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On the Lp-geometry of autonomous
Hamiltonian diffeomorphisms of surfaces

Michael Brandenbursky and Egor Shelukhin

We prove a number of results on the interrelation between the Lp-
metric on the group of Hamiltonian diffeomorphisms of surfaces
and the subset A of autonomous Hamiltonian diffeomorphisms.
More precisely, we show that there are Hamiltonian diffeomor-
phisms of all surfaces of genus g ≥ 2 or g = 0 lying arbitrarily
Lp-far from the subset A, answering a variant of a question of
Polterovich for the Lp-metric.

1. Introduction and main results

In contrast to the case of finite-dimensional Lie groups, the subset of elements
A of the group G of Hamiltonian diffeomorphisms lying on a one-parameter
subgroup, called autonomous Hamiltonian diffeomorphisms, is very thin from
several points of view. For example it is folklore in symplectic geometry that,
analogously to the case of general diffeomorphism groups, A does not contain
a neighborhood of the identity transformation in, say, the C∞-topology.

L. Polterovich has proposed to study the inclusion A ⊂ G from a metric
point of view. We study the geometry of this inclusion when G is endowed
with the Lp-metric, given by taking Lp-norms of Hamiltonian vector fields
with respect to an auxiliary Riemannian metric and volume form. The main
result of this paper, applicable for surfaces of genus g = 0 and exponent
p > 2, or g ≥ 2 and exponent p ≥ 1, is that with respect to the Lp-metric, A
is not coarsely dense: for every given number C > 0, there exists an element
φ ∈ G whose Lp-distance to any element of A is greater than C. Analogous
results for the Hofer metric [15, 18] on G, given by taking the C0-norms
of normalized Hamiltonian functions, have recently been obtained for e.g.
surfaces of genus g ≥ 2 by Polterovich and the second named author [22].
Note that for exponents 1 ≤ p ≤ 2, neither result follows from the other.

2010 Mathematics Subject Classification: Primary 53; Secondary 57.
Key words and phrases: groups of Hamiltonian diffeomorphisms, braid groups,

mapping class groups, quasi-morphisms, Lp-metrics.

1275



1276 M. Brandenbursky and E. Shelukhin

We further refine our main result showing that for every positive integer
k, the same conclusion holds when A is replaced by the subset Ak ⊂ G,
the image of A× · · · × A (k times) in G under the multiplication map. We
remark that {Ak}k∈N form an increasing sequence of subsets of G whose
union is the whole group G, i.e. A is a generating subset for G.

Our methods involve quasimorphisms on the group of Hamiltonian dif-
feomorphisms G of a surface that were introduced and first studied in [14]
(and were further investigated in numerous other publications [8–10, 21, 23]).
The class of quasimorphisms on G that we use is produced by an averaging
procedure from quasimorphisms on the fundamental groups of spaces upon
which G acts. The spaces are configuration spaces Xn(Σg) of distinct ordered
n-tuples of points on the orientable surface Σg.

These quasimorphisms were shown to be Lipschitz in the Lp-metric in
many cases [8, 10] and are conjectured to have this property for all n and
all surfaces Σg, the higher genus case seeming more technically involved.
In particular in the case of T2 no such quasimorphism has been shown to
be Lipschitz in the Lp-metric which shall be the subject of a subsequent
work. Sometimes the above quasimorphisms have the additional property
of vanishing on the subset A of autonomous Hamiltonian diffeomorphisms.
Whenever both properties are satisfied, our result holds.

We therefore continue to show that for each surface Σg other than T2

there exists an integer n > 0 and an infinite-dimensional subspace of homoge-
neous quasimorphisms on G transgressed from quasimorphisms on Xn(Σg)
with the required two properties. The vanishing property follows from an
analysis of the braids traced by the flow of an autonomous Morse Hamil-
tonian in the genus g = 0 case, and by mapping class group considerations
in the higher genus case, the passage from Morse Hamiltonians to general
Hamiltonians being enabled by the Lipschitz property.

Whenever the vanishing property holds, we can show that the word met-
ric with respect to the generating set A has infinite diameter, which we hence
prove along the way for all genera other that g = 1, thus reproving results
from [5, 9, 14] in detail.

Acknowledgements

We thank Leonid Polterovich for valuable conversations and for his comments
on the manuscript. The authors would like to thank the anonymous referee
for careful reading of the manuscript and his/her remarks.



Lp-geometry of autonomous diffeomorphisms 1277

Part of this work has been done during the first named author’s stay in
Mathematisches Forschungsinstitut Oberwolfach and in Max Planck Insti-
tute for Mathematics in Bonn. He expresses his gratitude to both institutes.
M.B. was supported by the Oberwolfach Leibniz fellowship and Max Planck
Institute research grant.

Part of this work has been done during the second named author’s stay in
the Einstein Institute of Mathematics at the Hebrew University of Jerusalem.
He expresses his gratitude to the institute and to Jake Solomon for his hos-
pitality. E.S. was partially supported by ERC Starting Grant 337560.

Both authors were partially supported by the CRM-ISM fellowship. We
thank CRM-ISM Montreal for the support and for a great research atmo-
sphere.

1.A. Preliminaries

1.A.1. Autonomous Hamiltonian diffeomorphisms. Let Σg,k be a
compact connected orientable surface of genus g with k boundary com-
ponents equipped with a symplectic form ω, and as usual we denote by
G = Ham(Σg,k) the group of Hamiltonian diffeomorphisms (cf. [2, 20]) of
Σg,k. Let H : Σg,k → R be a smooth function which vanishes in some neigh-
borhood of ∂Σg,k. It defines a time-independent vector field XH which is
uniquely determined by the equation dH(v) = ω(v,XH) for each vector field
v. Let h be the time-one map of the flow {ht} generated by XH . The dif-
feomorphism h preserves ω and every diffeomorphism arising in this way is
called autonomous. Since XH has the property of being tangent to the level
sets of H, each diffeomorphism ht preserves the level sets of H.

We define the autonomous norm on the group G by

‖f‖Aut := min {m ∈ N | f = h1 · · ·hm where each hi is autonomous} .

The associated metric is defined by

dAut(f, h) := ‖fh−1‖Aut.

Since the set of autonomous diffeomorphisms is invariant under conjugation
the autonomous metric is bi-invariant. For the same reason the subgroup
generated by the autonomous diffeomorphisms is normal (and non-empty).
Hence by a fundamental theorem of Banyaga [2] stating that G is simple
for k = 0 and the kernel of the Calabi homomorphism is simple for k �= 0,
it is easy to see that the set of autonomous diffeomorphisms generates G.
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Therefore the autonomous norm of any element f ∈ G is well-defined. We
note that since the autonomous norm is subadditive, its stabilization

‖f‖st := lim
k→∞

1

k
‖fk‖Aut

is well-defined.

1.A.2. The Lp-metric. LetM denote a compact connected oriented Rie-
mannian manifold (possibly with boundary) with a volume form μ. We
denote by G = Diffc,0(M, μ) the identity component of the group of dif-
feomorphisms of M preserving μ, that are identity near the boundary if
∂M �= 0. Alternatively, in the case of non-empty boundary, one can consider
the open manifold M \ ∂M and take compactly supported diffeomorphisms
preserving μ.

Given a path {ft} in G between f0 and f1, we define its Lp-length by

lp({ft}) =
∫ 1

0
dt

(∫
M

|Xt|pμ
) 1

p

,

where Xt =
d
dt′ |t′=tft′ ◦ f−1

t is the time-dependent vector field generating the
path {ft}, and |Xt| its length with respect to the Riemannian structure on
M. As is easily seen by a displacement argument, this length functional
determines a non-degenerate metric on G by the formula

dp(f0, f1) = inf lp({ft}),

where the infimum runs over all paths {ft} in G between f0 and f1. It is
immediate that this metric is right-invariant. We denote the corresponding
norm on the group by

‖f‖p = dp(Id, f).

Clearly dp(f0, f1) = ‖f1f−1
0 ‖p. Similarly one has the Lp-norm on the univer-

sal cover G̃ of G, defined for f̃ ∈ G̃ as

‖f̃‖p = inf lp({ft}),

where the infimum is taken over all paths {ft} in the class of f̃ . For more
information see [1].

We note that up to bi-Lipschitz equivalence of metrics (d and d′ are
equivalent if 1

C d ≤ d′ ≤ Cd for a certain constant C > 0) the Lp-metrics on
G and on G̃ are independent of the choice of Riemannian structure and of
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the volume form μ compatible with the orientation onM . In particular ques-
tions on the large-scale geometry of the Lp-metric enjoy the same invariance
property.

1.A.3. Quasimorphisms. The notion of a quasimorphism will play a key
role in our arguments. Quasimorphisms are helpful tools for the study of non-
abelian groups, especially those that admit few or no homomorphisms to the
reals. A quasimorphism φ : Γ → R on a group Γ is a real-valued function
that satisfies for any two γ1, γ2 ∈ Γ the relation

φ(γ1γ2) = φ(γ1) + φ(γ2) + b(γ1, γ2),

for a function b : Γ× Γ → R that is uniformly bounded:

Dφ := sup
Γ×Γ

|b| < ∞.

A quasimorphism φ : Γ → R is called homogeneous if φ(fk) = kφ(f) for
all f ∈ Γ and k ∈ Z. To any quasimorphism φ : Γ → R there corresponds
a unique homogeneous quasimorphism φ that differs from φ by a bounded
function:

sup
Γ

|φ− φ| < ∞.

It is called the homogenization of φ and satisfies

φ(f) = lim
k→∞

φ(fk)

k
.

The key property of a homogeneous quasimorphism is that it restricts to
an actual homomorphism on every abelian subgroup. A homogeneous quasi-
morphism φ : Γ → R is called genuine if it is not a homomorphism. We refer
to [11] for more information about quasimorphisms.

1.B. Main results

Let G = Ham(Σg) be a group of Hamiltonian diffeomorphisms of Σg. The
main technical result of this paper is the following

Theorem 1. Let g = 0 and p > 2, or g > 1 and p ≥ 1. Then there exists an
infinite-dimensional space of homogeneous quasimorphisms G → R that are
both Lipschitz in the Lp-metric and vanish on all autonomous Hamiltonian
diffeomorphisms.
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Remark. LetD2 denote an open unit disc in the Euclidean plane, i.eD2 :=
Σ0,1. Then the above theorem follows from Theorem 2.3 in [9] combined with
Theorem 2 in [8]. If g �= 1 then the statement of the above theorem holds
in the case of Ham(Σg,k) as well. The proof of this fact follows immediately
from the proof of Theorem 1.

As a corollary we obtain the main result of this paper, showing that
A ⊂ (G,dp) is not coarsely dense. For a diffeomorphism f ∈ G and a subset
S ∈ G we define the distance dp(φ,S) from f to S by

dp(f,S) := inf
h∈S

dp(f, h).

Corollary 1.1. For every K ≥ 0 there exists a Hamiltonian diffeomorphism
f ′ ∈ G such that dp(f

′,A) ≥ K.

Proof. Let φ be a non-vanishing homogeneous quasimorphism provided by
Theorem 1. Hence there exists f ∈ G such that φ(f) �= 0. Then for h ∈ A we
have the following inequalities:

|φ(f)| −Dφ ≤ |φ(f) + φ(h−1) + b(f, h−1)| = |φ(fh−1)| ≤ Cφ · dp(f, h),

where the rightmost inequality follows from the Lipschitz property, and the
leftmost inequality follows from the vanishing condition, since h−1 ∈ A. We
conclude that

|φ(f)| −Dφ ≤ Cφ · dp(f,A).

Therefore denoting c := |φ(f)| > 0 and taking f ′ = fm, we observe that
dp(f

′,A) satisfies
c ·m−Dφ ≤ Cφ · dp(f

′,A),

and the proof follows. �
Slightly upgrading the proof, we have

Corollary 1.2. For every K ≥ 0 and k ∈ N there exists a Hamiltonian
diffeomorphism f ′ ∈ G such that dp(f

′,Ak) ≥ K.

Indeed for each h = h1 ◦ · · · ◦ hk ∈ Ak we have |φ(h)| ≤ (k − 1)Dφ. There-
fore dp(f

m,Ak) satisfies

|φ(f)| ·m− kDφ ≤ Cφ · dp(f
m,Ak).

By taking a sufficiently large m and f ′ = fm, we conclude the proof of the
corollary.
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Remark. Note that every homogeneous quasimorphism provided by Theo-
rem 1 is genuine. This fact together with Corollary 1.2 imply that the metric
group (G,dAut) has an infinite diameter. Moreover, the same fact implies
that G is stably unbounded with respect to the autonomous metric, i.e. there
exists g ∈ G such that ‖g‖st > 0.

2. Proof of the main technical result

Our proofs of the genus zero case and of the case of hyperbolic surfaces are
different. Before we start proving the main result, let us recall two construc-
tions, one due to Gambaudo and Ghys [14] and the other due to Polterovich
[21], of quasimorphisms on the group G of Hamiltonian diffeomorphisms of
compact surfaces.

2.A. Quasimorphism constructions

Let g = 0. In what follows we recall a construction due to Gambaudo and
Ghys [14], cf. [10], of a homogeneous quasimorphism on the group G of Hamil-
tonian diffeomorphisms of the two-sphere S2 which is produced from a quasi-
morphism on the spherical pure braid group Pn(S

2).

2.A.1. Gambaudo-Ghys construction. Let {ft} ∈ G be an isotopy from
the identity to f ∈ G and let w ∈ S2 be a basepoint. For each x ∈ S2 let us
choose a short geodesic from w to x and denote it by swx. For y ∈ S2 we
define a loop γy,w : [0, 1] → S2 to be a concatenation of paths swy, f3t−1(y)
(here t ∈ [13 ,

2
3 ]) and sf(y)w.

Let Xn(S
2) be the configuration space of all ordered n-tuples of pair-

wise distinct points in the sphere S2. It’s fundamental group π1(Xn(S
2))

is identified with the spherical pure braid group Pn(S
2). Fix a basepoint

z = (z1, . . . , zn) in Xn(S
2). For almost every x = (x1, . . . , xn) ∈ Xn(S

2) the
n-tuple of loops (γx1,z1 , . . . , γxn,zn) is a based loop in the configuration space
Xn(S

2). Let
γ(ft, x) ∈ Pn(S

2) = π1(Xn(S
2), z)

be an element represented by this loop.
Let φ : Pn(S

2) → R be a homogeneous quasimorphism. Define the quasi-
morphism Φn : G̃ → R by

Φn({ft}) :=
∫

Xn(S2)

φ(γ(ft;x))dx
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The fact that the above function is a well defined quasimorphism follows
from [10]. Recall that Smale proved that π1(G) = Z/2Z, see [24]. Hence the
homogenization Φn of Φn, being a homomorphism on all abelian subgroups
(cf. [11]), descends to a well defined homogeneous quasimorphism Φn : G →
R which neither depends on the choice of short geodesics, nor on the choice
of the base point. For any choice of an isotopy {ft,k} between the identity
and fk it can be computed as

Φn(f) := lim
k→∞

Φn({ft,k})/k.

2.A.2. Polterovich construction. Let g > 1 and z ∈ Σg. Denote by
Diff0(Σg, ω) the identity component of the group of area preserving diffeo-
morphisms ofΣg and by G its subgroup of Hamiltonian diffeomorphisms. It is
known that the group π1(Σg, z) admits infinitely many linearly-independent
homogeneous quasimorphisms, see [12]. Let

φ : π1(Σg, z) → R

be a non-trivial homogeneous quasimorphism. For each x ∈ Σg let us choose
an arbitrary short geodesic path from x to z. In [21] L. Polterovich con-
structed the induced non-trivial homogeneous quasimorphism Φ on
Diff0(Σg, ω) as follows.

For each x ∈ Σg and an isotopy {ft}t∈[0,1] between Id and f let fx be the
closed loop in M which is the concatenation of a short geodesic path from
z to x, the path ft(x) and a short geodesic path from f(x) to z. Denote by
[fx] the corresponding element in π1(Σg, z) and set

Φ(f) :=

∫
Σg

φ([fx])ω Φ(f) := lim
k→∞

1

k

∫
Σg

φ([(fk)x])ω.

The maps Φ and Φ are well-defined quasimorphisms because the center
Z(π1(Σg, z)) is trivial and every diffeomorphism in Diff0(Σg, ω) is area-
preserving. In addition, the quasimorphism Φ depends neither on the choice
of the family of geodesic paths, nor on the choice of the base point z. More-
over, if φ is not a homomorphism, then Φ is not a homomorphism, i.e. if φ
is genuine then Φ is also genuine. For more details see [21].

Recall that G is the commutator subgroup of Diff0(Σg, ω) (cf. [2]). It fol-
lows that every genuine homogeneous quasimorphism φ on π1(Σg, z) defines
a genuine homogeneous quasimorphism ΦG on G which is the restriction of
Φ to G.
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2.B. Continuity of the Gambaudo-Ghys and Polterovich
quasimorphisms

The aim of this subsection is to prove the following technical results which
will be used in the proof of Theorem 1.

Theorem 2.1. Let H : S2 → R and {Hk}∞k=1 be a sequence of functions
such that each Hk : S

2 → R and Hk −−−→
k→∞

H in C1-topology. Let h1 and
hk,1 be the time-one maps of the Hamiltonian flows generated by H and Hk

respectively. Then for each n

lim
k→∞

Φn(hk,1) = Φn(h1),

where Φn is a quasimorphism induced by the Gambaudo-Ghys construction.

Theorem 2.2. Let g > 1, H : Σg → R and {Hk}∞k=1 be a sequence of func-
tions such that each Hk : Σg → R and Hk −−−→

k→∞
H in C1-topology. Let h1

and hk,1 be the time-one maps of the Hamiltonian flows generated by H and
Hk respectively. Then

lim
k→∞

Φ(hk,1) = Φ(h1),

where Φ is any quasimorphism induced by the Polterovich construction.

Proof. In [10] the authors proved the following

Theorem 2.3 ([10]). Let n > 0 and Φn be a homogeneous quasimorphism
induced by the Gambaudo-Ghys construction. Then Φn is Lipschitz with
respect to the L3-metric on the group G of Hamiltonian diffeomorphisms of
S2, i.e. there exists C > 0 such that ∀h ∈ G

Φn(h) ≤ C‖h‖3.

In addition, in [8] the first named author proved the following

Theorem 2.4 ([8]). Let Σg be a closed hyperbolic surface, and Φ a homo-
geneous quasimorphism induced by the Polterovich construction. Then Φ is
Lipschitz with respect to the L3-metric on the group G of Hamiltonian dif-
feomorphisms of Σg, i.e. there exists C ′ > 0 such that ∀h ∈ G

Φ(h) ≤ C ′‖h‖3.
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Lemma 2.5. Let g �= 1 and H : Σg → R be a smooth function. Then for
any ε > 0 and p ∈ N there exists δp > 0, such that if H is δp-close to a
smooth function F : Σg → R in C1-topology, then

d3(h
p, fp) < ε,

where ht and ft are the Hamiltonian flows generated by H and F respectively,
and h and f are time-one maps of these flows.

Proof. We replace D2 by Σg and d2 with d3 in the proof of Lemma 3.7 in
[9]. Now the proof is identical to the proof of Lemma 3.7 in [9]. �

Proposition 2.6. Let g �= 1 and H : Σg → R. Then for any ε > 0 there
exists δ > 0, such that if F : Σg → R is δ-close to H in C1-topology then:∣∣Ψ(h)−Ψ(f)

∣∣ ≤ ε,

where Ψ = Φn in case when Σg = S2, and Ψ = Φ in the higher genus case,
and h and f are time-one maps of flows generated by H and F .

Proof. Fix some ε > 0. Denote byK the constant which was defined in Theo-
rem 2.3 in case of genus zero (it was denoted by C), and in Theorem 2.4 in the
higher genus case (it was denoted by C ′). Take p ∈ N such that DΨ+K

p < ε.
It follows from Lemma 2.5 that there exists δp > 0, such that if F is δp-close
to H in C1-topology, then d3(f

p, hp) < 1. Thus we obtain

∣∣Ψ(f)−Ψ(h)
∣∣ = 1

p

∣∣Ψ(fp)−Ψ(hp)
∣∣ ≤ DΨ +

∣∣Ψ(fph−p)
∣∣

p
.

Depending on the case, it follows from Theorem 2.3 or from Theorem 2.4
that ∣∣Ψ(fph−p)

∣∣ ≤ Kd3(Id, f
ph−p) = Kd3(f

p, hp) < K.

Thus ∣∣Ψ(f)−Ψ(h)
∣∣ < DΨ +K

p
< ε.

�

Proposition 2.6 concludes the proof of Theorems 2.1 and 2.2. �
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2.C. Proof of Theorem 1 — the spherical case

Let Bn and Bn(S
2) be the standard Artin braid group and the spherical

braid group on n strands respectively. The group Bn admits the following
presentation:

Bn = 〈σ1, . . . , σn−1 | σiσj = σjσi, |i− j| ≥ 2; σiσi+1σi = σi+1σiσi+1, 〉

where σi is the i-th Artin generator of Bn. The group Bn(S
2) has the same

generators and relations as Bn and one extra relation given by

δn := σ1 · · ·σn−2σ
2
n−1σn−2 · · ·σ1 = 1.

It follows that these relations define an epimorphism

Π: Bn → Bn(S
2).

Note that if n > 3 then both Bn and Bn(S
2) are infinite groups. Fix n > 3

and let ηi,n := σi−1 · · ·σ2σ2
1σ2 · · ·σi−1 ∈ Bn, be the braid presented in Fig-

ure 1.

ii−1

Figure 1: The braid ηi,n.

Denote by An < Bn the free abelian group of rank n− 1 generated by
{ηi,n}ni=2, and by An(S

2) < Bn(S
2) the abelian group Π(An).

For a group Γ let us denote the space of homogeneous quasimorphisms
on Γ by Q(Γ). Since the mapping class group of an n-punctured sphere is
isomorphic to the quotient of Bn(S

2), and by results of Bestvina-Fujiwara [3]
the space of homogeneous quasimorphisms on the mapping class group of an
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n-punctured sphere is infinite dimensional (recall that n > 3), it follows that
dim(Q(Bn(S

2))) = ∞. The group An(S
2) is abelian of finite rank, hence

dim(Q(Bn(S
2),An(S

2))) = ∞,

where Q(Bn(S
2),An(S

2)) is the subspace of Q(Bn(S
2)) which consists of

homogeneous quasimorphisms on Bn(S
2) which vanish on An(S

2).
Let Q(G,A) be the space of homogeneous quasimorphisms on G which

vanish on the set A of autonomous diffeomorphisms. Also denote by

GGn : Q(Bn(S
2)) → Q(G)

the linear map which is given by the Gambaudo-Ghys construction. By the
result of Ishida [16] the map GGn is injective for all n. Since for n > 3 we
have

dim(Q(Bn(S
2),An(S

2))) = ∞
and GGn is injective, then in order to show that

dim(Q(G,A)) = ∞

it is enough to show that

Im(GGn|Q(Bn(S2),An(S2))) ⊂ Q(G,A).

Let p > 2. In [10] the authors proved that every quasimorphism which
lies in the image of the Gambaudo-Ghys map GGn is Lipschitz with respect
to the Lp-metric on G. It follows that in order to complete the proof, it is
enough to prove the following.

Proposition 2.7. Let φ : Bn(S
2) → R be a homogeneous quasimorphism

which vanishes on An(S
2). Then the induced homogeneous quasimorphism

Φn : G → R vanishes on the set A.

Proof. Since Morse functions on S2 form a dense subset in the set of all
smooth functions in the C1-topology [19], by Theorem 2.1 it is enough to
prove the statement for Morse autonomous diffeomorphisms. We say that
a Hamiltonian diffeomorphism h is Morse autonomous if it is generated by
some Morse function H : S2 → R. The set of all Morse autonomous diffeo-
morphisms is denoted by AMorse.

The idea of the proof relies on the fact that n points on different level
curves of H trace a braid which is "almost conjugate" to a braid in An(S

2).
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More precisely, let h ∈ AMorse which is generated by a function H and take a
point x = (x1, . . . , xn) ∈ Xn(S

2) such that each xi lies on a different regular
level set of H. Let {ht}t∈[0,∞) be the Hamiltonian isotopy generated by H
and put h := h1. We have the identity of braids

γ(hk, x) = αh,k,xβ
m1,h,k,x

1 · · ·βmn−1,h,k,x

n−1 α′
h,k,x,

where the word length of the braids αh,k,x and α′
h,k,x is universally bounded

by some natural number C which depends only on n, all the braids βi com-
mute with each other and each βi is conjugate in Bn(S

2) to some Π(ηj,n) ∈
An(S

2). Note that a similar identity of braids in the case of a disc was
established in [7, Theorem 4.5], cf. [6]. It follows that

lim
k→∞

|φ(γ(hk, x))|
k

≤ lim
k→∞

|φ(αh,k,x)|+ |φ(α′
h,k,x)|

k

+ lim
k→∞

∑n−1
i=1 |mi,h,k,x||φ(βi)|+ 2Dφ

k
.

Since φ is a homogeneous quasimorphism, the value of φ on conjugate ele-
ments is the same and by our hypothesis φ ∈ Q(Bn(S

2),An(S
2)), that is

φ(Π(ηi,n)) = 0 for each i, we conclude that

lim
k→∞

|φ(γ(hk, x))|
k

= 0.

Recall that H is a Morse function, and so it has finitely many critical
points. Thus the complement in Xn(S

2) of the set of all the n-tuples of
different points in S2 which lie on different regular level sets of H is of
measure zero. Note that since h is an autonomous diffeomorphism we have
hk = hk. Therefore

Φn(h) = lim
k→∞

∫
Xn(S2)

|φ(γ(hk, x))|
k

dx =

∫
Xn(S2)

lim
k→∞

|φ(γ(hk, x))|
k

dx = 0,

where the second equality follows from the Fatou lemma, and the proof
follows. �

2.D. Proof of Theorem 1 - the hyperbolic case

2.D.1. Curves traced by Morse autonomous flows. Let {ht} be an
autonomous flow generated by a Morse functionH : Σg → R and set h := h1.
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Denote by RegH the set of regular points of H in Σg. Note that the
measure of Σg \ RegH is zero. For each x ∈ RegH let cx : [0, 1] → Σg be
an injective path (on (0, 1)), such that cx(0) = cx(1) = x and its image is
a simple closed curve which is a connected component of H−1(H(x)). For
every y1, y2 ∈ Σg choose an injective map sy1y2

: [0, 1] → Σg whose image is
a short geodesic path from y1 to y2. Define

(1) γx(t) :=

⎧⎪⎨⎪⎩
szx(3t) for t ∈ [

0, 13
]

cx(3t− 1) for t ∈ [
1
3 ,

2
3

]
sxz(3t− 2) for t ∈ [

2
3 , 1

] .

Denote by [γx] the corresponding element in π1(Σg, z). Let x ∈ RegH and
let [hx] be an element in π1(Σg, z) represented by a path which is a concate-
nation of paths szx, ht(x) and sh(x)z. Then for each k ∈ N the element [hkx]
can be written as a product

(2) [hkx] = α′
h,k,x ◦ [γx]mh,k,x ◦ α′′

h,k,x ,

where mh,k,x is an integer which depends only h, k and x, and the word
length of elements α′

h,k,x , α
′′
h,k,x in π1(Σg, z) is bounded by some constant

Ch,x which is independent of k.
Denote by MCG1

g the mapping class group of the surface Σg with one
puncture z. Recall that there is the following short exact sequence due to
Birman [4]

(3) 1 → π1(Σg, z) → MCG1
g → MCGg → 1,

where MCGg is the mapping class group of the surface Σg. Hence we view
π1(Σg, z) as a normal subgroup of MCG1

g.

Proposition 2.8. Let g > 1. There exists a finite set Sg of elements in
MCG1

g, such that for every Morse function H : Σg → R and every x ∈ RegH
the loop [γx] ∈ π1(Σg, z) < MCG1

g is conjugate to some element in Sg.

Proof. Let x ∈ RegH . If the loop γx(t) is homotopically trivial in Σg, then
[γx] = 1MCG1

g
. Suppose that γx(t) is homotopically non-trivial in Σg. We say

that simple closed curves δ, δ′ ∈ Σg are equivalent δ ∼= δ′, if there exists a
homeomorphism f : Σg → Σg such that f(δ) = δ′. It follows from classifi-
cation of surfaces that the set of equivalence classes Eg is finite. Let cx be
the simple closed curve defined in (1). Since Σg and cx are oriented, the
curve cx splits in Σg \ {x} into two simple closed curves cx,+ and cx,− which
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are homotopic in Σg, i.e. cx,+ and cx,− are boundary curves of a tubular
neighborhood of the curve cx, see Figure 2.

a b

x

Figure 2: Part of the curve cx is shown in Figure a. Its splitting into curves
cx,+ and cx,− is shown in Figure b. The left curve in Figure b is cx,+ and
the right curve is cx,−.

The image of the element [γx] inMCG1
g, under the Birman embedding (3)

of π1(Σg, z) into MCG1
g, is conjugate to tcx,+

◦ t−1
cx,− , where tcx,+

and tcx,− are
Dehn twists in Σg \ {x} about curves cx,+ and cx,− respectively, see e.g. [13,
Fact 4.7].

Note that if cx ∼= δ then there exists a homeomorphism f : Σg → Σg such
that f(cx) = δ, hence f(cx,+) = δ+ and f(cx,−) = δ−. We have

tδ+ = f ◦ tcx,+
◦ f−1 tδ− = f ◦ tcx,− ◦ f−1.

This yields

f ◦ (tcx,+
◦ t−1

cx,−) ◦ f−1 = tδ+ ◦ t−1
δ−

.

Therefore an element [γx] is conjugate in MCG1
g to some tδ+ ◦ t−1

δ−
, where δ is

a representative of an equivalence class in Eg. Let {δi}#Eg

i=1 be a set of simple
closed curves in Σg, such that each equivalence class in Eg is represented by
some δi. Let

(4) Sg :=
{
tδ1,+ ◦ t−1

δ1,−
, . . . , tδ#Eg,+

◦ t−1
δ#Eg,−

}
.

It follows that [γx] is conjugate to some element in Sg. Noting that the set Sg

depends neither on H nor on x, we conclude the proof of the proposition. �

2.D.2. Mapping class group considerations. Recall that the group
π1(Σg) is a normal subgroup of MCG1

g. Denote by QMCG1
g
(π1(Σg), Sg) the

space of homogeneous quasi-morphisms on π1(Σg) so that:
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• For each φ ∈ QMCG1
g
(π1(Σg), Sg) there exists φ̂ ∈ Q(MCG1

g) such that
φ̂|π1(Σg) = φ, and φ̂ vanishes on the finite set Sg,

where Sg is the set defined in (4). The group π1(Σg) contains a non-abelian
free group, and thus is not virtually abelian. It is an infinite normal subgroup
of MCG1

g and hence is a non-reducible subgroup of MCG1
g, see [17, Corollary

7.13]. Now, by a result of Bestvina-Fujiwara [3, Theorem 12] we have the
following

Corollary 2.9. The space QMCG1
g
(π1(Σg), Sg) is infinite dimensional.

2.D.3. End of the proof. Denote by Poltg : Q(π1(Σg)) → Q(G) the map
induced by the Polterovich construction. Recall that Poltg is injective mod-
ulo homomorphisms, see Section 2.A.2. Since the space QMCG1

g
(π1(Σg), Sg)

contains no non-trivial homomorphisms, it follows that the restricted map

Poltg : QMCG1
g
(π1(Σg), Sg) ↪→ Q(G)

is injective. Recall that Q(G,A) denotes the space of quasimorphisms on
the group G = Ham(Σg) that vanish on the set A of autonomous diffeomor-
phisms. Since by Corollary 2.9

dim(QMCG1
g
(π1(Σg), Sg)) = ∞,

and by [8, Theorem 1] every quasimorphism which lies in the image of the
map Poltg is Lipschitz with respect to the Lp-metric, finishing the proof of
the theorem reduces to proving the following.

Proposition 2.10. The image of the map

Poltg : QMCG1
g
(π1(Σg), Sg) ↪→ Q(G)

lies in the linear space Q(G,A).

Proof. Let φ∈QMCG1
g
(π1(Σg), Sg) and h∈G an autonomous diffeomorphism.

We need to show that Φ(h) = 0, where Φ = Poltg(φ). Since Morse functions
on Σg form a dense subset in the set of all smooth functions in C1-topology
[19], by Theorem 2.2 it is enough to show that Φ(h) = 0, where h is the
time-one map of the flow generated by some Morse function H : Σg → R.
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Recall that using Fatou lemma we have

Φ(h) = lim
k→∞

∫
Σg

φ([hkx])

k
=

∫
Σg

lim
k→∞

φ([hkx])

k
ω .

Since the set RegH is of full measure in Σg, it is enough to show that for
each x ∈ RegH the following equality holds

lim
k→∞

|φ([hkx])|
k

= 0.

The group π1(Σg) admits the following presentation

(5) π1(Σg) =

〈
αi, βi | 1 ≤ i ≤ g,

g∏
i=1

[αi, βi] = 1

〉
.

For every α ∈ π1(Σg) denote by l(α) the word length of α with respect to the
set of generators given in (5). Since φ ∈ QMCG1

g
(π1(Σg), Sg) and each αi, βi

are conjugate to elements in Sg, it follows that for every α ∈ π1(Σg) we have
|φ(α)| ≤ Dφ l(α). It follows from (2) that for every k ∈ N and x ∈ RegH we
have

[hkx] = α′
h,k,x ◦ [γx]mh,k,x ◦ α′′

h,k,x ,

where mh,k,x is an integer which depends only h, k and x, and l(α′
h,k,x),

l(α′′
h,k,x) are bounded by some constant Ch,x > 0 independent of k.
Hence for every k ∈ N and x ∈ RegH we have

0 ≤ |φ([hkx])|
k

≤ |φ(α′
h,k,x)|+ |mh,k,x||φ([γx])|+ |φ(α′′

h,k,x)|+ 2Dφ

k
.

Since φ ∈ QMCG1
g
(π1(Σg), Sg), by definition φ extends to a homogeneous

quasi-morphism on MCG1
g and vanishes on the set Sg. Hence by Proposi-

tion 2.8 we have φ([γx]) = 0, and hence

0 ≤ |φ([hkx])|
k

≤ 2Ch,x ·Dφ + 2Dφ

k
=

2Dφ(Ch,x + 1)

k
.

By taking k → ∞ we conclude the proof of the proposition. �



1292 M. Brandenbursky and E. Shelukhin

References

[1] V. I. Arnol′d and B. A. Khesin, Topological methods in hydrodynamics.
Annual review of fluid mechanics, Vol. 24, Annual Reviews, Palo Alto,
CA, 1992, pp. 145–166. MR1145009 (93d:58020)

[2] Augustin Banyaga, The structure of classical diffeomorphism groups.
Mathematics and its Applications, Vol. 400, Kluwer Academic Publish-
ers Group, Dordrecht, 1997.

[3] Mladen Bestvina and Koji Fujiwara, Bounded cohomology of subgroups
of mapping class groups. Geom. Topol., 6 (2002), 69–89 (electronic).
MR1914565 (2003f:57003)

[4] Joan S. Birman, Mapping class groups and their relationship to braid
groups. Comm. Pure Appl. Math., 22 (1969), 213–238. MR0243519 (39
#4840)

[5] Michael Brandenbursky, Bi-invariant metrics and quasi-morphisms on
groups of Hamiltonian diffeomorphisms of surfaces. Internat. J. Math.,
26 (2015), no. 9. MR3391653

[6] Michael Brandenbursky, Knot invariants and their applications to con-
struction of quasi-morphisms on groups. Ph.D. Thesis, Technion–Israel
Institute of Technology, 2010.

[7] Michael Brandenbursky, On quasi-morphisms from knot and braid
invariants. J. Knot Theory Ramifications, 20 (2011), no. 10, 1397–1417.

[8] Michael Brandenbursky, Quasi-morphisms and Lp-metrics on groups of
volume-preserving diffeomorphisms. J. Topol. Anal., 4 (2012), no. 2,
255–270.

[9] Michael Brandenbursky and Jarek Kȩdra, On the autonomous norm
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