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A quadratic point on the Jacobian of the

universal genus four curve

Hang Xue

In this paper, we construct a point on the Jacobian of a non-
hyperelliptic genus four curve which is defined over a quadratic
extension of the base field. We then show that this point generates
the Mordell–Weil group of the Jacobian of the universal genus four
curve.

1. Statement of the theorem

Let K be a field such that charK �= 2. Let X be a non-hyperelliptic curve
of genus four over K. Then X is a complete intersection of Q and S in P3,
where Q is a (unique) geometrically irreducible quadric surface and S is a
geometrically irreducible cubic surface [6, Chapter IV, Example 5.5.2]. In
fact, if Q is reducible, then it is a union of two planes in P3 and this implies
that X lies in a plane. This is a contradiction since X is non-hyperelliptic.
Similarly we can show that S is geometrically irreducible.

Assume that Q is smooth. Let K be the algebraic closure of K. It is
well-known that Q is isomorphic to P1 × P1 over K. Let j : X → Q be the
embedding. Then Ξ = j∗O(1,−1) is a degree zero line bundle on X which
gives an element in Jac(X)(K). Note that Ξ is defined up to a sign, since
one can switch the two P1’s in the isomorphism Q � P1 × P1 over K. When
Q is not smooth, we define Ξ ∈ Jac(X)(K) to be zero.

Remark 1.1. Assume that Q is smooth. Over K, there are two degree
three one dimensional linear systems on X. They are cut out by the two
rulings of Q respectively. Then Ξ is the difference between the divisors in
these two linear systems.

Lemma 1.2. Let discQ be the discriminant of Q and K ′ = K(
√
discQ).

Then the point Ξ is defined over K ′.

Proof. We may assume that Q is smooth. The case Q being singular is
automatic since Ξ is trivial. If discQ ∈ K×,2, then we claim that Q admits a
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fibration Q→ C where the fibers are all P1’s and C is a genus zero curve over
K. In fact, without loss of generality, we may assume that Q is defined by
the equation x2 + ay2 + bz2 + abw2 = 0 (charK �= 2). If −ab ∈ K×,2, then
by a suitable change of variables, we see that Q is isomorphic to P1 × P1

over K. If −ab �∈ K×,2, then we let L = K(
√−ab). There is morphism

Q→ ResL/K P1, (x, y, z, w) �→ (x+
√−abw, y + a−1

√−abz),

whose image is a curve in ResL/K P1 defined by the equationXXτ + aY Y τ =
0 where τ is the nontrivial element in Gal(L/K). This curve is of genus zero
and is the desired curve C in the claim.

We then get a morphism j : X → C. Let ωC be the dualizing sheaf of C
over SpecK. Then ωX ⊗ j∗ωC is a line bundle on X defined over K and it
coincides with Ξ over K. In this case, we have K ′ = K and the point Ξ is
defined over K.

If discQ /∈ K×,2, then let K ′ = K(
√
discQ). The point Ξ is then defined

over K ′ by the argument in the previous paragraph. �

Our main theorem of this paper is the following.

Theorem 1.3. Let k be a field of characteristic not two or three and let
M4 be the moduli space of genus four curves over k. Let K be the function
field of M4. Let C4 →M4 be the universal curve and let C4 → SpecK be
its generic fiber. Then Jac(C4)(K

′) � Z and is generated by Ξ.

Remark 1.4. This theorem is related to the Franchetta’s conjecture. This
conjecture claims that Jac(C4)(K) = 0 in our case. Since Ξτ = −Ξ where τ
is the nonzero element in Gal(K ′/K), any multiple of Ξ does not descend to
a point in Jac(C4)(K). Thus we have reproved Franchetta’s conjecture for
the universal genus four curve. We point out that the method in this paper
does not involve degeneration argument and does not depend on a priori
information of the Picard group of any moduli space. This is different from
the techniques in the existing proofs of the Franchetta’s conjecture.

Remark 1.5. We are not sure if the hypothesis char k �= 3 is necessary. This
hypothesis is only used in the Step 2 of the Proof of Proposition 2.2. In the
case of char k = 3, we get the slightly weaker statement that Jac(C4)(K

′) �
Z⊕ T where T = 0 or T = Z/3Z and Ξ generates Jac(C4)(K

′)/T .

Notation. Let F be a field, then we denote by F its algebraically closure.
If X → Y is a morphism of schemes and L is a line bundle on Y , then we
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denote by L|X the pullback of L to X. If X → S and T → S are S-schemes,
then we denote by XT = X ×S T the base change of X to T .

2. Proof of Theorem 1.3

We fix a base field k of characteristic p with p = 0 or p ≥ 5. Without loss
of generality, we may assume that k is algebraically closed. By a curve of
type (m,n) in P1 × P1, or an (m,n) curve, we mean the curve defined by
a bihomogeneous equation of degree (m,n) in P1 × P1. Let P (m,n) be the
space of (m,n) curves in P1 × P1.

The moduli spaceM4 contains an open subschemeMns
4 parameterizing

smooth genus four curves whose canonical images are smooth (3, 3) curves
in P1 × P1. A (3, 3) curve is given by an equation

∑
0≤i,j≤3

aijx
i
0x

3−i
1 yj0y

3−j
1 = 0.

Then P (3, 3) is isomorphic to the projective space of the coefficients P[aij :
0 ≤ i, j ≤ 3]. The group PGL2×PGL2�〈±1〉 acts on P (3, 3), where the two
PGL2 factors act by changing coordinates on the two P1’s respectively and
〈±1〉 acts by sending aij to aji. Let P (3, 3)0 be the open subscheme of P (3, 3)
parameterizing smooth (3, 3)-curves in P1 × P1. Then Mns

4 is the quotient

of P (3, 3)0 by PGL2×PGL2�〈±1〉. Let M̃ns
4 be the quotient of P (3, 3)0 by

PGL2×PGL2. Then K ′ is the function field of M̃ns
4 .

Let Y = P1 × P1 × P1 and let L = O(d, 3, 3) be a line bundle on Y .
Assume that d ≥ 2 and is prime to p. The line bundle L is very ample
and induces an embedding Y → PN . The linear system |L| parameterizes all
hyperplane sections of Y . A hyperplane section X of Y admits a morphism
X → P1 via the projection to the first factor P1 of Y . Let U ⊂ |L| be the
open subset parameterizing smooth hyperplane sections of Y which are flat
over P1.

Lemma 2.1. There is a non-empty open subset V ⊂ U , such that if a
hyperplane section lies in V , then as a fibration over P1, it is not isotrivial
and all the fibers are irreducible.

Proof. Any hyperplane section X in U gives rise to a morphism P1 →
P (3, 3). Thus there is a dominant morphism U × P1 → P (3, 3). The fibra-
tion X → P1 is isotrivial if and only if the image of P1 → P (3, 3) lies in the
closure of an orbit of PGL2×PGL2�〈±1〉. Such hyperplane sections form
a closed subset of U . It is clear that there is a hyperplane section X which
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is not isotrivial as a fibration over P1. Let U0 be the nonempty open subset
of U parameterizing hyperplane sections X such that the fibration X → P1

is not isotrivial.
The reducible (3, 3) curves form a proper algebraic subset R of P (3, 3),

namely the union of P (a, b)× P (3− a, 3− b), where 0 ≤ a ≤ 3, 0 ≤ b ≤ 3, a
and b are not both 0 or 3. Let Z be the inverse image of R in U0 × P1. This
is a proper algebraic subset of U0 × P1 such that (X,x) ∈ Z if and only if
the fiber of X → P1 over x ∈ P1 is reducible. Let W be the image of Z in
U0. Since P1 is proper, W is a closed subset of U0. We claim that W �= U0.
Let X ′ → � = P1 be a Lefschetz pencil of (3, 3) curves in P1 × P1. The fiber
of X ′ → � are all irreducible. In fact, a singular fiber of X ′ → � has most
two components. If it had two components, then there would be at least
a(3− b) + b(3− a) ≥ 3 singular points on the fiber, which contradicts the
definition of a Lefshetz pencil. Let pd : P1 → P1 be a degree d flat morphism
which is etale over each point of the target P1 over which our Lefshcetz pencil
has a singular fiber. Then the fiber product of X ′ → � and pd : P1 → P1 is
an element in U0 but not in W .

Thus V = U0\W is a non-empty open subset of U such that ifX lies in V ,
thenX → P1 is not isotrivial and all the fibers ofX → P1 are irreducible. �

Let X→ V be the universal hyperplane section of Y over V . Let K be the
function field of V . Let η = SpecK (resp. η = SpecK) be the generic (resp.
geometric generic) point of V . Let Xη → SpecK be the geometric generic
fiber of X→ V . Let f : Xη → P1

η be the projection to the first factor of Yη.
Let NS(Xη) be the Neron–Severi group of Xη. Let NS(Xη)0 be the sub-

group of NS(Xη) consists of line bundles that are of degree zero on the
generic fiber of f . Let F be a smooth fiber of f and Ξη = O(0, 1,−1)|Xη

.

Proposition 2.2. The group NS(Xη)0 is a free abelian group of rank two
and is generated by F and Ξη.

Proposition 2.2 will be proved in the next section.
Let L be the function field of P1

η. Let XL be the generic fiber of f . Then
Ξη gives an element in Jac(XL)(L) which we denote by ΞL.

Proposition 2.3. The group Jac(XL)(L) is isomorphic to Z and is gener-
ated by ΞL.

Proof. We first note that L is the function field of a curve over an alge-
braically closed constant field. Thus the Brauer group Br(L) = 0 (Tsen’s
Theorem) and the elements in Jac(XL)(L) are represented by line bundles
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on XL [4, Section 8.1]. Therefore the map NS(Xη)0 → Jac(XL)(L) is surjec-
tive. As an element in NS(Xη), the self-intersection of Ξη is −2d �= 0. Since
the fibers of f are all irreducible, ΞL is not torsion in Jac(XL)(L). Therefore
the kernel of the map NS(Xη)0 → Jac(XL)(L) is generated by F . It then
follows that Jac(XL)(L) is isomorphic to Z and is generated by ΞL. �
Proof of Theorem 1.3. The canonical morphism P1 × V → P (3, 3) is domi-
nant. Therefore L is a (large transcendental) field extension of K ′. If follows
that Jac(XL) � Jac(C4)⊗K′ L and Jac(C4)(K

′) injects into Jac(XL)(L).
The image of Ξ in Jac(XL)(L) is ΞL. Theorem 1.3 then follows from Propo-
sition 2.3. �

3. Proof of Proposition 2.2

Let l �= p be a prime. The proof of Proposition 2.2 is divided into two steps.
Step 1 : The restriction map NS(Yη)⊗Q→ NS(Xη)⊗Q is an isomor-

phism.

Proof. The following argument is similar to [1, Exposé XIX]. The restric-
tion map H2(Yη,Ql(1))→ H2(Xη,Ql(1)) is injective by the Weak Lefschetz
Theorem. It is Gal(K/K)-equivariant. The orthogonal complement of
H2(Yη,Ql(1)) in H2(Xη,Ql(1)) is denoted by E. There is a non-degenerate
symmetric pairing on E. The image of Gal(K/K) in GL(E) lies in O(E).
Moreover, the representation of Gal(K/K) on E is absolutely irreducible [5,
§ 5.5, 5.8]. We shall call the Zariski closure of the image of Gal(K/K) in
O(E) the monodromy group.

We denote by Ealg the subspace of E generated by the cohomology classes
of algebraic cycles on Xη. This subspace is again preserved by the action of
Gal(K/K). Therefore either Ealg = E or Ealg = 0.

Lemma 3.1. If E = Ealg, then the monodromy group is finite.

Proof. Every algebraic cycle onXη is defined over some finite extension of K.
Therefore it is stabilized by an open subgroup of Gal(K/K) of finite index.
Moreover the space E is finite dimensional. We then conclude that the action
of Gal(K/K) factors through an open subgroup of finite index. Its image in
O(E) is thus finite. �

Lemma 3.2. If p = 0, then Ealg = 0 and the monodromy group is not finite.

Proof. Suppose Ealg �= 0. Then E = Ealg and the monodromy group is finite
by the previous lemma. We embed K into C and view Xη as a variety over C.
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We fix an embedding Ql → C and denote by EC the subspace of H2(Xη,C)
generated by E. Then EC ⊂ H1,1(Xη) since it is generated by the cohomology
classes of algebraic cycles. So to get the contradiction, we only have to check
that H2,0(Xη) ∩ EC �= 0.

Write j : Xη → Yη for the embedding. By the adjunction formula, ωXη
�

j∗O(d− 2, 1, 1). Then H2,0 = H0(Yη,O(d− 2, 1, 1)⊗ j∗OXη
). By definition

we have

0→ OYη
(−Xη)→ OYη

→ j∗OXη
→ 0,

where OYη
(−Xη) = O(−d,−3,−3). Therefore

0→ O(−2,−2,−2)→ O(d− 2, 1, 1)→ O(d− 2, 1, 1)⊗ j∗OXη
→ 0.

Taking long exact sequence gives

0→ H0(Yη,O(d− 2, 1, 1))→ H0(Yη,O(d− 2, 1, 1)⊗ j∗OXη
).

By the Künneth formula we get dimH0(Yη,O(d− 2, 1, 1)) = 4 dimH0(P1,
O(d− 2)) ≥ 4 since d ≥ 2. This yields dimH2,0(Xη) ≥ 4. Moreover, since
dimH2(Yη,C) = 3, we know that EC is of codimension 3 in H2(Xη,C). There-
fore H2,0(Xη) ∩ EC �= 0. This proves the lemma. �

Lemma 3.3. If p ≥ 5, then Ealg = 0.

Proof. We deduce the lemma from its characteristic zero counterpart. Let R
be a discrete valuation ring of mixed characteristic with the residue field k
and the fraction field F . The scheme Y and the line bundle L are both defined
over R. We consider the universal smooth hyperplane section XR → VR of
Y over R. We denote the universal hyperplane section over F (resp. k) by
XF → VF (resp. Xk → Vk). Let GF (resp. Gk) be the monodromy group over
F (resp. k).

Let �k ⊂ |Lk| be a Lefschetz pencil of hyperplane sections of Y over
k. Let Γk be the Galois group of the function field of �k. Then there is a
monodromy action Γk → O(Es) where s ∈ �k is a geometric point, Xs is the
fiber in the Lefschetz pencil over s and Es is the orthogonal complement of
H2(Ys,Ql(1)) in H2(Xs,Ql(1)). Let Hk be the Zariski closure of the image
of Γk in O(Es). If �k is a general Lefschetz pencil, then we have Hk = Gk,
c.f. [1, Exposé XVIII, (6.1.6) and (6.1.6.1)]. Here (and below in this proof)
“general” means that the Lefschetz pencils that do not satisfy the desired
property form a proper closed subset of the Grassmanian of lines in |Lk|.
We have the same discussion if we replace k by F .
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We consider a Lefchetz pencil � of hyperplane sections of Y over R such
that both �k and �F are general. Since p �= 2, the exceptional locus (i.e.
the points on � over which the fibers are singular) T ⊂ � is etale over R [1,
Exposé XVII, § 6]. Thus the specialization map π1(�F \TF )→ πtame

1 (�k\Tk)
is surjective [3, Exposé XIII, Corollaire 2.8], where πtame

1 stands for the tame
fundamental group [3, Exposé XIII, § 2.1.3]. The monodromy action of �k
factors through πtame

1 (�k\Tk), [1, Exposé XVIII, Corollaire 6.1.10]. It follows
that Hk = HF . Therefore Gk = GF and they are infinite by Lemma 3.2.
Then Ealg = 0 by Lemma 3.1. �

We now prove that NS(Yη)⊗Q→ NS(Xη)⊗Q is an isomorphism. By
the Weak Lefchetz Theorem, the map NS(Yη)⊗Q→ NS(Xη)⊗Q is injec-
tive. The surjectivity of this map follows from the orthogonal decomposition
H2(Xη,Ql(1)) = H2(Yη,Ql(1))⊕ E together with the fact that Ealg = 0 and
that the cohomology classes in H2(Yη,Ql(1)) are all algebraic. �

Step 2 : Proof of Proposition 2.2.

Lemma 3.4. 1) The restriction map H2(Yη,Zl(1))→ H2(Xη,Zl(1)) is
injective and the cokernel is torsion free.

2) The Neron–Severi group NS(Xη) is torsion free.

3) If char k = 0, then NS(Yη)→ NS(Xη) is an isomorphism. If char k =
p > 0, then the cokernel of NS(Yη)→ NS(Xη) is killed by some power
of p.

Proof. Since Xη is a hyperplane section of Yη, we see that

H4
Xη

(Yη,Ql/Zl)→ H4(Yη,Ql/Zl)

is surjective [2, Exposé XIV], where H4
Xη

(Yη,Ql/Zl) stands for the relative
cohomology. Then (1) follows from the Poincaré duality [2, Exposé XVIII].

It follows from [1, Exposé XI, Proposition 1.3] that H1(Xη,O) =
H0(Xη,Ω

1
Xη

) = 0. This can also be computed directly without much diffi-
culty. Thus the group NS(Xη) has no p-torsion by [1, Exposé XI, Lemma 1.9
(2)]. By [1, Exposé XI, Lemma 1.9 (1)], if l �= p, the l-torsion of NS(Xη)
is identified with the l-torsion of H2(Xη,Zl(1)). Therefore NS(Xη) has no
prime-to-p-torsion by (1).

Statement (3) follows from (1) and Step 1. �

Proof of Proposition 2.2. Let NS(Xη)00 be the sublattice of NS(Xη)0 gen-
erated by F and ΞXη

. We now prove NS(Xη)00 = NS(Xη)0. If p = 0, this



1570 Hang Xue

follows from Lemma 3.4. We assume now that p ≥ 5. Since the index of
NS(Xη)00 in NS(Xη)0 is a power of p, we only have to prove that if for some
integers a and b, the element aF + bΞη is divisible by p in NS(Xη)0, then
both a and b are divisible by p.

The self-intersection of aF + bΞη on Xη is −2b2d. If aF + bΞη is divis-
ible by p in NS(Xη)0, then p2 divides −2b2d. By assumption, p and 2d are
coprime. Therefore p divides b. This implies that aF is divisible by p in
NS(Xη)0. The intersection number of F and O(0, 1, 0)|Xη

on Xη is 3. Since
p ≥ 5, we see that F is not divisible by p in NS(Xη)0. Therefore p divides
a. Proposition 2.2 is then proved. �
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ture Notes in Mathematics, Vol. 305, Springer-Verlag, Berlin-New York
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