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Higher dimensional distortion of

random complexes

Dominic Dotterrer

Using the random complexes of Linial and Meshulam [17], we
exhibit a large family of simplicial complexes for which, whenever
affinely embedded into Euclidean space, the filling areas of simpli-
cial cycles is greatly distorted. This phenomenon can be regarded
as a higher order analogue of the metric distortion of embeddings
of random graphs.

1. Introduction

One of the natural questions to ask when we come across a new geometric
object is “How does it compare to Euclidean space?” We examine objects
from this viewpoint not only because we all live in Euclidean space, but
also because being a subset of Euclidean space is a stringent geometric con-
dition (it implies, in particular, embedability into any infinite dimensional
Banach space [7], [20], [21]). The study of how well discrete and continuous
objects “fit” into Euclidean space, Banach spaces, or geometric space forms
is extensive (the literature is vast but the author might suggest [16], or [19],
as a place to start). Finding good embeddings (or obstructions to them) for
discrete structures (graphs, groups, finite metric spaces, etc.) into L2 or L1

is an industry in its own right, particularly because of the direct applications
to theoretical computer science (some good surveys include [15] or [14]).

1.1. Metric distortion

We begin by giving an early example of the quantitative study of obstruc-
tions to “nice” embeddings.

Denote by Gn,p the Erdős–Rényi random graph on n vertices, i.e. the
probability space of graphs on n vertices such that, for a given graph, G,

P[G] = pE(1− p)(
n

2)−E

where E is the number of edges in G.
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Theorem (J. Bourgain, [4]). There is a K > 0 such that if p = K logn
n ,

then with probability tending to 1 as n → ∞, any embedding φ : G → H of
G ∈ Gn,p into a Hilbert space must have

max
x,y∈G

‖φ(x)− φ(y)‖
d(x, y)

· max
x,y∈G

d(x, y)

‖φ(x)− φ(y)‖ ≥ C
log n

log log n
.

Here, ‖ · ‖ is the Euclidean norm in of the Hilbert space H, and d(·, ·) is
the graph metric in G, i.e. d(x, y) is the length of the minimal path from x
to y in G.

The left side of the inequality is referred to as the metric distortion of
φ (we will denote it by δ0(φ)). Metric distortion of embeddings is one of
many avenues in which random constructions, such as Erdős–Rényi random
graphs, have been of great value to geometry. It is somewhat paradoxical
that random (generic) objects can be good examples of extremal geometries.

However, we have no intention of adding to this very lively discussion
of the theory of metric embeddings. Instead we will be most interested in
higher order phenomena, namely the properties of embeddings of random
simplicial complexes into Euclidean space. First, then, we must decide what
we mean by “higher dimensional metric distortion.”

1.2. Filling distortion

In this paper, we will be seeking obstructions to the existence of embeddings
of geometric objects which preserve some higher geometric structure. With
this in mind we propose the following definition.

Definition 1.1. Let X be a 2-dimensional simplicial complex and φ : X →
H a Lipschitz map from X to a Hilbert space. The filling distortion of φ is
given by:

δ1(φ) = sup
z∈B1X

FillH φ∗z
FillX z

· sup
z∈B1X

FillX z

FillH φ∗z
.

Here, B1X ⊂ C1X refers to the set of Z2 cellular boundaries of dimension
1 in X. For such a z ∈ B1X, FillX(z) = min{‖y‖ : y ∈ C2X, ∂y = z}, where
‖y‖ = supp(y) is the number of non-zero coefficients of y. Analogously, for
a Z2 Lipschitz, 1-cycle in H, FillH(z) = inf{vol2(y) : y a Lipschitz 2-chain,
and ∂y = z}.

Let us pause to make a few points about this definition.
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1) Z2 0-boundaries are just collections of points, where the number of
points in each path component is even. For a 0-boundary, z, Fill(z)
simply means the shortest cumulative length of geodesics connecting
pairs of these points. Said another way, if we associate the two points
x and y with the obvious 0-boundary, Fill(z) = d(x, y) (where d(·, ·)
means geodesic distance). With this in mind, it becomes clear that our
definition is indeed a higher dimensional analogue of metric distortion.

2) A map φ : X → H induces a Z2-linear map φ∗ : B1X → B1H. Both
B1X and B1H are naturally endowed with a flat metric [25]:

d�(z, w) := Fill(z − w) = inf{‖y‖ : ∂y = z − w}.

Considering B1X and B1H as metric spaces, we see that the filling
distortion of φ is exactly the metric distortion of φ∗, or

δ1(X
φ→ H) = δ0(B1X

φ∗→ B1H).

This is the main motivation for defining filling distortion as we did.

With a definition in place, we can then look for a candidate simplicial
complex to achieve a high level of distortion. Our main theorem addresses
this:

Theorem 1.2. For every ε > 0 and for every n ≥ C = C(ε), there exists
a 2-dimensional simplicial complex on n vertices, with complete 1-skeleton
(
(
n
2

)
edges), with the property that any affine map φ : X → H into a Hilbert

space must have

δ1(φ) ≥ n
1

4
−ε.

Although we have chosen the definition to complement the notion of
metric distortion, we would like to take a moment to contrast this estimate
with its lower dimensional analogue. A seminal result in the theory of metric
embeddings is the early theorem of Bourgain:

Theorem 1.3 (J. Bourgain, [4]). There exist constants, C and K >
0, such that for every finite metric space (X, d), there is a map φ : X →
R
K log |X| with

δ0(φ) ≤ C log |X|
where |X| is the number of points in X.
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This theorem says that every finite metric space can be embedded in
Euclidean space with only logarithmic metric distortion. Contrasting with
Theorem 1.2, we see that higher dimensional distortion, despite its analogy
to metric distortion, exhibits wholly different geometric behavior; higher
dimensional distortion can be as large as a power of the number of vertices
(or faces).

For an obvious (and not very judicious) upper bound, one can consider
the map, X → R

N , which takes each vertex of X to one of the standard
basis elements of RN . For such a map,

max
z∈B1X

FillH(φ∗z)
FillX(z)

= O(1) and max
z∈B1X

FillX(z)

FillH(φ∗z)
≤ |X(2)|.

As frivolous as this bound may seem, there is no good evidence that
there does not exist complexes all of whose affine embeddings have filling
distortion greater than |X(2)|1−ε, and in fact, this may be plausible.

In the course of proving our main theorem, we will prove an intermediate
proposition of independent interest. The proposition serves to relate the
filling distortion of a map X → H to geometric information on X, namely,
the spectral gap of the cellular Laplacian and a measure of the sparsity of X.

Proposition 1.4. Let X be a 2-dimensional simplicial complex on n ver-
tices, a complete 1-skeleton and the smallest eigenvalue of the Laplacian
acting on 1-forms given by λ1(X). Then any affine map φ : X → H, suit-
ably scaled so that

FillH(φτ) ≥ FillX(τ)

for every 1 cycle, τ , of length 3, must have

∑
f∈X(2)

(
Area(φf)

)2 ≥ λ1(X)

3(n− 2)

∑
τ

(
FillXτ

)2
.

where the first sum runs over 2-dimensional faces in X and the second sum
runs over all 1-cycles of length 3 in X.

Here, λ1(X) refers to the spectral gap of the (up-down) Laplacian acting
on cellular 1-cochains, Δ = d∗d : C1(X;R) → C1(X;R) (we will elaborate
on this further in the next section).
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With this inequality in mind, we will attempt to maximize the quantity,

λ1(X)

|X(2)|
∑
τ

(
FillXτ

)2
.

To get a better sense of what this quantity measures, we can consider
the analogy in graphs:

λ0(G)

|E|
∑

x,y∈G
dG(x, y).

This quantity is asymptotically optimized on families of 3-regular Ramanu-
jan graphs [18]. Schematically, λ0(G) quantitatively measures the connec-
tivity of G, while

∑
x,y dG(x, y) measures the edge sparsity of G.

Just as Bourgain did with random graphs, we rely on random simplicial
complexes to find examples of complexes with lower bounds on this quantity.

Definition (Linial and Meshulam, [17]). Let Yn,p denote the Linial–
Meshulam random complex, the probability space of 2-dimensional simplicial

complexes on n vertices, with complete 1-skeleton (i.e. Δ
(1)
n ⊂ Y ⊂ Δ

(2)
n ),

such that for a given such Y ,

P[Y ] = pF (1− p)(
n

3)−F where F is the number of faces in Y.

When, p = K log n for a sufficiently large K, the random complexes of
Linial and Meshulam end up giving the estimate in Theorem 1.2 with high
probability as n tends to infinity.

1.3. the �1-volumes of Newman and Rabinovich

After the first version of this article was written, the author became aware of
the work of Newman and Rabinovich in [22]. In brief, this work constitutes
an extension of the more classical considerations of metric embeddings to
the realm of finite volume spaces, which include simplicial complexes with
complete lower skeleta as an important example. In their article, Newman
and Rabinovich prove:

Theorem (Newman and Rabinovich, [22]). For every large n, there
exists a two dimensional complex, X, with n vertices and a complete 1-
skeleton so that every affine embedding φ : X → H from X to a Hilbert space
has,

δ1(φ) ≥ cn
1

5 .
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In order to achieve this theorem, they also use random complexes and a
different version of Proposition 1.4.

Proposition ([22]). For a map, φ, which satisfies the hypotheses of Propo-
sition 1.4,

δ1(φ) ≥ c(X)
∑
τ

FillX(τ)

where c(X) is defined in the following way. Consider the cochain complex
of Z2-vector spaces:

0 → C−1X d−→ C0X
d−→ C1X

d−→ C2X → 0

each endowed with the Hamming (L1) norm, i.e. ‖y‖ is the number of non-
zero coefficients of y. For each α ∈ C1X = C1Δn (since the 1-skeleton is
complete), we have both ‖dα‖Δ and ‖dα‖X (clearly, ‖dα‖X ≤ ‖dα‖Δ) and
c(X) is defined as:

c(X) =
1

|X(2)| min
α∈C1X

‖dα‖X
‖dα‖Δ .

With this proposition in mind, we emphasize that our approach, in par-
ticular Proposition 1.4, is simultaneously complementary and distinct in
that it provides an explicit connection to higher spectral information rather
than the sparsest cut. These two notions have enjoyed an obverse relation-
ship in the world of graphs for sometime [18]. Their relationship in higher
dimensions is coming to be understood [23]. In general, however, spectral
gap information is sometimes strictly weaker than sparsest cut information
(see Theorem 1.2 in [23]). It is therefore a bit surprising that we obtain a
slightly better bound via spectral methods rather than through sparsest cut
techniques.

It is worth noting that the definition of Newman-Rabinovich of finite
volume spaces only coincides with with our definition in the case of a simpli-
cial complex with complete lower skeleta. Each definition is a distinct gen-
eralization, ours generalizing to simplicial complexes in general and theirs
generalizing to a general class of weighted k-hypergraphs.

1.4. Other results on maps to Euclidean space

There have already been some recent results on maps from random simpli-
cial complexes to Euclidean space of a topological, rather than explicitly
geometric, nature. We have two in particular in mind. The first is Gromov’s
point selection theorem for random complexes:
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Theorem (Gromov, [11] (combined with the main observation in
[5])). There exists a constant, 0 < μ < 1, such that if 100 logn

n < p ≤ 1, then
with probability tending to 1 as n tends to infinity, Y ∈ Yn,p has the property
that for any continuous map φ : Y → R

2, there exists a point q ∈ R
2 which

lies in the image of at least μ|Y (2)| of the 2-dimensional faces of Y .

This theorem simply says that a Linial–Meshulam random complex, once
it has enough faces, will be forced to pile up, or “overlap” ([10]) whenever
mapped into R

2, in the sense that a fixed fraction of all of the faces land on
a common point q.

Another recent result addresses the question of topological embeddabil-
ity:

Theorem (Wagner, [24]). If p > 100
n , then with probability tending to 1

as n tends to infinity, Y ∈ Yn,p does not topologically embed in R
4

This is the higher dimensional analogue of the fact that Erdős–Rényi
random graphs are overwhelmingly non-planar (for a large enough p).

The reader should be informed that we did not state either of these
theorems in nearly their highest generality, but instead offered them in this
form to lend them better to the theme of this article.

1.5. Overview

In the next section we will develop our notation and be more explicit with
our definitions. Once our notation is in place we will prove Proposition 1.4
in Section 3. We will follow up in section 4 by estimating the desired spectral
and isoperimetric quantities of Linial–Meshulam random complexes, thereby
obtaining Theorem 1.2. We reserve a section to describe how each of these
results generalize to higher dimensions. The final section will address a series
of questions and remarks.

Acknowledgements. First and foremost, I must acknowledge Larry Guth,
for his reassuring interest in this project. Over a casual lunch, Larry sug-
gested to me some version of Definition 1.1 and I am indebted for that sug-
gestion. In addition, I am grateful to Alfredo Hubard for those long walks
to and from the Dinky in which we discussed several incarnations of this
problem. Finally, I must thank Uli Wagner for drawing my attention to the
work of Newman and Rabinovich mentioned above.
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2. Notation and concepts

Throughout, we will concern ourselves with a simplicial complex, X. We will
denote the set of k-dimensional faces of X as X(k). This induces two chain
complexes of interest:

0 → C−1
R

X
d−→ C0

R
X

d−→ C1
R
X

d−→ C2
R
X → 0

where Ck
R
X = {X(k) → R} and for β ∈ Ck−1

R
X, dβ(y) =

∑
x∈∂y β(x).

For real cochains, the norm is understood to be ‖β‖ =
√∑

x∈X(k) |β(x)|2.

Definition 2.1. For a simplicial complex, X, we define the (up-down) k-th
spectral gap to be

λk(X) = inf
β∈Ck

R
X

‖dβ‖2
infα∈Ck−1

R
X ‖β + dα‖2 = inf

β, ∂β=0

‖dβ‖2
‖β‖2

where both infimums run over non-zero chains.

(see [13], [9], [23] for more on the combinatorial Hodge decomposition,
and see [5] for more on coboundary expansion).

We will also consider the chain complex with Z2-coefficients:

0 ← C−1X
∂←− C0X

∂←− C1X
∂←− C2X

∂←− 0.

This chain complex will be endowed with the L1 (or Hamming) norm,
‖y‖ = |suppy|.

We will denote the space of k-cycles by ZkX = ker ∂k ⊂ CkX. The space
of cycles has a natural metric, the flat metric [25]:

d�(z, w) := FillX(z − w) = inf{‖y‖ : ∂y = z − w}.

3. Dilation estimates for embeddings

The section will be devoted to proving our main proposition:

Proposition. Let Δ
(1)
n ⊂ X ⊂ Δ

(2)
n be a 2-dimensional simplicial complex

with complete 1-skeleton. Let φ : X → H be an affine embedding of X into
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an infinite dimensional Hilbert space, suitably scaled so that

FillH(ψτ) ≥ FillX(τ)

for every triangle, τ , then,

∑
f∈X(2)

(
Area(φf)

)2 ≥ λ1(X)

3(n− 2)

∑
τ

(
FillXτ

)2
.

where the first sum runs over 2-dimensional faces in X and the second sum
runs over all triangles in X.

Proof. We can assume that the image of the 0-skeleton, X(0) forms a linearly
independent set in H (since a small perturbation of the vertices does not
change the areas of triangles very much).

Choose orthonormal coordinates, x1, . . . , xn for spanX(0) ∼= R
n. We will

let φ induce a function ψ : X(1) → R
(n2) defined by

ψ(i<j)(e) =
1

2

∫
φ(e)

xidxj − xjdxi +

n∑
m=0

∫
φ(e)

y(i<j)
m dxm for each e ∈ X(1)

(with the y
(i<j)
m as fixed constants to be chosen later).

Now we have dψ : X(2) → R
(n2), and by the Stokes theorem applied to a

given face f ,

(dψ(f))(i<j) =

∫
φf

dxi ∧ dxj .

Now it is easily seen that |dψ(f)|2 = (
Area(φf)

)2
. This is because the area

form of φf can we written as

ωφf =
∑
i<j

a(i<j)dxi ∧ dxj

where
∑
i<j

a2(i<j) = 1 and

∫
φf

dxi ∧ dxj = a(i<j)Area(φf).

Thus,

‖dψ‖2 =
∑

f∈X(2)

(
Area(φf)

)2
.

We will need to prove a small claim:
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Claim. Consider the function, ξ : X(1) → R
(n2) given by

(ξ(e))(i<j) =
1

2

∫
φ(e)

xidxj − yjdxi.

Then for any α : X(0) → R
(n2), we can choose y

(i<j)
m so that ψ = ξ + dα.

Proof. If e = [v, w] ∈ X(1),

∑
m

∫
φ(e)

y(i<j)
m dxm = 〈y(i<j), φ(v)〉 − 〈y(i<j), φ(w)〉

Since φ(X(0)) is linearly independent, for every function f : X(0) → R,
there exists a corresponding y ∈ R

n such that

f(x) ≡ 〈y, φ(x)〉 for every x ∈ X(0).

Therefore, for every function, f : X(0) → R
(n2) we can choose

(
n
2

)
such

y ∈ R
n (denoted y(i<j)) such that

(f(1<2)(x), . . . , f(n−1<n)(x))

≡ (〈y(1<2), φ(x)〉, . . . , 〈y(n−1<n), φ(x)〉 for every x ∈ X(0).
�

Since we can choose (y1, . . . , yn) so that ∂ψ = 0, we have the inequality:

∑
f∈X(2)

(
Area(φf)

)2
= ‖dψ‖2 ≥ λ1(X)‖ψ‖2.

Now we have only to prove that

‖ψ‖2 ≥ 1

3(n− 2)

∑
τ

(
FillX(τ)

)2
.

We observe that for a triangle τ formed by the edges e1, e2, and e3, we
have (by the Stokes theorem again),[

ψ(e1) + ψ(e2) + ψ(e3)
]
(i<j)

=

∫
φτ

dxi ∧ dxj

So that,

∑
(i<j)

[
ψ(e1) + ψ(e2) + ψ(e3)

]2
(i<j)

= FillH(φτ) ≥ FillX(τ)
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and by Cauchy-Schwartz:

|ψ(e1)|2 + |ψ(e2)|2 + |ψ(e3)|2 ≥ 1

3

(|ψ(e1)|+ |ψ(e2)|+ |ψ(e3)|
)2
.

Summing over all triangles, each edge is contained in n− 2 triangles, we
have

(n− 2)‖ψ‖2 ≥ 1

3

∑
τ

(
FillX(τ)

)2
.

�

In light of this proposition, it should be clear to the reader that we seek
to find 2-dimensional complexes which maximize the quantity,

λ1(X)

|X(2)|
∑
τ

(
FillX(τ)

)2
.

As we increase the number of 2-faces, λ1(X) will go up, but
∑

(FillX(τ))2

|X(2)| will
go down.

It is not clear to the author how to build exact optimizers for this quan-
tity, so in the next section we will resort to using random complexes a la
Linial and Meshulam [17].

4. Filling estimates for random complexes

Since we have given ourselves the liberty to take estimates up to a con-
stant, we will exhibit a somewhat cavalier indifference to preserving sharp
quantities.

We will rely on the geometry of random complexes. We recall the defi-
nition:

Definition (Linial and Meshulam, [17]). Let Yn,p denote the Linial–
Meshulam random complex, the probability space of 2-dimensional simplicial

complexes on n vertices, with complete 1-skeleton (i.e. Δ
(1)
n ⊂ Y ⊂ Δ

(2)
n ,

where Δn denotes the complete simplicial complex, the (n− 1)-dimensional
simplex), such that

P[Y ∈ Yn,p] = pF (1− p)(
n

3)−F where F is the number of faces in Y.

Proposition 4.1. Let Δ
(1)
n ⊂ Y ⊂ Δ

(2)
n be a p-random complex. There is

a constant, C, so that if p ≥ C logn
n , then, with probability tending to 1 as
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n → ∞,

λ1(Y ) ≥ 1

3
pn.

The proof of this proposition is a simple consequence of Theorem 2
in [12]:

Theorem (Gundert and Wagner, [12]). Let λ̂1(X) denote the spectral
gap of normalized (up-down) Laplacian on 1-forms on a simplicial complex,
X. For all c > 0, there exists a constant K such that if p ≥ K logn

n and
Y = Yn,p is a random 2-complex (with complete 1-skeleton) then

λ̂1(Y ) ≥ 1− K√
pn

with probability greater than 1− n−c.

Here the normalized Laplacian can be obtained from the Hodge (up-
down) Laplacian, ∂d, by normalizing the rows: For each edge, e, let deg(e)
denote the number of 2-faces of Y that contain e. If we use the indicator
functions 1e as the basis for C1(Y ;R) and write the normalized up-down
Laplacian, L, as a matrix with respect to this basis, then we have L = D∂d,
where D is a diagonal matrix whose diagonal entries corresponding to the
basis element 1e is

1
deg(e) (see [12] or references therein for more information).

As a result, we have the following inequality:

λ1(Y ) ≥ λ̂1(Y ) · min
e∈Y (1)

deg(e).

proof of Proposition 4.1. In order to prove Proposition 4.1, we simply need
to prove the following claim:

Claim. If p ≥ C logn
n as above, then with probability tending to 1 as n tends

to infinity, the degree of each edge is greater than p(n−2)
2 .

Proof. Our argument is a standard one.
The expected degree of each edge is p(n− 2). By a form of Chernoff’s

inequality [6], each edge, e, has

P[deg(e) < (1− ε)p(n− 2)] ≤ e−
ε2p(n−2)

2 .
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Taking ε = 1
2 , and taking a union bound:

∑
e

P

[
deg(e) <

p(n− 2)

2

]
≤ e

p(n−2)

8

≤
(
n

2

)
· n−K

8 → 0 by taking K > 16.

�

Now applying this to the theorem of Gundert and Wagner we have

λ1(Y ) ≥ p(n− 2)

2
−K

√
pn ≥ pn

3
for large n.

�

Now we are left to find an lower bound on
∑

τ

(
FillY (τ)

)2
.

Proposition 4.2. There is a C > 0 such that for n > K = K(ε) and Δ
(1)
n ⊂

Y ⊂ Δ
(2)
n a p-random subcomplex with p = nε−1, then, with probability tend-

ing to 1 as n → ∞, ∑
τ

(
FillY (τ)

)2 ≥ Cn
5

2
−ε

where the sum runs over all cycles, τ , of length 3.

Proof. First, shall examine a single cycle, τ , of length 3 and bound the
probability that Fill(τ) < nα. To achieve this, we appeal to an estimate
made in [2] (later revised to [1]), but attributed as an observation of Eran
Nevo, that a k-cycle z ∈ ZkΔn which does not contain any smaller cycles as a
subset and which is supported on f0(z) vertices and fd(z) faces of dimension
d must have

f0 ≤ fd + (d+ 2)(d− 1)

d
.

It is important to note that in dimension 2, this inequality is simply
saying that a minimal cycle (i.e. one that contains no other cycles as a strict
subset) must have Euler characteristic less than 2. In the final section, we
will make remarks regarding analogous results in higher dimensions where
the above formula will be of use.

Now, taking a minimal filling of τ (i.e. a chain, y, such that ∂y = τ and
y contains no other fillings of τ as a strict subset) we can obtain a minimal
cycle in Δn by including y and the triangle in Δn which bounds τ . Then,
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using the inequality above, the number of fillings of τ of size m in Δn can
be bounded by,(

n

f0 − d− 1

)(( f0
d+1

)
m

)
≤ nf0−d−1

(efd+1
0

m

)m

≤ n
m+(d+2)(d−1)−d2−d

d (Cmd)m

= n−
2

d (Cn
1

dmd)m

Therefore, setting d = 2, we have,

P[∃y, ∂y = τ, ‖y‖ < nα] ≤ n−1
nα∑

m≥3
(Cpn

1

2m2)m

≤ n−1
∑
m≥3

(en2α+ε− 1

2 )m

So that,

P[∃y, ∂y = τ, ‖y‖ < nα] ≤ Cn3(2α+ε− 1

2
)−1n

(nα−2)(2α+ε− 1

2
) − 1

n2α+ε− 1

2 − 1

Therefore, if we set 2α+ ε− 1
2 < 0, then we have

P[FillY (τ) < nα] → 0

and

E[FillY τ ] ≥ cn
1−2ε

4 for large enough n.

For the next step of the proof, we will bound, from above and below,
the quantity

E

[∑
τ

min{FillY (τ), n
1−2ε

4 }
]
.

On the one hand,

E

[∑
τ

min{FillY (τ), n
1−2ε

4 }
]
≥

(
n

3

)
n

1−2ε

4 P[FillY (τ) ≥ n
1−2ε

4 ]

≥ 99

100

(
n

3

)
n

1−2ε

4 .

On the other hand, if Y is chosen according to Yn,p, and denote by H the

event that at least at least 1
100

(
n
3

)
cycles, τ , of length 3 have FillY (τ) ≥ n

1−2ε
4

99 .
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Notice that H implies the proposition since, if H, then

∑
τ

(
FillY (τ)

)2 ≥ 1

100

(
n

3

)
·
(
n

1−2ε

4

99

)2

Now, if H holds, then certainly

E

[∑
τ

min{FillY (τ), n
1−2ε

4 }
]
≥

(
n

3

)
n

1−2ε

4 .

On the other hand, if H does not hold, then there are less than 1
100

(
n
3

)
of cycles of length 3 with whose filling area is larger than n

1−2ε
4

99 so that

E

[∑
τ

min{FillY (τ), n
1−2ε

4 }
]
≤

[
99

100

(
n

3

)
n

1−2ε

4

99
+

1

100

(
n

3

)
n

1−2ε

4

]

Combining these, we have,

EY

[∑
τ

min{FillX(τ), n
1−2ε

4 }
]

≤
(
n

3

)
n

1−2ε

4 P[H] +

[
99

100

(
n

3

)
n

1−2ε

4

99
+

1

100

(
n

3

)
n

1−2ε

4

]
(1− P[H])

Putting the upper and lower bounds together,

(
n

3

)
n

1−2ε

4 ≤
(
n

3

)
n

1−2ε

4 P[H] +

[
99

100

(
n

3

)
n

1−2ε

4

99
+

1

100

(
n

3

)
n

1−2ε

4

]
(1− P[H])

which yields,

P[H] +
1

50
(1− P[H]) ≥ 99

100
⇒ P[H] ≥ 97

98
.

�

Corollary 4.3. Let Δ
(1)
n ⊂ Y ⊂ Δ

(2)
n be a p-random complex with p = nε−1.

Then with probability tending to 1 as n → ∞, every affine embedding φ :
X → H of X into an infinite dimensional Hilbert space, H must have,

max
z∈B1Y

FillH(φ∗z)
FillY (z)

·max
z

FillY (z)

FillH(φ∗z)
≥ Cn

1−2ε

4
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Proof. Taking an affine map, φ : Y → H and scaling it so that FillH(φ∗τ) ≥
FillY (τ) (again, the filling distortion is continuous with respect to small
perturbations, so we may always perturb φ slightly and then scale it as
prescribed). Then there is a 2-face of X such that:

(
Area(φf)

)2 ≥ λ1(Y )

3(n− 2)|Y (2)|
∑
τ

(
FillY τ

)2 ≥ c
1

n3

∑
τ

(
FillY τ

)2 ≥ cn
1−2ε

2

Therefore,

δ1(φ) ≥ cn
1−2ε

4 .
�

5. Filling distortion in higher dimensions

We have chosen to state all of the theorems and propositions in this article
in terms of 2-dimensional complexes. We felt that writing all arguments in
their generality was cumbersome and of little use to the reader. However,
we would be doing the reader a disservice if we mentioned nothing about
how the theorems and propositions generalize to higher dimensions. To this
end, we have devoted the current section to a brief sketch of the propositions
and proofs of the preceding sections along with annotations describing what
minor changes must be made in higher dimensions.

Ultimately, Theorem 1.2 generalizes to:

Theorem. For every large n and every ε, there exists a (k + 1)-dimensional
simplicial complex on n vertices and complete 1-skeleton with the property
that every affine map φ : X → H has,

δ1(φ) ≥ Cn
k−(k+1)ε

(k+1)2

The three tools needed for the proof are,

1) a generalization of Proposition 1.4,

2) an estimate on the spectral gap of the Laplacian acting on the k-forms
of a random complex

3) and an estimate on the average filling volume of a k-cycle of volume
k + 2 in a random complex.

To obtain the objectives (2) and (3) we need only observe that, first,
the theorem of Gundart and Wagner [12] is stated for all dimensions, and
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second, that to get started in the proof of Proposition 4.2 we needed only
that every d-dimensional cycle, z, which does not include another d-cycle as
a proper subset must have:

f0(z) ≤ fd(z) + (d+ 2)(d− 1)

d
.

Objective 1 requires a bit more careful consideration. However, the most
important aspect of the proof of Proposition 1.4 is the construction of a real
cochain, ψ, with ∂ψ = 0.

In general, we will use the (vector valued) cochain, ψ : X(k) → R
( n

k+1)

defined by

ψ(i0<···<ik)(σ) =
1

2

∫
φσ

∑
j

(−1)jxijdxi0 ∧ · · · ∧ ˆdxij ∧ · · · ∧ dxik

+

∫
φσ

∑
(j1<···<jk)

y
(i0<···<ik)
(j1<···<jk)

dxj1 ∧ · · · ∧ dxjk .

(in light of this cumbersome formula, it may occur to the reader now
why we decided to omit the general case). This cochain has the benefit of

1) dψ : X(k+1) → R
( n

k+1) is given by

dψ(i0<···<ik)(σ) =

∫
φ(σ)

dxi0 ∧ · · · ∧ dxik .

2) The constants y
(i0<···<ik)
(j1<···<jk)

can be chosen, via a general position argu-
ment just as in the proof of Proposition 1.4 to ensure that ∂ψ = 0.

6. Remarks and questions

In this section, we give a few remarks and a few open questions.

6.1. The volume-respecting embeddings of U. Feige

There is another noteworthy generalization of the concept of metric distor-
tion. Feige [8] defined the notion of volume-respecting embeddings; let us
define it here.

Definition (Feige, [8]). If (S, d) is a finite metric space, the volume of S
is defined as the supremum of the volume of the convex hull of the image of
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S under a 1-Lipschitz map from S to R
|S|−1. More formally,

Vol(S) := sup
φ, 1−Lipschitz

vol|S|−1
[
convex(φ(s1), . . . , φ(s|S|))

]
.

Now, let (X, d) be a finite metric space endowed with an additional
hypergraph structure, χ ⊂ 2X (we can take, for example, all subsets of X
of size less than M). Then for a 1-Lipschitz map Φ : X → H the volume
distortion of Φ is defined as

η(Φ) := max
S∈χ

[
Vol(S)

vol|S|−1convex(Φ(S))

] 1

|S|−1

where Vol(S) is the volume of S as a metric space in its own right.

Example. Let (X, d) be a finite metric space and let χ be the hypergraph
structure consisting of all pairs of points in X, then for any map φ : X → H,

η(φ) = δ0(φ).

So Feige’s volume distortion is indeed a generalization of metric distortion.

Volume distortion, however, is distinct from filling distortion as we have
defined it. A simplicial complex simply regarded as a metric space ignores the
higher skeleta. For example, a simplicial complex on n vertices with complete
1-skeleton (and any hypergraph structure desired) can be embedded by some
φ into R

n with η(φ) = 1 by simply sending the vertices to an orthonormal
basis. This shows, in particular, the dependence of volume distortion on the
underlying metric.

6.2. Filling distortion and the fundamental group

In the last few years there has been some innovative work of the topology
of Linial–Meshulam complexes. The work of Babson, Hoffman and Kahle is
a prime example.

Theorem (Babson, Hoffman, Kahle, [3]). For any δ > 0, if p > n−
1

2
+δ,

then with probability tending to 1 as n → ∞, Y ∈ Yn,p has π1(Y ) = 0, and

if p < n−
1

2
−δ, then asymptotically almost surely, Y ∈ Yn,p has π1(Y ) �= 0.

Now if we reexamine our main theorem, we notice that our estimates on
filling distortion break down when ε = 1

2 . The reason for this is explained
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in [3]: The fundamental group of Y vanishes at the same threshold that
every triangle, τ , is the boundary of a disk with a bounded number of faces.
Therefore, our lower bound on

∑
τ (FillY τ)

2 must degenerate at the threshold

p = n−
1

2 and we only obtain δ1(φ) ≥ c for some small constant (which is
moot since δ1(φ) is always greater than 1). The degeneration of the lower
bound on filling distortion is not simply a failure of our method because,

inf
φ

δ1(φ) ≤ max
τ

FillXτ

(just by embedding the vertices of the complex as the standard basis of Rn).

6.3. Manifolds

If one emulates the proof (e.g. [19], Chapter 15) that a k-regular graph, G,
(with its shortest distance metric) requires C(k)

√
λ0 log |G|metric distortion

to embed into Euclidean space, we immediately see that the proof extends
to hyperbolic manifolds:

Proposition. Let (Mn, g) be a hyperbolic manifold whose Laplacian (on
functions) has spectral gap λ0(M, g). Then any map φ : M → H has metric
distortion,

δ0(φ) ≥ C
√
λ0 log voln(M, g).

It seems natural then, to ask if there is an estimate,

δk(φ) ≥ F (λk(M, g), voln(M, g)),

for every map, φ, from a hyperbolic manifold into H.

6.4. Extremal complexes

Given the estimate in Proposition 1.4, it seems a natural question to ask:
What simplicial complexes (on n vertices and complete 1-skeleton) maximize
the quantity:

λ1(X)

|X(2)|
∑
τ

(
FillX(τ)

)2
?

The author has no idea how to systematically optimize this quantity,
but the optimizers may be very interesting.
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