.

[24] J. Kollár, Simple normal crossing varieties with prescribed dual complex.
Algebr. Geom., 1 no. 1, (2014), 57–68.

[25] M. Kontsevich and Y. Soibelman, Homological mirror symmetry and
torus fibrations . In: Symplectic geometry and mirror symmetry, World
Sci. Publishing, (2001), 203–263.

[26] M. Kontsevich and Y. Soibelman, Affine Structures and Non-
Archimedean Analytic Spaces. In: The Unity of Mathematics, Progress
in Mathematics Volume 244, Springer, (2006), 321–385.

[27] G. Mikhalkin, Decomposition into pairs-of-pants for complex algebraic
hypersurfaces. Topology, 43 (2004), 1035–1065.

[28] Y. Odaka, Tropically Compactify Moduli via Gromov-Hausdorff Col-
lapsing. arXiv:1406.7772v1.

[29] W.-D. Ruan, Degeneration of Kähler-Einstein Manifolds I: The Normal
Crossing Case. Commun. Contemp. Math., 6 no. 2, (2004), 301–313.

[30] W.-D. Ruan, Degeneration of Kähler-Einstein manifolds. II. The
toroidal case. Comm. Anal. Geom., 14 no. 1, (2006), 1–24.

[31] W.-D. Ruan, Generalized special Lagrangian torus fibration for Calabi-
Yau hypersurfaces in toric varieties. I. Commun. Contemp. Math., 9
(2007), 201–216.

[32] W.-D. Ruan, Degeneration of Kähler-Einstein hypersurfaces in complex
torus to generalized pair of pants decomposition. arXiv:math/0311098.

[33] Y.-T. Siu, Lectures on Hermitian-Einstein metrics for stable bundles
and Kähler-Einstein metrics. DMV Seminar, 8. Birkhäuser Verlag,
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