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Hausdorff measure of nodal sets of

analytic Steklov eigenfunctions

Steve Zelditch

Let (Ω, g) be a real analytic Riemannian manifold with real ana-
lytic boundary ∂Ω. Let ψλ be an eigenfunction of the Dirichlet-to-
Neumann operator Λ of (Ω, g, ∂Ω) of eigenvalue λ. Let Nλ be its
nodal set. Then, there exists a constant C > 0 depending only on
(Ω, g, ∂Ω) so that

Hn−2(Nλ) ≤ Cλ.

This proves a conjecture of F. H. Lin and K. Bellova.

This article is concerned with the Hausdorff Hn−2 measure of the nodal sets

Nλ = {x ∈ ∂Ω : ψλ(x) = 0} ⊂ ∂Ω

of Steklov eigenfunctions of eigenvalue λ of a domain Ω ⊂ Rn in the real
analytic case. The Steklov eigenvalue problem on a domain Ω is,

(1)

{
Δu(x) = 0, x ∈ Ω,

∂u
∂ν (x) = λu(x), x ∈ ∂Ω.

It is often assumed that Ω ⊂ Rn is a bounded C2 domain with Euclidean
metric, but the problem may be posed on a bounded domain in any Rieman-
nian manifold. The eigenvalue problem may be reduced to the boundary, and
ψλ is an eigenfunction

(2) Λψλ = λψλ

of the Dirichlet-to-Neumann operator

Λf =
∂u

∂ν
(x)|∂Ω.

Research partially supported by NSF grant DMS-1206527.

1821



1822 Steve Zelditch

Here, u is the harmonic extension of f ,{
Δu(x) = 0, x ∈ Ω,

u(x) = f(x), x ∈ ∂Ω.
.

Λ is a positive elliptic self-adjoint pseudo-differential operator of order one
on L2(∂Ω, dS) and there exists an orthonormal basis {ψj} of eigenfunctions

Λψj = λjψj , ψj ∈ C∞(∂Ω),

∫
∂Ω
ψjψkdS = δjk,

where dS is the surface measure. We order the eigenvalues in ascending order
0 = λ0 < λ1 ≤ λ2 ≤ · · · , counted with multiplicty (see e.g. [DG]).

In a recent article, Bellova-Lin [BL] proved that

Hn−2(Nλ) ≤ Cλ6

when Ω ⊂ Rn is a bounded real analytic Euclidean domain. They suggest
that the optimal result is Hn−2(Nλ) ≤ Cλ. This is the analogue for the
Steklov problem of the upper bound half of Yau’s conjecture [Y1, Y2] that

(3) cM,gλ ≤ Hn−1(Nϕλ
) ≤ CM,gλ.

for nodal sets of Laplace eigenfunctions of C∞ metrics.
The purpose of this article is to prove this upper bound for bounded real

analytic domains in general real analytic Riemannian manifolds.

Theorem 1. Let (Ω, g) be a compact real analytic Riemannian manifold
with real analytic boundary ∂Ω. Let ψλ be an eigenfunction of the Dirichlet-
to-Neumann operator Λ of (Ω, g, ∂Ω) of eigenvalue λ, and Nλ be its nodal set
as above. Then, there exists a constant C > 0 depending only on (Ω, g, ∂Ω)
so that

Hn−2(Nλ) ≤ Cλ.

It is not hard to find examples of (Ω, g, ∂Ω) and ψλ where the upper
bound is achieved, for instance on a hemisphere of a round sphere. But it
is not clear that it is attained by a sequence of Steklov eigenfunctions on
every (Ω, g, ∂Ω), or more stringently that it is obtained by every sequence of
eigenfunctions. In the setting of real analytic Riemannian manifolds (M, g),
it is proved in [DF] that there exists C > 0 depending only on the metric g so
that Hn−1(Nλ) ≥ Cλ (this is the lower bound half of (3)). Since dim ∂Ω =
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n− 1, the analogous lower bound for the real analytic Steklov problem would
be Hn−2(Nλ) ≥ Cλ, where C depends only on (Ω, g, ∂Ω). However the key
existence result for Δ-eigenfunctions of eigenvalue λ2, that every ball of
radius C

λ contains a zero of ϕλ, does not seem to be known for the Steklov
problem (1); here and below Δ is the positive Laplacian. A recent result
of Wang-Zhu [WZ] gives a power law lower bound on Hn−2(Nλ) which is
consistent with known lower bounds in the C∞ case. It would be interesting
to see if the complex analytic methods of this article can improve the lower
bounds in the analytic case.

0.1 Outline of the proof of Theorem 1

The key to proving the sharp upper bound in the generality of Theorem 1
is to use the wave group

(4) U(t) = eitΛ : L2(∂Ω) → L2(∂Ω)

generated by Λ. As mentioned above, Λ is a positive elliptic self-adjoint
pseudo-differential operator of order one, with principal symbol equal to
the metric norm |ξ|g∂Ω

of the boundary metric (see e.g. [T, LU]). Its wave
group is therefore a Fourier integral operator by the methods and results
of [Hor, DG]. As in [Z] we study nodal sets by analytically continuing the
Schwartz kernel of the wave group to imaginary time t+ iτ with τ > 0, and
to the complexification (∂Ω)C of ∂Ω. The analytic continuation in time and
in the first space variable defines the Poisson wave kernel

(5) UC(t+ iτ, ζ, y) = ei(t+iτ)Λ(ζ, y) : L2(∂Ω) → L2((∂Ω)C).

As discussed below, Λ is an analytic pseudo-differential operator on ∂Ω when
(Ω, ∂Ω, g) is real analytic, and (5) is a Fourier integral operator with com-
plex phase. (See [Bou2, Sj] for background on analytic pseudo-differential
operators).

In the real analytic case, the Steklov eigenfunctions are real analytic on
∂Ω and have complex analytic extensions to (∂Ω)C. We then study their
complex nodal sets

(6) NC

λ = {ζ ∈ (∂Ω)C : ψC

λ (ζ) = 0}.

To prove Theorem 1, we use Crofton’s formula and a multi-dimensional
Jensen’s formula to give an upper bound for Hn−2(Nλ) in terms of the inte-
gral geometry of NC

λ . The integral geometric approach to the upper bound
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is inspired by the classic paper of Donnelly-Fefferman [DG] (see also [Lin]).
But, instead of doubling estimates or frequency function estimates, we use
the Poisson wave kernel to obtain growth estimates on eigenfunctions, and
then use results on pluri-subharmonic functions rather than functions of
one complex variable to relate growth of zeros to growth of eigenfunctions.
This approach was used in [Z] to prove equidistribution theorems for com-
plex nodal sets when the geodesic flow is ergodic. The Poisson wave kernel
approach works for Steklov eigenfunctions as well as Laplace eigenfunctions.

We first use the Poisson wave group (5) to analytically continue eigen-
functions in the form

(7) UC(iτ)ψj(ζ) = e−τλjψC

j (ζ).

We then use (7) to determine the growth properties of ψC

j (ζ) in Grauert
tubes of the complexification of ∂Ω. The relevant notion of Grauert tube
is the standard Grauert tube for ∂Ω with the metric g∂Ω induced by the
ambient metric g on M . This is because the principal symbol of Λ is the
same as the principal symbol of

√
Δ∂Ω.

Remark: A remark on notation: In [Z] we use M to denote a Riemannian
manifold, Mε its Grauert tube of radius ε and ∂Mε to denote the boundary
of the Grauert tube of radius ε. Since ∂Ω is the Riemannian manifold of
interest here, we denote it by M ,

(8) (M, g) := (∂Ω, g∂Ω).

Thus the Grauert tube of radius τ of (∂Ω)C is denotedMτ and its boundary
by ∂Mτ , not to be confused with ∂Ω. We also denote m = dimM = n− 1.

Because UC(iτ) is a Fourier integral operator with complex phase, it can
only magnify the L2 norm of ψj by a power of λj . Hence the exponential
eτλj dominates the L2 norm on the boundary of the Grauert tube of radius
τ . We prove:

Proposition 2. Suppose (Ω, g, ∂Ω) is real analytic. Let {ψλ} be an eigen-
function of Λ on M = ∂Ω of eigenvalue λ. Then

sup
ζ∈Mτ

|ψC

λ (ζ)| ≤ Cλ
m+1

4 eτλ.

The proof follows from a standard cosine Tauberian result and the fact
that the complexified Poisson kernel is a complex Fourier integral operator of
finite order. This simple growth estimate replaces the doubling estimates of
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[DF] and [BL]. It is closely related to growth estimates of Δ-eigenfunctions
in [Z, Z2, Z3].

For the precise statement that UC(t+ iτ) is indeed a Fourier integral
operator with complex phase, we refer to Theorem 3. It holds for positive
elliptic analytic pseudo-differential operators whose principal symbol has
convex sublevel sets. Since the principal symbol of Λ is the same as for√
Δ∂Ω, the proof is only a small modification of that in [L, Z2, St] in the

latter case and is omitted.
We thank Boris Hanin, G. Lebeau, Peng Zhou, Iosif Polterovich, Chris

Sogge and particularly Y. Canzani for comments/corrections on earlier ver-
sions.

1. Geometry and analysis of Grauert tubes

We briefly review the geometry and analysis on Grauert tubes of real analytic
Riemannian manifolds. We refer to [Z, Z2, GS1, GS2] for more detailed
discussions.

1.1. Analytic continuation to a Grauert tube

A real analytic manifold M always possesses a complexification MC, i.e. a
complex manifold of which M is a totally real submanifold. A real ana-
lytic Riemannian metric g on M determines a canonical plurisubharmonic
function ρg on MC; since the metric is fixed througout, we denote it simply
by ρ. Its square-root

√
ρ is known as the Grauert tube function; it equals√

−r2
C
(z, z̄)/2 where rC is the holomorphic extension of the distance func-

tion. The (1, 1) form ω = ωρ := i∂∂̄ρ defines a Kähler metric on MC. The
Grauert tubes Mε := {z ∈MC :

√
ρ(z) < ε} are strictly pseudo-convex do-

mains in MC, whose boundaries are strictly pseudo-convex CR manifolds.
We also denote the contact form of ∂Mτ by

(9) α =
1

i
∂ρ|∂Mτ

= dc
√
ρ.

The complexified exponential map

(10) (x, ξ) ∈ B∗εM → E(x, ξ) := expCx
√−1ξ ∈Mε

defines a symplectic diffeomorphism, where B∗εM ⊂ T ∗M is the co-ball bun-
dle of radius ε, equipped with the standard symplectic structure, and where
Mε is equipped with ωρ. The Grauert tube function

√
ρ pulls back under
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E to the metric norm function |ξ|g. We emphase the setting MC but it is
equivalent to using E to endow B∗εM with an adapted complex structure.
We refer to [GS1, GS2, LS, GLS] for further discussion.

1.2. Geodesic and Hamiltonian flows

The microlocal analysis of the kernels (5) involves the complexification of
the geodesic flow. We denote by gt the (real) homogeneous geodesic flow of
(M, g). It is the real analytic Hamiltonian flow on T ∗M\0M generated by
the Hamiltonian |ξ|g with respect to the standard symplectic form ω. We
also consider the Hamiltonian flow of |ξ|2g, which is real analytic on all of
T ∗M and denote its Hamiltonian flow by Gt. In general, we denote by ΞH

the Hamiltonian vector field of a Hamiltonian H and its flow by exp tΞH .
Thus, we consider the Hamiltonian flows

(11) gt = exp tΞ|ξ|g , resp. Gt = exp tΞ|ξ|2g .

The exponential map is the map expx : T ∗M →M defined by expx ξ =
πG1(x, ξ) where π is the standard projection. Since E∗√ρ = |ξ|, E∗ con-
jugates the geodesic flow on B∗M to the Hamiltonian flow exp tΞ√ρ of

√
ρ

with respect to ω, i.e.

(12) E(gt(x, ξ)) = exp tΞ√ρ(expx iξ).

1.3. Szegö kernel and analytic continuation of the Poisson kernel

We denote by Os+m−1

4 (∂Mτ ) the Sobolev spaces of CR holomorphic func-
tions on the boundaries of the strictly pseudo-convex domains Mτ , i.e.

(13) Os+m−1

4 (∂Mτ ) =W s+m−1

4 (∂Mτ ) ∩ O(∂Mτ ),

whereW s is the sth Sobolev space and where O(∂Mτ ) is the space of bound-
ary values of holomorphic functions. The inner product on O0(∂Mτ ) is with
respect to the Liouville measure or contact volume form

(14) dμτ := α ∧ ωm−1,

on ∂Mτ .
The study of norms of complexified eigenfunctions is related to the study

of the Szegö kernels Πτ of Mτ , namely the orthogonal projections
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(15) Πτ : L2(∂Mτ , dμτ ) → O0(∂Mτ , dμτ )

onto the Hardy space of boundary values of holomorphic functions in Mτ

which belong to L2(∂Mτ , dμτ ). The Szegö projector Πτ is a complex Fourier
integral operator with a positive complex canonical relation. The real points
of its canonical relation form the graph ΔΣ of the identity map on the
symplectic cone Στ ⊂ T ∗∂Mτ defined by the spray

(16) Στ = {(ζ, rdc√ρ(ζ)) : r ∈ R+} ⊂ T ∗(∂Mτ )

of the contact form dc
√
ρ. There exists a symplectic equivalence (cf. [GS2])

(17) ιτ : T ∗M − 0 → Στ , ιτ (x, ξ) = (E(x, τ
ξ

|ξ|), |ξ|d
c√ρE(x,τ ξ

|ξ| )
).

1.4. Analytic continuation of the Poisson wave kernel

The wave group generated by Λ onM = ∂Ω is the unitary group U(t) = eitΛ.
Its kernel U(t, x, y) solves the ‘half-wave equation’,

(18)

(
1

i

∂

∂t
− Λx

)
U(t, x, y) = 0, U(0, x, y) = δy(x).

Here, Λx means that Λ is applied in the x variable. In the real domain it
is well known [Hor, DG] that U(t, x, y) is the Schwartz kernel of a Fourier
integral operator,

U(t, x, y) ∈ I−1/4(R×M ×M,Γ)

with underlying canonical relation

Γ = {(t, τ, x, ξ, y, η) : τ + |ξ| = 0, gt(x, ξ) = (y, η)} ⊂ T ∗R× T ∗M × T ∗M.

The Poisson-wave kernel is the analytic continuation U(t+ iτ, x, y) of
the wave kernel with respect to time, t→ t+ iτ ∈ R× R+. For t = 0 and for
τ > 0, we obtain the Poisson semi-group U(iτ) = e−τΛ. For general t+ iτ ,
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the Poisson-wave kernel has the eigenfunction expansion,

(19) U(iτ, x, y) =
∑
j

ei(t+iτ)λjψλj
(x)ψλj

(y).

As stated in Theorem 3 in the introduction, the Poisson-wave kernel
U(t+ iτ, x, y) admits an analytic continuation UC(t+ iτ, ζ, y) in the first
variable to Mτ ×M .

Theorem 3. Let U(t) be the wave group of the Dirichlet to Neumann op-
erator Λ on M = ∂Ω as above. Then Πε ◦ U(iε) : L2(M) → O(∂Mε) is a
Fourier integral operator with complex phase of order −m−1

4 associated to
the canonical relation

Γ = {(y, η, ιε(y, η)} ⊂ T ∗∂Mε × Σε.

Moreover, for any s,

Πε ◦ U(iε) :W s(M) → Os+m−1

4 (∂Mε)

is a continuous isomorphism.

This statement is asserted by Boutet de Monvel in [Bou, Bou2] for any
real analytic positive elliptic pseudo-differential operator for which the sub-
level sets {ξ ∈ T ∗xM : p(x, ξ) ≤ 1} are strictly convex, and has been accepted
since then as an established fact (see for instance [GS1, GS2]). The proof
was only sketched in [Bou, Bou2], and the first complete proofs appeared
only recently in [Z2, L, St] for the special case of the wave group of a Rie-
mannian manifold without boundary. Essentially the same proof applies to
the wave group of Λ as well because

√
Δ∂M and Λ only differ by an analytic

pseudo-differential operator of order zero, as follows from the fact that the
principal symbol of Λ,

(20) σΛ : T ∗∂Ω → R, σΛ(x, ξ) = |ξ|g∂ ,
is the same as for the Laplacian Δ∂ of the boundary (∂Ω, g∂). In fact, the
complete symbol of Λ is calculated in [LU] (see also [PS]).

2. Growth of complexified eigenfunctions proof
of Proposition 2

We further need to generalize sup norm estimates of complexified eigenfunc-
tions in [Z2] to the Λ-eigenfunctions.
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As in [Z2, Z3] we prove Proposition 2 by introducing the ‘tempered’
spectral projections

(21) P τ
Iλ(ζ, ζ̄) =

∑
j:λj∈Iλ

e−2τλj |ψC

λj
(ζ)|2, (

√
ρ(ζ) ≤ τ),

where Iλ could be a short interval [λ, λ+ 1] of frequencies or a long window
[0, λ]. Exactly as in [Z2] but with the wave group of Λ replacing the wave
group of

√
Δ, we prove

(22) P τ
[0,λ](ζ, ζ̄) = (2π)−m

(
λ√
ρ

)m−1

2
(

λ

(m− 1)/2 + 1
+O(1)

)
, ζ ∈ ∂Mτ .

We then obtain

Corollary 4. Let ψλ be an eigenfunction of Λ as above. Then there exists
C > 0 so that for all

√
ρ(ζ) = τ ,

Cλ−
m−1

2 eτλ ≤ sup
ζ∈Mτ

|ψC

λ (ζ)| ≤ Cλ
m−1

4
+ 1

2 eτλ.

The upper bound is not sharp but is sufficient for our purposes. The
lower bound is not used in the nodal analysis.

2.1. Proof of the local Weyl law

We only sketch the proof for the sake of completeness, since it is essentially
the same as in [Z, Z2, Z3] and closely follows [DG]. The novelty is that we
apply the argument of [DG] to the analytically continued parametrix.

By [Hor, DG] the positive elliptic first order pseudo-differential operator
Λ generates a wave group which has a parametrix of the form,

(23) U(t, x, y) =

∫
T ∗y M

eit|ξ|gy ei〈ξ,exp
−1
y (x)〉A(t, x, y, ξ)dξ

similar to that of the wave kernel of M = ∂Ω, since Λ =
√
ΔM +Q where

Q is an analytic pseudo-differential operator of order zero. Here, |ξ|gx is the
metric norm function at x, and where A(t, x, y, ξ) is a polyhomogeneous
amplitude of order 0 which is supported near the diagonal. The amplitude
is different from that of the wave kernel since the transport equations in-
volve Q.
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By Theorem 3, the wave group and parametrix may be analytically con-
tinued. To obtain uniform asymptotics, we use the analytic continuation of
the Hörmander parametrix (23). We choose local coordinates near x and
write exp−1x (y) = Φ(x, y) in these local coordinates for y near x, and write
the integral T ∗yM as an integral over Rm in these coordinates. The holomor-
phic extension of the parametrix to the Grauert tube |ζ| < τ at time t+ 2iτ
has the form

(24) UC(t+ 2iτ, ζ, ζ̄) =

∫
Rm

e(it−2τ)|ξ|gy ei〈ξ,Φ(ζ,ζ̄)〉A(t, ζ, ζ̄, ξ)dξ,

where A is the analytic extensions of the real analytic A and Φ(ζ, ζ̄) is the
analytic extension of exp−1y (x).

We introduce a cutoff function χ ∈ S(R) with χ̂ ∈ C∞0 supported in suf-
ficiently small neighborhood of 0 so that no other singularities of UC(t+
2iτ, ζ, ζ̄) lie in its support. We also assume χ̂ ≡ 1 in a smaller neighborhood
of 0. We then change variables ξ → λξ and apply the complex stationary
phase to the integral,∫

R

χ̂(t)e−iλtUC(t+ 2iτ, ζ, ζ̄)dt(25)

= λm
∫ ∞

0

∫
R

χ̂(t)e−iλt∫
Sm−1

e(it−2τ)λreirλ〈ω,Φ(ζ,ζ̄)〉A(t, ζ, ζ̄, λrω)rm−1drdtdω.

The resulting integral (25) is a semi-classical Fourier integral distribution
with a complex phase, the same phase as in the pure Riemannian case treated
in [Z2]. Hence the stationary phase calculation is essentially the same as in
section 9.1 of [Z2]. We first integrate over dω and find that there are two
stationary phase points, one giving an exponentially decaying amplitude
of order e−2λτrand one for which the critical value is 2λτr. It cancels the
term −2τλr coming from the factor e(it−2τ)λr. We then apply stationary
phase to the resulting integral over (t, r) with phase t(r − 1). The critical
set consists of r = 1, t = 0. The phase is clearly non-degenerate with Hessian
determinant one and inverse Hessian operator D2

θ,t. Taking into account the

factor of λ−1 from the change of variables, the stationary phase expansion
gives

(26)
∑
j

ψ(λ− λj)e
−2τλj |ψC

j (ζ)|2 ∼
∞∑
k=0

λ
m−1

2
−kωk(τ ; ζ),
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where the coefficients ωk(τ, ζ) are smooth for ζ ∈ ∂Mτ . The Weyl asymp-
totics then follows from the standard cosine Tauberian theorem, as in [DG]
or [Z2] (loc. cit.).

3. Proof of Theorem 1

We start with the integral geometric approach of [DF] (Lemma 6.3) (see
also [Lin] (3.21)). There exists a “Crofton formula” in the real domain which
bounds the local nodal hypersurface volume above,

(27) Hm−1(Nϕλ
∩ U) ≤ CL

∫
L
#{Nϕλ

∩ �}dμ(�).

Thus, Hm−1(Nϕλ
∩ U) is bounded above by a constant CL times the average

over all line segments of length L in a local coordinate patch U of the
number of intersection points of the line with the nodal hypersurface. The
measure dμL is known as the ‘kinematic measure’ in the Euclidean setting
[F] (Chapter 3); see also Theorem 5.5 of [AP]. We will be using geodesic
segments of fixed length L rather than line segments, and parametrize them
by S∗M × [0, L], i.e. by their intial data and time. Then dμ
 is essentially
Liouville measure dμL on S∗M times dt.

The complexification of a real line � = x+ Rv with x, v ∈ Rm is �C =
x+ Cv. Since the number of intersection points (or zeros) only increases if
we count complex intersections, we have

(28)

∫
L
#(Nϕλ

∩ �)dμ(�) ≤
∫
L
#(NC

ϕλ
∩ �C)dμ(�).

Note that this complexification is quite different from using intersections
with all complex lines to measure complex nodal volumes. If we did that, we
would obtain a similar upper bound on the complex hypersurface volume of
the complex nodal set. But it would not give an upper bound on the real
nodal volume and indeed would the complex volume tends to zero as one
shrinks the Grauert tube radius to zero, while (28) stays bounded below.

Hence to prove Theorem 1 it suffices to show

Lemma 5. We have,

Hm−1(Nϕλ
) ≤ CL

∫
L
#(Nϕλ

)C ∩ �C)dμ(�) ≤ Cλ.

We now sketch the proofs of these results using a somewhat novel ap-
proach to the integral geometry and complex analysis.
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3.1. Background on hypersurfaces and geodesics

The proof of the Crofton formula given below in Proposition 9 involves the
geometry of geodesics and hypersurfaces. To prepare for it we provide the
relevant background.

As above, we denote by dμL the Liouville measure on S∗M . We also de-
note by ω the standard symplectic form on T ∗M and by α the canonical one
form. Then dμL = ωm−1 ∧ α on S∗M . Indeed, dμL is characterized by the
formula dμL ∧ dH = ωm, where H(x, ξ) = |ξ|g. We take the interior prod-
uct ιΞH

with the Hamilton vector field ΞH on both sides, and the identity
follows from the fact that α(ΞH) =

∑
j ξj

∂H
∂ξj

= H = 1 on S∗M , since H is
homogeneous of degree one. Henceforth we denote by Ξ = ΞH the generator
of the geodesic flow.

Let N ⊂M be a smooth hypersurface in a Riemannian manifold (M, g).
We denote by T ∗NM the of covectors with footpoint on N and S∗NM the
unit covectors along N . We introduce Fermi normal coordinates (s, ym)
along N , where s are coordinates on N and ym is the normal coordinate,
so that ym = 0 is a local defining function for N . We also let σ, ξm be the
dual symplectic Darboux coordinates. Thus the canonical symplectic form is
ωT ∗M = ds ∧ dσ + dym ∧ dξm. Let π : T ∗M →M be the natural projection.
For notational simplicity we denote π∗ym by ym as functions on T ∗M . Then
ym is a defining function of T ∗NM .

The hypersurface S∗NM ⊂ S∗M is a kind of Poincaré section or sym-
plectic transversal to the orbits of Gt, i.e. is a symplectic transversal away
from the (at most codimension one) set of (y, η) ∈ S∗NM for which Ξy,η ∈
Ty,ηS

∗
NM , where as above Ξ is the generator of the geodesic flow. More

precisely,

Lemma 6. The restriction ω|S∗NM is symplectic on S∗NM\S∗N .

Indeed, ω|S∗NM is symplectic on Ty,ηS
∗N as long as Ty,ηS

∗
NM is trans-

verse to Ξy,η, since ker(ω|S∗M ) = RΞ. But S∗N is the set of points of S∗NM
where Ξ ∈ TS∗NM , i.e. where S∗NM fails to be transverse to Gt. Indeed,
transversality fails when Ξ(ym) = dym(Ξ) = 0, and ker dym ∩ ker dH =
TS∗NM . One may also see it in Riemannian terms as follows: the generator
Ξy,η is the horizontal lift ηh of η to (y, η) with respect to the Riemannian
connection on S∗M , where we freely identify covectors and vectors by the
metric. Lack of transversality occurs when ηh is tangent to T(y,η)(S

∗
NM).

The latter is the kernel of dym. But dym(ηh) = dym(η) = 0 if and only if
η ∈ TN .
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It follows from Lemma 6 that the symplectic volume form of S∗NM\S∗N
is ωm−1|S∗NM . The following Lemma gives a useful alternative formula:

Lemma 7. Define

dμL,N = ιΞdμL |S∗NM ,

where as above, dμL is Liouville measure on S∗M . Then

dμL,N = ωm−1|S∗NM .

Indeed, dμL = ωm−1 ∧ α, and ιΞdμL = ωm−1.

Corollary 8. Hm−1(N) = 1
βm

∫
S∗NM |ωm−1|.

3.2. Hausdorff measure and Crofton formula for
real geodesic arcs

First we sketch a proof of the integral geometry estimate using geodesic
arcs rather than local coordinate line segments. For background on integral
geometry and Crofton type formulae we refer to [AB, AP]. As explained
there, a Crofton formula arises from a double fibration

I

π1 ↙ ↘ π2

Γ B,

where Γ parametrizes a family of submanifolds Bγ of B. The points b ∈ B
then parametrize a family of submanifolds Γb = {γ ∈ Γ : b ∈ Bγ} and the
top space is the incidence relation in B × Γ that b ∈ Bγ .

We would like to define Γ as the space of geodesics of (M, g), i.e. the
space of orbits of the geodesic flow on S∗M . Heuristically, the space of
geodesics is the quotient space S∗M/R where R acts by the geodesic flow
Gt (i.e. the Hamiltonian flow of H). Of course, for a general (i.e. non-Zoll)
(M, g) the ‘space of geodesics’ is not a Hausdorff space and so we do not
have a simple analogue of the space of lines in Rn. Instead we consider the
space GT of geodesic arcs of length T . If we only use partial orbits of length
T , no two partial orbits are equivalent and the space of geodesic arcs γTx,ξ of
length T is simply parametrized by S∗M . Hence we let B = S∗M and also
GT � S∗M . The fact that different arcs of length T of the same geodesic are
distinguished leads to some redundancy.
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In the following, let L1 denote the length of the shortest closed geodesic
of (M, g).

Proposition 9. Let N ⊂M be any smooth hypersurface1, and let S∗NM
denote the unit covers to M with footpoint on N . Then for 0 < T < L1,

Hm−1(N) =
1

βmT

∫
S∗M

#{t ∈ [−T, T ] : Gt(x, ω) ∈ S∗NM}dμL(x, ω),

where βm is 2(m− 1)! times the volume of the unit ball in Rm−2.

Proof. By Corollary 8, the Hausdorff measure of N is given by

(29) Hm−1(N) = 1
βm

∫
S∗NM |ωm−1|.

We use the Lagrange (or more accurately, Legendre) immersion,

ι : S∗M × R → S∗M × S∗M, ι(x, ω, t) = (x, ω,Gt(x, ω)),

where as above, Gt is the geodesic flow (11). We also let π : T ∗M →M
be the standard projection. We restrict ι to S∗M × [−T, T ] and define the
incidence relation

IT = {((y, η), (x, ω), t) ⊂ S∗M × S∗M × [−T, T ] : (y, η) = Gt(x, ω)},

which is isomorphic to [−T, T ]× S∗M under ι. We form the diagram

IT � S∗M × [−T, T ]

π1 ↙ ↘ π2

S∗M � GT S∗M,

using the two natural projections, which in the local parametrization take
the form

π1(t, x, ξ) = Gt(x, ξ), π2(t, x, ξ) = (x, ξ).

As noted above, the bottom left S∗M should be thought of as the space of
geodesic arcs. The fiber

π−11 (y, η) = {(t, x, ξ) ∈ [−T, T ]× S∗M : Gt(x, ξ) = (y, η)} � γT(y,η)

1The same formula is true if N has a singular set Σ with Hm−2(Σ) <∞
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may be identified with the geodesic segment through (y, η) and the fiber
π−12 (x, ω) � [−T, T ].

We ‘restrict’ the diagram above to S∗NM :

(30)

IT � S∗NM × [−T, T ]

π1 ↙ ↘ π2

(S∗NM)T S∗NM,

where

(S∗NM)T = π1π
−1
2 (S∗NM) =

⋃
|t|<T

Gt(S∗NM).

We define the Crofton density ϕT on S∗NM corresponding to the dia-
gram (30) [AP] (section 4) by

(31) ϕT = (π2)∗π∗1dμL.

Since the fibers of π2 are 1-dimensional, ϕT is a differential form of dimension
2 dimM − 2 on S∗M . To make it smoother, we can introduce a smooth
cutoff χ to (−1, 1), equal to 1 on (−1

2 ,
1
2), and use χT (t) = χ( t

T ). Then
π∗1(dμL ⊗ χTdt) is a smooth density on IT .

Lemma 10. The Crofton density (31) is given by, ϕT = TdμL,N

Proof. In (30) we defined the map π1 : (y, η, t)∈S∗NM×[−T, T ]→Gt(y, η)∈
(S∗M)ε. We first claim that π∗1dμL = dμL,N ⊗ dt. This is essentially the same
as Lemma 7. Indeed, dπ1(

∂
∂t) = Ξ, hence ι ∂

∂t
π∗1dμL|(t,y,η) = (Gt)∗ωm−1 =

ωm−1|Ty,ηS∗NM .
Combining Lemma 10 with (29) gives

(32)

∫
S∗NM

ϕT =

∫
π−1
2 (S∗NM)

dμL = TβmHm−1(N).

�

We then relate the integral on the left side to numbers of intersections
of geodesic arcs with N . The relation is given by the co-area formula: if
f : X → Y is a smooth map of manifolds of the same dimension and if Φ
is a smooth density on Y , and if #{f−1(y)} <∞ for every regular value y,
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then ∫
X
f∗Φ =

∫
Y
#{f−1(y)} Φ.

If we set set X = π−12 (S∗NM), Y = S∗M, and f = π1|π−1
2 (S∗NM) then the co-

area formula gives,

(33)

∫
π−1
2 (S∗NM)

π∗1dμL =

∫
S∗M

#{t ∈ [−T, T ] : Gt(x, ω) ∈ S∗NM}dμL(x, ω).

Combining (32) and (33) gives the result stated in Proposition 9,

(34) TβmHm−1(N) =

∫
S∗M

#{t ∈ [−T, T ] : Gt(x, ω) ∈ S∗NM}dμL(x, ω).

�

3.3. Proof of Lemma 5

The next step is to complexify.

Proof. We complexify the Lagrange immersion ι from a line (segment) to a
strip in C: Define

F : Sε × S∗M →MC, F (t+ iτ, x, v) = expx(t+ iτ)v, (|τ | ≤ ε)

By definition of the Grauert tube, ψ is surjective onto Mε. For each (x, v) ∈
S∗M ,

Fx,v(t+ iτ) = expx(t+ iτ)v

is a holomorphic strip. Here, Sε = {t+ iτ ∈ C : |τ | ≤ ε}. We also denote by
Sε,L = {t+ iτ ∈ C : |τ | ≤ ε, |t| ≤ L}.

Since Fx,v is a holomorphic strip,

F ∗x,v(
1

λ
ddc log |ψC

j |2) =
1

λ
ddct+iτ log |ψC

j |2(expx(t+ iτ)v)

=
1

λ

∑
t+iτ :ψC

j (expx(t+iτ)v)=0

δt+iτ .
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Put:

AL,ε(
1

λ
ddc log |ψC

j |2)(35)

=
1

λ

∫
S∗M

∫
Sε,L

ddct+iτ log |ψC

j |2(expx(t+ iτ)v)dμL(x, v).

A key observation of [DF, Lin] is that

(36) #{NC

λ ∩ Fx,v(Sε,L)} ≥ #{NR

λ ∩ Fx,v(S0,L)},

since every real zero is a complex zero. It follows then from Proposition 9
(with N = Nλ) that

AL,ε(
1

λ
ddc log |ψC

j |2) =
1

λ

∫
S∗M

#{NC

λ ∩ Fx,v(Sε,L)}dμ(x, v)

≥ 1

λ
Hm−1(Nψλ

).

Hence to obtain an upper bound on 1
λHm−1(Nψλ

) it suffices to prove that
there exists M <∞ so that

(37) AL,ε

(
1

λ
ddc log |ψC

j |2
)

≤M.

To prove (37), we observe that since ddct+iτ log |ψC

j |2(expx(t+ iτ)v) is a
positive (1, 1) form on the strip, the integral over Sε is only increased if we
integrate against a positive smooth test function χε ∈ C∞c (C) which equals
one on Sε,L and vanishes off S2ε,L. Integrating by parts the ddc onto χε, we
have

AL,ε(
1

λ
ddc log |ψC

j |2)

≤ 1

λ

∫
S∗M

∫
C

ddct+iτ log |ψC

j |2(expx(t+ iτ)v)χε(t+ iτ)dμL(x, v)

=
1

λ

∫
S∗M

∫
C

log |ψC

j |2(expx(t+ iτ)v)ddct+iτχε(t+ iτ)dμL(x, v).

Now write log |x| = log+ |x| − log− |x|. Here log+ |x| = max{0, log |x|}
and log− |x| = max{0,− log |x|}. Then we need upper bounds for

1

λ

∫
S∗M

∫
C

log± |ψC

j |2(expx(t+ iτ)v)ddct+iτχε(t+ iτ)dμL(x, v).
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For log+ the upper bound is an immediate consequence of Proposition 2.
For log− the bound is subtler: we need to show that |ϕλ(z)| cannot be too
small on too large a set. As we know from Gaussian beams, it is possible
that |ϕλ(x)| ≤ Ce−δλ on sets of almost full measure in the real domain; we
need to show that nothing worse can happen.

The map (10) is a diffeomorphism and since B∗εM =
⋃

0≤τ≤ε S
∗
τM we

also have that

E : Sε,L × S∗M →Mτ , E(t+ iτ, x, v) = expx(t+ iτ)v

is a diffeomorphism for each fixed t. Hence by letting t vary, E is a smooth
fibration with fibers given by geodesic arcs. Over a point ζ ∈Mτ the fiber
of the map is a geodesic arc

{(t+ iτ, x, v) : expx(t+ iτ)v = ζ, τ =
√
ρ(ζ)}.

Pushing forward the measure ddct+iτχε(t+ iτ)dμL(x, v) under E gives a mea-
sure dμ on Mτ . We claim that

(38) μ := E∗ ddct+iτχε(t+ iτ)dμL(x, v) =

(∫
γx,v

Δt+iτχεds

)
dVω,

where dVω is the Kähler volume form ωm

m! (see §1.1.)
In fact, dμL is equivalent under E to the contact volume form α ∧ ωm−1

ρ

where α = dc
√
ρ. Hence the claim amounts to saying that the Kähler volume

form is dτ times the contact volume form. In particular it is a smooth (and
of course signed) multiple J of the Kähler volume form dVω, and we do not
need to know the coefficient function J beyond that it is bounded above and
below by constants independent of λ. We then have∫

S∗M

∫
C

log |ψC

j |2(expx(t+ iτ)v)ddct+iτχε(t+ iτ)dμL(x, v)(39)

=

∫
Mτ

log |ψC

j |2JdV.

To complete the proof of (37) it suffices to prove that the right side is ≥ −Cλ
for some C > 0.

We use the well-known

Lemma 11. (Hartog’s Lemma; (see [HoI-IV, Theorem 4.1.9]): Let {uj} be
a sequence of subharmonic functions in an open set X ⊂ Rm which have a
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uniform upper bound on any compact set. Then either uj → −∞ uniformly
on every compact set, or else there exists a subsequence ujk which is con-
vergent to some u ∈ L1

loc(X). Further, lim supn un(x) ≤ u(x) with equality
almost everywhere. For every compact subset K ⊂ X and every continuous
function f ,

lim sup
n→∞

sup
K

(un − f) ≤ sup
K

(u− f).

In particular, if f ≥ u and ε > 0, then un ≤ f + ε on K for n large enough.

This Lemma implies the desired lower bound on (39): there exists C > 0
so that

(40)
1

λ

∫
Mτ

log |ψC

λ |JdV ≥ −C.

For if not, there exists a subsequence of eigenvalues λjk so that

1

λjk

∫
Mτ

log |ψC

λjk
|JdV → −∞.

By Proposition 2, { 1
λjk

log |ψC

λjk
|} has a uniform upper bound. Moreover the

sequence does not tend uniformly to −∞ since ||ψC

λ ||L2(M) = 1. It follows
that a further subsequence tends in L1 to a limit u and by the dominated
convergence theorem the limit of (40) along the sequence equals

∫
Mτ

uJdV �=
−∞. This contradiction concludes the proof of (40), hence (37), and thus
the theorem. �
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[Hor] L. Hörmander, The spectral function of an elliptic operator. Acta
Math., 121 (1968), 193–218.
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