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Asymmetric hyperbolic L-spaces,

Heegaard genus, and Dehn filling

Nathan M. Dunfield, Neil R. Hoffman and Joan E. Licata

An L-space is a rational homology 3-sphere with minimal Heegaard
Floer homology. We give the first examples of hyperbolic L-spaces
with no symmetries. In particular, unlike all previously known L-
spaces, these manifolds are not double branched covers of links
in S3. We prove the existence of infinitely many such examples
(in several distinct families) using a mix of hyperbolic geometry,
Floer theory, and verified computer calculations. Of independent
interest is our technique for using interval arithmetic to certify
symmetry groups and non-existence of isometries of cusped hyper-
bolic 3-manifolds. In the process, we give examples of 1-cusped
hyperbolic 3-manifolds of Heegaard genus 3 with two distinct lens
space fillings. These are the first examples where multiple Dehn
fillings drop the Heegaard genus by more than one, which answers
a question of Gordon.

1. Introduction

1.1. Asymmetric L-spaces

For a rational homology 3-sphere M , the rank of its Heegaard Floer homol-
ogy ĤF (M) is always bounded below by the order of H1(M ;Z), and M is
called an L-space when this bound is an equality. Lens spaces and other
spherical manifolds are all L-spaces, but these are by no means the only
examples. In fact, recent work of Boyer, Gordon, and Watson [5] shows that
each of the eight 3-dimensional geometries has an L-space. Their work is part
of broader efforts to characterize L-spaces via properties not obviously con-
nected to Heegaard Floer theory; specifically, they conjecture that a rational
homology sphere is an L-space if and only if its fundamental group is not
left-orderable. Although the conjecture has been resolved for seven of the
geometries, it remains open for the important case of hyperbolic geometry
as well as for most manifolds with non-trivial JSJ decompositions.
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All previous examples of hyperbolic L-spaces have come via the fol-
lowing specific type of surgery construction, and one of our main results
demonstrates that this is a construction of convenience rather than neces-
sity. A strong inversion of a cusped 3-manifold is an orientation preserving,
order-two symmetry which acts on each cusp by the elliptic involution; any
closed manifold obtained by Dehn filling inherits this symmetry. To date, all
hyperbolic L-spaces have been constructed by surgery on strongly invertible
manifolds, and moreover, the quotient of the L-space by the induced sym-
metry was always S3. Recall that a hyperbolic 3-manifold is asymmetric if
its only self-isometry is the identity map; by a deep theorem of Gabai, this
is equivalent to every self-diffeomorphism being isotopic to the identity [15].
We show the following:

1.2. Theorem. There exist infinitely many asymmetric hyperbolic L-spaces.
In particular, there are hyperbolic L-spaces which are neither regular covers
nor regular branched covers of another 3-manifold.

Among L-spaces which are not double branched covers over links in S3,
hyperbolic examples such as those of Theorem 1.2 are the simplest possi-
ble in the sense that any such L-space must have a hyperbolic piece in its
prime/JSJ decomposition. This is because any graph manifold which is a
rational homology sphere, much less an L-space, is a double branched cover
over a link in S3. This was proved by Montesinos in [21, §7.2]; the theorem
stated there is paraphrased in the translation below:

1.3. Theorem ([21, §7.2]). Let M be a graph manifold whose diagram
is a tree with each vertex corresponding to a Seifert fibered space over a
(punctured) S2 or (punctured) RP2. Then M is a double branched cover of
a link L in S3.

Note the rational homology sphere assumption implies that the diagram of
the graph manifold is a tree. Also, the cases that arise if the tree is a just
single vertex are covered in [21, §2-3].

We prove Theorem 1.2 via a combination of hyperbolic geometry, Hee-
gaard Floer theory, and verified computer calculations. The proof of Theo-
rem 1.2 has two parts, the second of which is computer-aided. The first result
shows that we need only construct 1-cusped manifolds with certain proper-
ties, and the second establishes the existence of such manifolds. Here, the
order of a lens space is the order of its fundamental group/first homology.
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Figure 1.4. The link used in Theorem 4.4 is L12n1314 in the Hoste-
Thistlewaite census. Our framing conventions for Dehn filling are
and are consistent with SnapPy [10]. Note there is an orientation-preserving
homeomorphism of S3 which interchanges the two components.

2.1. Theorem. Suppose M is a 1-cusped hyperbolic 3-manifold. If M is
asymmetric and has two lens space Dehn fillings of coprime order, then there
are infinitely many Dehn fillings of M which are asymmetric hyperbolic L-
spaces. Moreover, M is the complement of a knot in an integral homology
3-sphere and fibers over the circle with fiber a once-punctured surface.

4.4. Theorem. There exist infinitely many 1-cusped hyperbolic 3-manifolds
which are asymmetric and have two lens space fillings of coprime order.
Specifically, if N is the exterior of the link in Figure 1.4, then for all large
k ∈ Z, the (6k ± 1, k) Dehn filling on either component of N yields such a
manifold.

In addition to Theorem 4.4, Theorem 4.1 offers a finite number of explicit
examples for which the proof is slightly easier. A Heegaard diagram of the
simplest of these examples is given in Figure 4.3.

1.5. Heegaard genus, Dehn filling, and the Berge conjecture

Our second main result answers a question of Gordon [16] regarding the
existence of manifolds where multiple fillings drop the Heegaard genus by
more than one:
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1.6. Corollary. There exist infinitely many 1-cusped hyperbolic 3-manifolds
of Heegaard genus three which admit two distinct lens space fillings.

This corollary follows immediately from Theorem 4.4, as manifolds with
genus two Heegaard splittings always have symmetries; the examples of The-
orem 4.4 must have Heegaard genus exactly three since the link in Figure 1.4
is 3-bridge.

The interest in L-spaces stems in part from open questions about lens
space surgery, with the Berge Conjecture as the chief example. Another
interesting feature of Corollary 1.6 is that it provides counterexamples to
the following generalization of the Berge Conjecture, since the exterior of
any (1, 1)–knot has Heegaard genus two:

1.7. Conjecture ([1, Conjecture 9]). If knots K1 ⊂ L(p1, q1) and K2 ⊂
L(p2, q2) are longitudinal surgery duals, then up to reindexing, K2 is a (1, 1)–
knot and p2 ≥ p1.

We note that these examples do not contradict the Berge Conjecture itself
because they are not knot complements in S3; see the proof of Theorem 4.4
for details.

1.8. Certifying symmetry groups

The hard part of proving Theorems 4.1 and 4.4 is determining the symmetry
groups of 23 cusped hyperbolic 3-manifolds, in particular, showing that they
are asymmetric. Following Weeks and collaborators [18, 19, 26], we do this by
using the Epstein-Penner canonical cellulation; the symmetry group agrees
with the combinatorial isomorphisms of this cellulation. For each manifold,
we give a rigorous computer-assisted proof that a certain triangulation is
the canonical cellulation. We build on the verified computation scheme of
[20] for proving the existence of hyperbolic structures. This scheme replaces
floating-point computations subject to various kinds of errors with interval
arithmetic in order to meet the traditional standards of rigorous proof. Our
method for certifying a triangulation as canonical is described in detail in
Section 3 and is not specific to the examples here. In addition, the proofs of
Theorems 4.1 and 4.4 employ SnapPy [10] to perform combinatorial compu-
tations. Both SnapPy and the code for [20] are freely available; the source
code and data files used in the computer-assisted proofs in this paper are
permanently archived at [12].

As further context for Theorems 4.1 and 4.4, we note that in general it
is quite difficult to show a particular 3-manifold is asymmetric. Most proofs
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that specific hyperbolic 3-manifolds are asymmetric hinge on computing a
hyperbolic invariant which is not preserved by any possible isometry; see for
example the delicate arguments in [24]. One notable exception is the case
of complements to certain arborescent knots [4]; since knots are determined
by their complements [17], the symmetry group of a knot complement is
the same as that of the pair (S3,K), where additional tools apply. As the
referee pointed out to us, the link L in Theorem 4.4 is Montesinos and
the symmetry group of (S3, L) can be computed by [3]. While this is less
information than the symmetry group of the exterior of L, it is possible
to leverage this fact to a computer-free proof of Theorem 4.4 and hence
Theorem 1.2 and Corollary 1.6; see Remark 4.7 for details. However, this
alternative approach does not extend to the specific examples in Theorem 4.1
of asymmetric 1-cusped manifolds.

2. Asymmetric L-spaces from cusped manifolds

This section is devoted to the proof of the following result:

2.1. Theorem. Suppose M is a 1-cusped hyperbolic 3-manifold. If M is
asymmetric and has two lens space Dehn fillings of coprime order, then there
are infinitely many Dehn fillings of M which are asymmetric hyperbolic L-
spaces. Moreover, M is the complement of a knot in an integral homology
3-sphere and fibers over the circle with fiber a once-punctured surface.

This theorem follows immediately from the next two lemmas, where in the
second one we set N \ ∂N ∼= M .

2.2. Lemma. Suppose M is an asymmetric 1-cusped hyperbolic 3-manifold.
Then all but finitely many Dehn fillings of M are hyperbolic and asymmetric.

2.3. Lemma. Suppose N is a compact 3-manifold with ∂N a torus. If N
has two lens space Dehn fillings of coprime order, then N has infinitely many
Dehn fillings which are L-spaces. Moreover, N is the exterior of a knot in
an integral homology sphere and fibers over the circle with fiber a surface
with one boundary component.

The proofs of these two lemmas are completely independent and will be
familiar to experts in the areas of 3-dimensional hyperbolic geometry and
Heegaard Floer theory, respectively.

Proof of Lemma 2.2. Our argument here is motivated by [19], which con-
tains additional details. The key geometric claim is that, for all but finitely
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many slopes α, the Dehn filled manifold Mα is hyperbolic with the core c
of the added solid torus being the unique shortest closed geodesic in Mα.
Since c is the unique geodesic of its length, any isometry of Mα must send
c to itself, setwise if not pointwise. Any isometry of Mα thus induces a
self-diffeomorphism of M . Any symmetry of Mα would thus give one of the
asymmetric manifold M , and so Mα must also be asymmetric, as desired.

The geometric claim follows from the proof of the Hyperbolic Dehn
Surgery Theorem [25, Theorem 5.8.2] as we now explain. Thurston showed
that all but finitely many Dehn fillings on M give closed hyperbolic 3-man-
ifolds whose geometry is very close to that of M outside the core curves of
the filling solid tori; for further background see [25, §4.6-4.8]. Specifically, for
any fixed ε > 0, after excluding finitely many slopes α, we can assume that
Mα is hyperbolic with the core curve c being a geodesic of length less than ε
which lives inside a very deep tube whose complement is (1 + ε)–bi-Lipschitz
to a fixed compact subset of M . Taking ε much smaller than the length of
the shortest closed geodesic in M , it follows that c is the unique shortest
closed geodesic in Mα. This establishes the geometric claim and hence the
lemma. �
Proof of Lemma 2.3. We first show that N is the exterior of a knot in
an integral homology sphere. Let α and β be the given slopes where Nα

and Nβ are lens spaces. Since H1(Nα;Z) = H1(N ;Z)
/
〈α〉 and H1(Nβ ;Z) =

H1(N ;Z)
/
〈β〉 are cyclic of coprime order, it follows that H1(N ;Z)

/
〈α, β〉 is

trivial and hence that H1(∂N ;Z) → H1(N ;Z) is surjective; combining this
with “half-lives, half-dies” for H1(∂N ;Fp) → H1(N ;Fp) for every prime p,
it follows that H1(N ;Z) ∼= Z. Let μ ∈ H1(∂N ;Z) be any primitive element
whose image generates H1(N ;Z). Then Nμ is an integral homology sphere
as desired.

A knot K in a lens space L is primitive if [K] generates H1(L;Z). Since
H1(∂N ;Z) surjects onto H1(N ;Z), it follows that N is the exterior of prim-
itive knots in Nα and Nβ ; Theorem 6.5 of [2] then implies that N fibers over
the circle. An easy consequence of the surjectivity of H1(∂N ;Z) → H1(N ;Z)
is that the fiber has only one boundary component.

It remains to show that N has infinitely many L-space fillings, which is
a standard consequence of the exact triangle in Heegaard Floer homology,
specifically:

2.4. Proposition ([22, Prop 2.1]). Suppose {η, ν} are a basis for
H1(∂N ;Z) and Nη, Nν , and Nη+ν are all rational homology spheres with

(2.5) |H1(Nη+ν ;Z)| = |H1(Nη;Z)|+
∣∣H1(Nν ;Z)

∣∣.
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If Nη and Nν are L-spaces, so is Nη+μ.

As elements of H1(∂N ;Z), orient α and β so that the cone C = {aα+
bβ | a, b ∈ Z>0} is disjoint from the kernel of H1(∂N ;Z) → H1(N ;Z). It is
enough to show that every primitive lattice point in C corresponds to an
L-space filling. Notice first that the homological picture of (N, ∂N) devel-
oped above means that the map C → N which sends γ → |H1(Nγ ;Z)| is the
restriction of a linear function. In particular, condition (2.5) will always hold
on C. By the Cyclic Surgery Theorem [11], the geometric intersection num-
ber α · β is 1, and hence we may apply Proposition 2.4 to see that Nα+β is
an L-space. Repeating this argument inductively with the basis 〈nα+ β, α〉
yields an infinite collection of L-space fillings on N , proving the lemma. One
can extend this to all primitive vectors in C with a little more thought, and
a complete answer to which Nη are L-spaces is given in [23]. �

3. Certifying canonical triangulations

Triangulations are a basic tool in 3-manifold topology, especially its algo-
rithmic and computational aspects, and the use of ideal triangulations to
study hyperbolic structures on 3-manifolds goes back to Thurston [25].
Although every manifold has infinitely many triangulations, a cusped hyper-
bolic 3-manifold M has a unique canonical ideal cellulation which is defined
solely in terms of its geometry. Generically —including in all the examples
here— this cellulation is an ideal triangulation, called the canonical trian-
gulation.

Introduced by Epstein and Penner [13], the canonical cellulation is de-
fined by first embedding the universal coverH3 ofM into (3 + 1)-dimensional
Minkowski space. Choose disjoint horotorus neighborhoods of each cusp
in M which all have the same volume. Upstairs in H3, these neighbor-
hoods lift to a π1(M)–invariant packing of horoballs. In the Minkowski
model, each horoball B has a corresponding lightcone vector vB, where
B =

{
w ∈ H3

∣∣ vB · w ≤ −1
}
. The convex hull of the lightcone vectors asso-

ciated to the set of cusps has a natural cellulation of its boundary, and
projecting this radially defines a cellulation of H3. Since this cellulation is
preserved both by the action of π1(M) and also by the lifts of isometries
of M , it descends to a cellulation of M which is preserved by its isometry
group; in particular, we get the following key tool:

3.1. Corollary ([18]). The elements of the isometry group of M correspond
precisely to the combinatorial isomorphisms of its canonical cellulation. In
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particular, if the canonical cellulation has no nontrivial combinatorial iso-
morphisms, then M is asymmetric.

From now on, let T denote an ideal triangulation of M where each topo-
logical tetrahedron has been assigned a shape: an isometry type of an ideal
tetrahedron with geodesic sides in H3. Each shape is specified by a com-
plex number, and these numbers must satisfy certain polynomial conditions
which ensure that these geometric tetrahedra glue up to give the complete
hyperbolic structure on M [25, 27].

In [26], Weeks gave an easy way to check whether such a given geometric
ideal triangulation is canonical. Let X be one of the ideal tetrahedra, and
label its vertices {0, 1, 2, 3}. For some fixed horotorus cross section of the
cusp near vertex i, let RX

i denote the circumradius of the cross section and
let θXij denote the dihedral angle of the edge from vertex i to vertex j. For
the face F of X opposite vertex i, define

(3.2) Tilt(X,F ) = RX
i −

∑
k �=i

RX
k cos θXik

If Y is the other tetrahedron sharing F as a face, set Tilt(F ) := Tilt(X,F ) +
Tilt(Y, F ). With this notation, Weeks’ criterion is as follows:

3.3. Theorem ([26, Prop 3.1, Thm 5.1]). A geometric ideal triangu-
lation T of a cusped manifold M is its canonical cellulation if and only if
every face F of T has Tilt(F ) < 0.

Geometrically, the gluing at the face F is convex, flat, or concave, depending
on whether Tilt(F ) is negative, zero, or positive.

3.4. Finding the canonical triangulation

We next explain how SnapPy attempts to find the canonical cellulation. This
gives context for our results and highlights the necessity of a verified com-
putation by showing what could go wrong. However, the reader interested
only in the proofs of our results can safely skip ahead to §3.5.

In [26], Weeks gave a procedure, implemented in [10], to transform an
arbitrary geometric triangulation T of a hyperbolic 3-manifold M into the
canonical cellulation. Neglecting for the moment the numerical issues inher-
ent in floating-point arithmetic, his procedure is the following:

(1) If Tilt(F ) < 0 for every face of T , then T itself is the canonical tri-
angulation by Theorem 3.3. If Tilt(F ) ≤ 0 for every face, then T is
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a tetrahedral subdivision of the canonical cellulation. In either case,
the procedure terminates.

(2) If there is a face F with Tilt(F ) > 0 and with the property that per-
forming a 2-to-3 Pachner move on F creates only positively oriented
tetrahedra, then replace T with the result of this 2-to-3 move and go
back to Step 1.

(3) If there is a valence three edge E of T with a face F incident to
E having Tilt(F ) ≥ 0, then replace T with the result of the 3-to-2
Pachner move on E and go back to Step 1.

(4) If some face F has Tilt(F ) > 0 but no moves permitted in Steps 2
and 3 are possible, do a sequence of random Pachner moves to replace
T with a different geometric triangulation and return to Step 1.

While in practice this procedure almost always succeeds in finding the
canonical cellulation, it is not known to terminate with probability 1. More
significantly for us, even when it does terminate, floating-point issues may
cause the cellulation returned not to be canonical. Specifically, as the shapes
are known only approximately and round-off errors may accumulate, SnapPy
may conclude erroneously that Tilt(F ) ≤ 0 for all F . This is not merely a
theoretical concern. For example, there is a certain 16 tetrahedra triangu-
lation of the exterior to the link L10a154 (included in [12]) where SnapPy
identifies the wrong cellulation as canonical; in this case, the actual canon-
ical cellulation has non-tetrahedral cells, which is the hardest case because
some tilts are zero.

3.5. Certifying hyperbolic structures

Before rigorously finding the canonical triangulation, we must first certify
the existence of a hyperbolic structure. For this we used the verification
scheme of [20] which replaces floating-point computations with rigorous
interval arithmetic. In interval arithmetic, a number z ∈ C is partially spec-
ified by giving a rectangle with vertices in Q(i) which contains z. Because
the vertices are rational, such intervals can be exactly stored on a computer
and rigorously combined by the operations +,−, ·, / to create other such
intervals. The cost is that the sizes of the rectangles grow with the number
of operations. Given an ideal triangulation T of a 3-manifold M , in favorable
circumstances the verification scheme of [20] produces an interval for each
tetrahedral shape, together with a proof that the actual hyperbolic structure
has shapes lying in those intervals.
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3.6. Certifying canonical triangulations

We now explain how to extend the work of [20] to rigorously certify a tri-
angulation T of M as canonical. The basic idea is to use interval arithmetic
when checking the hypotheses of Theorem 3.3, starting from the guaranteed
shape intervals produced by [20]. Note that for a real interval r, it makes
sense to say that say r < 0 when both of the endpoints of r are negative. (In
contrast, there is no notion of equality for intervals since an interval is just
a stand-in for some unknown number inside it.) Thus if we compute Tilt(F )
as a real interval from the guaranteed shape intervals, we can potentially
certify that Tilt(F ) < 0 as required by Theorem 3.3. From (3.2), one sees
that it suffices to compute the quantities RX

i and cos
(
θXi,j

)
.

We begin with the easier case where M has a single cusp. We construct a
particular cusp cross section by first choosing a corner of a fixed tetrahedron
and then selecting a horospherical Euclidean triangle whose first side has
length 1. The (known) shape of the tetrahedron determines the other two
sides of this cusp triangle, and from there, one can propagate the cusp cross
section to adjacent tetrahedra. Since there is only one cusp, this initial choice
determines the whole cross section. The resulting “cusp cross section” could
be too large to be embedded, but it represents an actual cross section up to
a uniform dilation; since (3.2) is homogenous in the RX

i , this has no effect
on checking the hypotheses of Theorem 3.3.

The quantity RX
i is the circumradius of the corresponding cusp trian-

gle, and the circumradius of a triangle may be computed from the lengths
of its edges using only the operations +,−, ·, / and

√
, all of which are

supported by the interval arithmetic scheme of [20]; see §3.1 of that paper
for details. The cosines of the dihedral angles that appear in (3.2) can
be similarly computed; if the (i, j) edge has shape z = a+ bi, we have
cos

(
θXi,j

)
= cos

(
arg(z)

)
= a

/√
a2 + b2.

Thus in the 1-cusped case, we can compute tilt intervals from the initial
shape intervals and hence potentially apply Theorem 3.3 in a rigorous way;
we will do precisely this for the 22 manifolds of Theorem 4.1.

3.7. Multiple cusps

WhenM has multiple cusps, as in the proof of Theorem 4.4, there is an addi-
tional subtlety. Specifically, the canonical cellulation is defined in terms of
cusp cross sections which all have the same area. As mentioned above, inter-
val arithmetic does not support the notion of equality. In order to describe
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our solution to this issue, we must first introduce some more precise nota-
tion. Letting [a] and [b] denote intervals, we say that [a] < [b] if a < b for
all a ∈ [a] and b ∈ [b]. We extend this notation, using [C] to denote a cusp
cross section which is computed by interval arithmetic from the guaranteed
shape data as in §3.6, and we say that an actual cusp cross section C lies
in [C] if all its Euclidean triangles have side lengths in the corresponding
interval side lengths of [C]. In particular, if C is in [C], then Area(C) is in
Area([C]), where the latter is an honest interval.

For notational simplicity, let us start with the case where M has two
cusps. Let [C0] and [C1] be cusp cross sections constructed from the shape
data as above. Scale [C1] to create [C−

1 ] and [C+
1 ] where the following holds

in the interval sense:

(3.8) Area
(
[C−

1 ]
)
< Area

(
[C0]

)
< Area

(
[C+

1 ]
)

If F is a face of T , we use Tilt(F, [C0], [C1]) to denote the tilt interval of F
with respect to the cusps [C0] and [C1] computed as in §3.6. The proof of
Theorem 4.4 rests on the following:

3.9. Proposition. Suppose T is a geometric triangulation of a 2-cusped
manifold M with guaranteed shape intervals, and suppose further that [C0],
[C−

1 ], and [C+
1 ] are cusp cross sections satisfying (3.8). If for every face F

of T we have Tilt
(
F, [C0], [C

−
1 ]
)
< 0 and Tilt

(
F, [C0], [C

+
1 ]
)
< 0, then T is

the canonical triangulation of M .

Proof. Fix actual cusp cross sections C0, C
+
1 , C−

1 in [C0], [C
−
1 ], [C+

1 ], respec-
tively. The hypotheses imply Area(C−

1 ) < Area(C0) < Area(C+
1 ). Let C ′

1

be an actual cross section for the second cusp with Area(C ′
1) = Area(C0).

Thinking of cusp cross sections as vectors whose coordinates are the circum-
radii of their constituent Euclidean triangles, we can view C ′

1 as a convex
combination

C ′
1 = (1− t) · C−

1 + t · C+
1 for some t ∈ (0, 1).

For any face F , the function Tilt(F,C0, · ) is linear in the remaining input,
and so since both Tilt

(
F,C0, C

−
1

)
and Tilt

(
F,C0, C

+
1

)
are negative by our

hypotheses, we must have Tilt(F,C0, C
′
1)<0. In particular, since Area(C0)=

Area(C ′
1), Theorem 3.3 now implies that T is canonical. �

Proposition 3.9 extends easily to manifolds with three or more cusps. First
fix some [C0] for the first cusp, and then for each further cusp, choose a pair
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of cross sections [C±
n ] with

Area
(
[C−

n ]
)
< Area

(
[C0]

)
< Area

(
[C+

n ]
)
.

If for every face F and every pattern of signs {εn} one has

Tilt([C0], [C
ε1
1 ], [Cε2

2 ], . . . , [Cεm
m ]) < 0,

then T must be canonical. The point is again that the actual equal area
cross sections are convex combinations of cross sections in the [C±

n ], all of
which have negative tilts when combined with [C0].

3.10. Remark. The subsequent paper [14] gives an elegant simplification
of our technique in the multicusped case (see their Section 3.4) and they
provide an implementation of their approach which works for any number
of cusps.

3.11. Canonical cellulations with more complicated cells

Canonical cellulations are generically triangulations, but it would be use-
ful to be able to certify canonicity of cellulations with more complicated
cells, especially as these include some of the most symmetric examples. It
is unclear whether this can be done directly in the context of interval arith-
metic, since the lack of equality testing means we can not be sure that some
tilt is precisely zero, exactly the condition that leads to non-tetrahedral cells.
In small cases, one should be able to use exact arithmetic in a number field
to deal with this, as in [9], but the interval arithmetic techniques of [20] can
be successfully applied to much more complicated manifolds.

4. Asymmetric manifolds with lens space fillings

Before proving Theorem 4.4, we warm up with the following easier and
more concrete result, which, when combined with Theorem 2.1, also suffices
to prove Theorem 1.2.

4.1. Theorem. Table 4.2 lists 22 distinct 1-cusped hyperbolic 3-manifolds
which are asymmetric and have two lens space fillings of coprime order.

We provide a rigorous computer-assisted proof of Theorem 4.1 using SnapPy
[10], the verification scheme of [20], and the techniques given in Section 3.
These examples were found in the census of 1-cusped hyperbolic 3-manifolds
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M #tets M(1,0) M(0,1) g vol(M) systole

v3372∗ 7 L(7, 1) L(19, 7) 10 6.541194 0.952884
t10397 8 L(11, 2) L(14, 3) 12 6.880362 0.911798
t10448 8 L(17, 5) L(29, 8) 15 6.891314 0.716411
t11289∗ 8 L(11, 2) L(26, 7) 15 7.084874 0.576033

t11581 8 L(7, 1) L(31, 12) 16 7.180413 0.767839
t11780 8 L(23, 7) L(6, 1) 12 7.232671 0.643558
t11824 8 L(34, 13) L(19, 4) 19 7.246332 0.480409
t12685 8 L(14, 3) L(29, 8) 18 7.674889 0.693829

o9∗34328 10 L(13, 2) L(34, 13) 19 7.529794 0.312418
o935609 10 L(50, 19) L(29, 8) 27 7.631975 0.237482
o9∗35746 10 L(17, 3) L(41, 12) 24 7.642118 0.238001
o936591 9 L(55, 21) L(31, 7) 31 7.707673 0.188586

o937290 9 L(31, 12) L(19, 4) 22 7.762770 0.442218
o937552 9 L(35, 8) L(13, 3) 18 7.781895 0.408545
o938147 9 L(29, 12) L(41, 11) 27 7.831770 0.392648
o938375 9 L(17, 3) L(29, 8) 24 7.851404 0.349858

o938845 9 L(13, 2) L(18, 5) 15 7.896384 0.770335
o939220 10 L(13, 2) L(46, 17) 28 7.930877 0.304931
o941039 10 L(13, 2) L(21, 8) 16 8.122543 0.916284
o941063 9 L(26, 7) L(41, 11) 30 8.126169 0.386869

o941329 9 L(34, 9) L(49, 18) 34 8.159350 0.364220
o943248 10 L(37, 8) L(18, 5) 23 8.444914 0.689245

Table 4.2. The 22 manifolds of Theorem 4.1. Here, “#tets” refers to the
canonical triangulation supplied in [12] and g is the genus of the fibration
of M over the circle (whose existence follows from Theorem 2.1) computed
via the Alexander polynomial. The lens spaces were identified using Regina
[7]. The manifolds marked with a ∗ also appear in Theorem 4.4. The data
is all rigorous with the exception of the volume and systole columns, which
were approximated numerically, as the methods of [20] have not yet been
extended to those quantities. Note that none of these manifolds are knot
complements in S3, since the pair of lens space surgeries have fundamental
groups whose orders differ by more than one.

with at most 9 tetrahedra [6, 8] by a brute-force search through these 59,107
manifolds.

Proof of Theorem 4.1. The 22 manifolds are specified by particular triangu-
lations that are included in [12]. For each triangulation T , we proved the
following:
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Figure 4.3. A Heegaard diagram for the first manifold v3372 in Table 4.2,
corresponding to

〈
a, b, c

∣∣ R1 := ab−1a−2c2bc = 1, R2 := aba−1c2ba2bcb =
1
〉
. Also shown are the slopes α = c−2a2b and β = cba2 which give lens spaces

L(7, 1) and L(19, 7), oriented so any positive combination of them gives an
L-space.

(a) The manifold M underlying T is hyperbolic.
We used [20] to find intervals which are guaranteed to contain

shapes for the tetrahedra of T which give rise to an actual complete
hyperbolic structure on M .

(b) The triangulation T is the canonical cellulation of M .
Doing arithmetic with the interval shapes as described in §3.6, we

verified that all the inequalities in Theorem 3.3 hold, and hence T is
canonical.

(c) M is asymmetric.
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We used SnapPy to find all combinatorial self-isomorphisms of T ;
as there was only the identity, asymmetry follows from Corollary 3.1.

(d) M has two lens space fillings of coprime order.
We used SnapPy to check that the (1, 0) and (0, 1) Dehn fillings

on M (with respect to the cusp framing specified in the triangulation
file for T ) have fundamental groups with presentations that are obvi-
ously those of finite cyclic groups of coprime order; the Geometrization
Theorem implies that these are lens spaces. This combinatorial step
is also performed rigorously by SnapPy. (Regina [7] can go further
and identify the particular lens spaces directly, without appealing to
geometrization; this data is included in Table 4.2.)

To finish off Theorem 4.1, it remained to show that the examples are distinct.
For this, we checked that no two of the triangulations were combinatorially
isomorphic. By (b), this implies the 22 manifolds are not isometric and hence
not homeomorphic. Alternatively, this is proved in [6] by different methods.

Complete source code for this proof is available at [12]. As a precaution,
two disjoint subsets of the authors wrote independent implementations of
step (b), and the entire proof was executed from a single script. Additionally,
our code is robust enough to run on all 59,107 one-cusped census manifolds
in [6]; excluding the 64 cases where SnapPy believes there are canonical cells
which are not tetrahedra, we were able to certify the canonical triangulations
for all of these manifolds. �

We next extend the phenomena exhibited in Theorem 4.1 to an infinite
family of examples; note that our conventions for Dehn filling are specified
in Figure 1.4.

4.4. Theorem. There exist infinitely many 1-cusped hyperbolic 3-manifolds
which are asymmetric and have two lens space fillings of coprime order.
Specifically, if N is the exterior of the link in Figure 1.4, then for all large
k ∈ Z, the (6k ± 1, k) Dehn filling on either component of N yields such a
manifold.

Proof. Let Nk denote the (6k + 1, k) Dehn filling on the second cusp of N ;
we focus on this case first for notational simplicity, leaving the (6k − 1, k)
Dehn filling for later. The theorem in this case follows immediately from the
next two lemmas.

4.5. Lemma. For all k ∈ Z with |k| sufficiently large, the manifold Nk is
hyperbolic and asymmetric.
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4.6. Lemma. For all k ∈ Z, the (1, 0) and (4, 1) Dehn fillings on the remain-
ing cusp of Nk are lens spaces of coprime orders |6k + 1| and |15k + 4|,
respectively.

Proof of Lemma 4.5. Let T be the particular triangulation of N included
in [12]. Using [20] and Proposition 3.9, we verified that T is in fact the
canonical triangulation of N . The triangulation T has only two combina-
torial isomorphisms: the identity and one that interchanges the two cusps.
Hence by Corollary 3.1 the only isometry of N that preserves the each cusp
is the identity. The lemma now follows from the argument used to prove
Lemma 2.2. �

4.7. Remark. The referee kindly pointed out that the link L in Figure 1.4
is the Montesinos link M(0; (5, 3), (3,−2), (5, 1)), and hence its symmetry
group π0

(
Diff(S3, L)

)
can be computed using Boileau and Zimmermann [3].

Unlike the case of knots [17], a symmetry of a link exterior need not send
meridians to meridians; for example, the symmetry group of the (−2, 3, 8)-
pretzel link is Z/2Z, but the symmetry group of its exterior has order 8.
While the proof of Lemma 4.5 given above requires that we know the full
symmetry group of the exterior N , rather than just π0

(
Diff(S3, L)

)
, by

working harder one can prove Lemma 4.5 from the results in [3] without
reference to a canonical triangulation of N . We now sketch this alternative
argument.

Using [3], one computes that the symmetry group of the link L is Z/2Z
where the generator interchanges the two components. If infinitely many Nk

admit a nontrivial symmetry, then since the symmetry group of N is finite,
there is an infinite set of indices ki where said symmetry of Nki

is induced
by a fixed symmetry f of N . We will show that f is a symmetry of the
underlying link L and consequently f must be the identity. Let C1 and C2

be torus cross-sections for the two cusps of N . For each i, the symmetry f
preserves the unoriented isotopy class of the Dehn filling curve γi ⊂ C2 used
to form Nki

. Again passing to a subsequence, we can assume that f either
preserves the oriented isotopy class of all γi or reverses the orientation on
all of them. In the former case, it follows that f restricted to C2 is isotopic
to the identity; in the latter, it must be isotopic to the elliptic involution.
Since the two components of L have nonzero linking number, the maps
H1(Ci;Z) → H1(N ;Z) are both injective; it follows that the action of f on
C2 determines the action of f on H1(C1;Z). Consequently, in either case,
the map f must preserve the unoriented isotopy classes of the meridians
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which record L in both C1 and C2, and hence comes from a symmetry of
(S3, L) as claimed.

Proof of Lemma 4.6. It is clear from Figure 1.4 that both link components
are unknotted; the (1, 0) filling on Nk is thus a lens space of order |6k + 1|.

Turning now to the other filling, let P denote the (4, 1) filling of the
first cusp of N . The key idea is that P is Seifert fibered over the disc with
two exceptional fibers of orders 3 and 5, and hence has infinitely many lens
space Dehn fillings; we chose the fillings defining the Nk to be these lens
space slopes. If 〈μ, λ〉 is a meridian-longitude basis (with respect to the
standard link framing) for π1(∂P ), SnapPy easily computes that

π1(P ) =
〈
a, b

∣∣ b3a5 = 1
〉

with μ = b2a2 and β := μ6λ = b3 = a−5.

In particular, the (6k + 1, k) filling, which is along the slope μβk, has fun-
damental group

〈
a, b

∣∣ b3a5 = 1, μβk = b2a2−5k = 1
〉
. Replacing the second

relator by its product on the left with the inverse of the first relator yields
the following presentation:

〈
a, b

∣∣ b3a5 = 1, a−(5k+3) = b
〉

=
〈
a
∣∣ a15k+4 = 1

〉

Thus the (4, 1) filling on Nk is a lens space whose first homology has order
|15k + 4|. We conclude the proof for the (6k + 1, k) filling by noting that
p1 = 6k + 1 and p2 = 15k + 4 are coprime, since −(5k + 3)p1 + (2k + 1)p2 =
1 for any k. �

The (6k − 1, k) case differs only in that the lens spaces have order p′1 =
6k − 1 and |p′2|, where p′2 = 15k − 4. These are coprime since −(5k − 3)p′1 +
(2k − 1)p′2 = 1. �
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