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Deformations of CR manifolds,

parametrizations of automorphisms,

and applications

Giuseppe Della Sala, Robert Juhlin and Bernhard Lamel

We prove a parametrization theorem for maps of deformations of
minimal, holomorphically nondegenerate real-analytic CR mani-
folds. This is used to deduce results on biholomorphic equiva-
lence; we show that one can, for any germ of a minimal, holo-
morphically nondegenerate real-analytic CR manifold (M,p) con-
struct a function which completely characterizes the CR mani-
folds biholomorphically equivalent to (M,p). As an application,
we show that for any p ∈ M , the equivalence locus Ep = {q ∈ M :
(M, q) biholomorphically equivalent to (M,p)} is a locally closed
real-analytic submanifold of M , and give a criterion for the global
CR automorphism group to be a (finite-dimensional) Lie group.

1. Biholomorphic equivalence and equivalence loci

Let M and M ′ be connected, real-analytic CR manifolds, p ∈ M , q ∈ M ′.
We will write (M,p) ∼ (M ′, q) and say that the germs (M,p) and (M ′, q)
are biholomorphically equivalent if there exists a neighbourhood U of p in M
and a real-analytic CR diffeomorphism h : U → M ′ h(p) = q. In this paper,
we shall present a number of results which give answers to the question
of how to decide whether (M,p) ∼ (M ′, q) for real-analytic CR manifolds
which are holomorphically nondegenerate (in the sense of Stanton [16]) and
minimal; and we shall discuss some applications of these results.

In order to illustrate our later results, let us start with what is essentially
an (important) application. The equivalence locus Ep of a point p ∈ M is
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defined by

(1) Ep = {q ∈ M : (M,p) ∼ (M, q)}.

One can ask a number of questions about Ep; our main result for the local
structure of this set is the following:

Theorem 1. If M is a connected real-analytic CR manifold which is min-
imal and holomorphically nondegenerate, then for every p ∈ M , Ep is a
locally closed real-analytic submanifold of M .

Let us recall that M is minimal if for every connected CR submanifold
N ⊂ M of the same CR dimension as M we necessarily have N = M . The
second condition which we assume in Theorem 1, holomorphic nondegener-
acy, can be phrased in a number of different ways. It is equivalent to the
space of germs of infinitesimal CR diffeomorphisms hol(M,p) being totally
real for some (or equivalently all) p ∈ M ; it is also equivalent to the fact
that for no p ∈ M , (M,p) ∼ (M̂ × C, 0) for some real-analytic CR manifold
M̂ ; finally, for a minimal real-analytic CR manifold M , it is equivalent to
dimAut(M,p) < ∞ for (one or all) p ∈ M by [9].

Theorem 1 answers a question raised at the “Emerging applications of
complexity for CR mappings”1 workshop at the American Institute of Math-
ematics in 2010 in the (important) setting of real-analytic, minimal, holo-
morphically nondegenerate CR manifolds. It gives interesting insights into
the structure of CR manifolds: in a sense, it exhibits homogeneous CR man-
ifolds as the building blocks of more general CR manifolds. The notion of
homogeneity employed here is that a CR manifold M is homogeneous if for
any p, q ∈ M there exists a neighbourhood U(p) and a CR-diffeomorphism
h : U(p) → M with h(p) = q. We will discuss one application of this fact
later, when we discuss the group of global CR automorphisms.

More generally, we show that given a real-analytic deformation of a germ
of a real-analytic CR manifold (M,p), the locus of deformation parameters
giving rise to a biholomorphically equivalent germ forms a semianalytic set in
the space of deformation parameters. A real-analytic deformation (Mε, p)ε∈X
of such a germ (Mε0 , p) by real-analytic parameters ε ∈ X (which we assume
to be a real-analytic manifold for simplicity, an assumption which the reader
will see can be relaxed considerably), can be realized in the following way:
First, (M,p) can be thought of as a generic, real-analytic submanifold of
(CN , p), where N = n+ d, n the CR dimension of M , and 2n+ d the real

1see http://www.aimath.org/pastworkshops/crmappings.html
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dimension of M . The deformation is then given by a germ of a real-analytic
CR submanifold of CN ×X at {p} ×X having the same CR dimension as
Mε0 with (π1π

−1
2 (ε0), p) = (Mε0 , p), where πj is the projection onto the first

resp. second component; we write π1π
−1
2 (ε) = Mε.

Theorem 2. Let (M,p) be a germ of a real-analytic CR manifold which is
minimal and holomorphically nondegenerate, and assume that (Mε, p)ε∈X is
a real-analytic deformation of (M,p) as above. Then the space

EM = {ε ∈ X : (M,p) ∼ (Mε, p)}

is a semianalytic subset of X.

The stronger conclusion that EM is a submanifold fails in the setting
of a general deformation, since EM , unlike Ep above, need not possess
any homogeneity properties. For an example, we consider the deformation
Imw = |z|2 + f(ε)|z|8 of the Heisenberg hypersurface, where f is any germ
of a real-analytic function at ε0. Then we have that (EM , ε0) = {ε : f(ε) =
0}, since the Chern-Moser normal form [7] implies that a hypersurface
Imw = |z|2 + c|z|8, where c ∈ R \ {0}, is not biholomorphically equivalent
to Imw = |z|2. We will discuss a number of examples later in Section 7.
Theorem 1 is an immediate consequence of Theorem 2 since in Theorem 1,
Ep is also homogeneous. Indeed, any semianalytic subset is a real-analytic
submanifold in a neighborhood of some of its points: since, by definition,
Ep is acted upon transitively by local holomorphic diffeomorphisms, it is a
closed real-analytic submanifold around any of its point.

A natural question which occurs at this point is whether the nice struc-
ture of the equivalence loci described here is a real-analytic phenomenon. We
shall show in Section 7 that there are counterexamples in class Ck, k < ∞;
we do not know at the present time of any counterexample of class C∞.

On the other hand, it would be interesting to study the set EM (and
equivalence locus Ep) in the presence of additional structure, for instance
if M and the deformation Mε are real-algebraic. We conjecture that, in
this situation, EM should be a semi-algebraic subset rather than just semi-
analytic: the methods used in the paper, however, are of an intrinsically
analytic nature and do not allow at the moment to draw this stronger con-
clusion.

The proof of Theorem 2 is based on a parametrization theorem for map-
pings of deformations of real-analytic, minimal holomorphically nondegener-
ate CR manifolds. In order to state this theorem, it is helpful to have another,
more extrinsic, point of view for deformations of CR manifolds. Recall that
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every germ of a real-analytic CR manifold (M,p) can be identified with a
germ of a real-analytic generic submanifold of some CN , where N = n+ d,
dimRM = 2n+ d, and dimCR M = n. In this setting, a deformation is just
a germ ρ of a real-analytic map (CN ×X, {p} ×X) → Rd with

(2) ρ(p, ε) = 0, ρZ1
∧ · · · ∧ ρZN

(p, ε) �= 0, ε ∈ X.

With this notation, (Mε, p) is given by the defining function Z 	→ ρ(Z, ε).
We will write Gk

p(C
N ) for the space of k-jets of germs of biholomorphisms

of (CN , p). For germs of real-analytic CR manifolds (M,p), (M ′, p′), we
write Bihol((M,p), (M ′, p′)) for the space of germs of real-analytic CR dif-
feomorphisms from (M,p) to (M ′, p′); if (M,p) and (M ′, p′) are generic, real-
analytic submanifolds of CN , we have the natural inclusion Bihol((M,p),
(M ′, p′)) ⊂ Bihol((CN , p), (CN , p′)) into the space of germs of biholomor-
phisms of CN at p which map p to p′.

Theorem 3. Let (M,p) be a germ of a generic real-analytic submanifold
of CN , which is minimal and holomorphically nondegenerate, and assume
that (Mε, p)ε∈X is a real-analytic deformation of (M,p) = (Mε0 , p). Then
there exists an integer k, a finite set L and for each J ∈ L, a germ of
a real-analytic function eJ : G

k
p(C

N )×X → R, which is a real polynomial

in its first variable, at Gk
p(M)× {ε0} and a germ of a real-analytic map

ΨJ : C
N ×Gk

p(C
N )×X → CN at {p} × {eJ �= 0}, holomorphic in its first

variable, with the following properties:
i) For any H ∈ Bihol((M,p), (Mε, p)) there exists J ∈ L such that eJ(j

k
pH,

ε) �= 0;
ii) If H ∈ Bihol((M,p), (Mε, p)) and eJ(j

k
pH, ε) �= 0, then ΨJ(Z, j

k
pH, ε) =

H(Z) as germs at p;
iii) ΨJ can be written as

ΨJ(Z,Λ, ε) =
∑
α∈Nn

pα(Λ, ε)

eJ(Λ, ε)
dα

(Z − p)α,

for some pα(Λ, ε) which is a real polynomial in Λ and real-analytic in
ε, and some integers dα.

As a sidenote on terminology, if we speak about a real polynomial in
a complex variable s, we mean that it is a polynomial of the underlying
real coordinates of a complex variable, i.e. an element of C[s, s̄]; a complex
polynomial in s is an element of C[s] as usual.
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The result from which Theorem 3 follows is more general: in it, we use
the defining function of the deformed manifold as a parameter. We recall
that in general, the space of k-jets of holomorphic maps (Cp

x, 0) → (Cq, 0),
which we denote by Hol((Cp

x, 0), (Cq, 0)), is defined by

Jk((Cp
x, 0), (C

q, 0)) = mC{x}q�mk+1,

where m is the maximal ideal in C{x}. Also recall that

Jk((Cp
x, 0), (C

q, 0)) = m̂C�x�q�m̂k+1,

where m̂ is the maximal ideal in C�x�, and that the canonical projection,
which we denote by

jk0 : m̂C�x�q → Jk((Cp
x, 0), (C

q, 0)),

restricts to the canonical projection of mC{x}q onto Jk((Cp
x, 0), (Cq, 0)); we

shall consequently use the same notation for both. The space Hol((Cp
x, 0),

(Cq, 0)) gets endowed with the natural inductive limit topology of uniform
convergence on a compact neighbourhood. Typically, we shall denote a vari-
able in jet space by the symbol Λ ∈ Jk((Cp

x, 0), (Cq, 0)), and the reader can
identify Λ with the collection

Λ = (Λα : α ∈ Np, 1 ≤ |α| ≤ k),

with each Λα a variable in Cq, such that

jk0H =

(
∂|α|H
∂xα

(0) : 1 ≤ |α| ≤ k

)
.

As a last point, the jet group mentioned above is realized as

Gk
0(C

N ) = jk0 (Bihol((C
N , 0), (CN , 0))) ⊂ Jk((CN , 0), (CN , 0)).

When we say that we use the defining function of the deformed manifold
as a parameter, we will use its complex form: If (M, 0) ⊂ (CN , 0) is a germ of
a generic real-analytic manifold of real codimension d, then there exist coor-
dinates (z, w) ∈ Cn × Cd and a germ of a holomorphic map Q(z, χ, τ) : Cn ×
Cn × Cd → Cd such that M is defined by the equation w = Q(z, z̄, w̄) for
(z, w) close to 0.
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Theorem 4. Let (M ′, 0) be a germ of a generic minimal real-analytic sub-
manifold of CN which is holomorphically nondegenerate and minimal at 0,
of real codimension d, and write n = N − d. Then there exist an integer 	, a
finite set L, for any J ∈ L a real polynomials eJ on J �((CN , 0), (CN , 0))×
J �((C2n+d, 0), (Cd, 0)), and a real-analytic map ΨJ defined on the open sub-
set

UJ = {(Λ, Q(z, χ, τ)) : eJ(Λ, j
�
0Q) �= 0} ⊂ J �((CN , 0), (CN , 0))× C{z, χ, τ}d,

where (z, χ, τ) ∈ Cn × Cn × Cd, with values in Bihol((CN , 0), (CN , 0)), which
have the following properties:
i) if w = Q(z, z̄, w̄) defines a germ of a real-analytic submanifold MQ at

0 and if H ∈ Bihol((MQ, 0), (M
′, 0)), then there is a J ∈ L such that

eJ(j
�
0H, j�0Q) �= 0;

ii) if H ∈ Bihol((MQ, 0), (M
′, 0)) and eJ(j

�
0H, j�0Q) �= 0, then

H = ΨJ(j
�
0H,Q);

iii) each ΨJ can be written in the following form:

ΨJ(Λ, Q)(Z) =
∑
α

pα(Λ, j
cα
0 Q)

eJ(Λ, j�0Q)2dα
Zα,

where pα are real polynomials, and cα, dα are integers.

Remark 1. In the statement of Theorem 4, we use the following notion
of real-analyticity: A real-analytic map A defined on an open subset U of a
complex vector space E is defined as a holomorphic map Ã on U × Ū ⊂ E ×
Ē which agrees with A along the diagonal, i.e. A(e) = Ã(e, ē); a holomorphic
map is a map which is Gateaux-holomorphic and continuous. In fact, our
maps fulfill an even stronger version of holomorphicity, i.e. the coefficients
of the ΨJ fulfill “convergence estimates” of the form discussed in e.g. [12].

The last theorem has a rather interesting consequence for the question
of deciding whether two minimal, holomorphically nondegenerate CR mani-
folds are biholomorphically equivalent. This question, which in general goes
under the biholomorphic equivalence problem, goes back to Poincaré [15];
Theorem 4 allows us to find all CR manifolds which are biholomorphically
equivalent to a fixed real-analytic CR manifold, which is minimal and holo-
morphically nondegenerate; to be more precise, we have the following theo-
rem.
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Theorem 5. Let (M ′, 0) be a germ of a real-analytic generic submanifold
of (CN , 0), of CR dimension n and real codimension d. Then there exists
an integer 	, a finite set L, and for each J ∈ L there is a real polynomial
eJ which is defined on J �((CN , 0), (CN , 0))× J �((C2n+d, 0), (Cd, 0)) and a
real-analytic map ψJ defined on the open subset

UJ = {(Λ, Q) : eJ(Λ, j
�
0Q) �= 0} ⊂ J �((CN , 0), (CN , 0))× C{z, χ, τ}d,

where z, χ are variables in Cn and τ a variable in Cd with values in C{z, χ, τ},
which satisfy the following properties:
i) If w = Q(z, z̄, w̄) defines the germ of a real-analytic generic submanifold

(MQ, 0), then MQ is biholomorphically equivalent to (M ′, 0) if and only
if there exists Λ0 ∈ G�

0(C
N ) and a J ∈ L such that eJ(Λ0, j

�
0Q) �= 0 and

ψJ(Λ0, Q) = 0.
ii) Writing Y = (z, χ, τ), each ψJ is of the form

ψJ(Λ, Q)(Y ) =
∑
α

pJ,α(Λ, j
cα
0 Q)

eJ(Λ, j�0Q)dα
Y α,

where cα, dα are integers.
The eJ and pJ,α are real polynomials which can each be computed in finitely
many steps from finite order data of (M ′, 0).

Let us explain how Theorem 4 implies Theorem 5. We choose a germ of
a real-analytic defining function ρ(Z, Z̄) for (M ′, 0), and fix J . We write the
function

ρ̃(Z, ζ,Λ, Q) = ρ
(
ΨJ(Λ, Q)(Z),ΨJ(Λ, Q)(ζ)

)
and note that there exists a biholomorphism H from (MQ, 0) to (M ′, 0)
which satisfies eJ(j

�
0H,Q) �= 0 if and only if ρ̃(Z, ζ, j�0H,Q) = 0 on (MQ, 0).

We therefore set ψj(Λ, Q)(z, χ, τ) = ρ̃(z,Q(z, χ, τ), χ, τ,Λ, Q) to obtain a
map ψj with the required properties. A short computation involving iii)
of Theorem 4 shows that the ψj is of the form required in ii).

Theorem 4 solves the biholomorphic equivalence problem in the following
sense: In order to decide whether Bihol((M,p), (M ′, p′)) is empty or not, we
first choose normal coordinates for M ′ and assume that p′ = 0 and then
normal coordinates (z, w) for (M,p) such that p = 0 and M is given by
w = Q(z, χ, τ) near 0. With the polynomials eJ and pJ,α from Theorem 5,
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we thus just need to decide whether the real-algebraic sets

WJ =
{
Λ ∈ J �((CN , 0), (CN , 0)) : pJ,α(Λ, j

cα
0 Q) = 0 for all α

}
,

VJ =
{
Λ ∈ J �((CN , 0), (CN , 0)) : eJ(Λ, j

�
0Q) = 0

}
,

satisfy WJ ⊂ VJ for all J or not; in the first case, there does not exist a map,
in the other case, for any Λ ∈ WJ \ VJ , ψJ(Λ, Q) ∈ Bihol((MQ, 0), (M

′, 0)).
We will now return to the question of the equivalence locus. A particular

point is that one would–of course–like a way to actually compute Ep. Our
next theorem shows that this is, in principle, a linear problem (if we want to
compute the connected component of Ep containing p, at least). Recall that
hol(M,p) denotes the space of germs of infinitesimal CR automorphisms,
which if (M,p) is realized as a generic real-analytic submanifold of CN is
the space

hol(M,p) =

⎧⎨⎩X =
∑
j

aj(Z)
∂

∂Zj
: aj ∈ Op, ReX tangent to M

⎫⎬⎭
of holomorphic vector fields whose real part is tangent to M near p (we note
that in what follows, we shall abuse notation slightly and write hol(M,p)
for this space and the “intrinsic” space interchangeably; it will be clear from
the context which point of view to take).

Theorem 6. Assume that M is a real-analytic CR manifold which is min-
imal and holomorphically nondegenerate. For any p ∈ M , we have

TqEp = hol(M, q)(q)

for all q ∈ Ep. In particular, p 	→ dimREp is a lower semicontinuous func-
tion. More generally, there exists a neighbourhood U ⊂ Ep of p in Ep, a
neighbourhood V of p in M , and a map ψ(w, q) defined in V × U , such that
w 	→ ψ(w, q) is a real-analytic CR diffeomorphism on V and ψ(p, q) = q.

Theorem 6 can be used to produce a general jet parametrization result
which allows points to move in the equivalence loci; this result is stated and
proved in Section 8 as Theorem 15.

Our last application concerns another question, namely the global auto-
morphism group of a real-analytic CR manifold M . This is the subgroup
AutωCR(M) ⊂ Diffω(M) of real-analytic CR diffeomorphisms h : M → M ,
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where we consider Diffω(M) with the real-analytic compact-open topology.
This group has been studied quite extensively, see e.g. [3] and [13]. With the
tools developed in this paper, we can prove

Theorem 7. Let M be a connected, real-analytic CR manifold which is
minimal and holomorphically nondegenerate. Assume that there exists a
compact subset K ⊂ M with the property that for every p ∈ M , the connected
component Vp of Ep containing p intersects K nontrivially. Then AutωCR(M)
is a finite dimensional Lie group in the real-analytic compact-open topology.
Furthermore, there exists a k ∈ N such that the Ck compact-open topology
on AutωCR(M) and the real-analytic compact-open topology on it agree.

In particular, the automorphism group of every compact, real-analytic
CR manifold which is holomorphically nondegenerate and minimal is a finite-
dimensional Lie group, a fact which in the case of manifolds embedded in
Stein spaces had been proved by [13].

The plan of the paper is as follows: In Section 2 we discuss the map-
ping identities which we need to use for our parametrization. In Section 3,
parametrizations “along the Segre varieties” are deduced in the spirit of
Theorem 4, i.e. leaving the defining function of the source manifold as a
parameter. The proof of Theorem 4 is given in Section 4. Theorem 2 needs
some preparations which are given in Section 5; it is based on some results
from real-algebraic geometry and finite order equivalences. These also allow
us to prove a weaker statement of Theorem 6 in the setting of a general
deformation, which actually implies Theorem 6 in the homogeneous setting.
In Section 8 we shall discuss how to deduce Theorem 7 from the earlier
results, using well-known arguments from the literature.

2. Deformation-stable mapping identities

Our goal in this section is to derive the mapping identities which we will use
in order to construct a parametrization of automorphisms of deformations;
none of the techniques or results in this section are new, but we need to
prepare the equations in a particular way suitable for our treatment. We
consider germs (M, 0) and (M ′, 0) of generic, real-analytic submanifolds of
CN , of the same real codimension, which are given in normal coordinates by
w = Q(z, z̄, w̄) and w = Q′(z, z̄, w̄), respectively. Assume that H = (f, g) is
a germ of a biholomorphism near 0 ∈ CN . Then we have the basic identity

(3) g(z,Q(z, χ, τ)) = Q′(f(z,Q(z, χ, τ)), H̄(χ, τ)),
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which is valid in a neighbourhood of 0 ∈ C2N ; as usual, H̄ denotes the map-
ping obtained from H by taking the complex conjugates of the power series
coefficients. Differentiating with respect to z, one obtains

(4) gw(z,Q)Qz = Q′
z(f(z,Q), H̄(χ, τ))(fz + fwQz),

where we have suppressed the independent variables in Q to make the equa-
tion more compact, and use matrix notation, i.e.

Qz =

⎛⎜⎝Q
1
z1 · · · Q1

zn
...

...
Qd

z1 · · · Qd
zn

⎞⎟⎠ , Q′
z =

⎛⎜⎝Q
′1
z1 · · · Q′1

zn
...

...

Q′d
z1 · · · Q′d

zn

⎞⎟⎠ ,

fz =

⎛⎜⎝f1,z1 · · · f1,zn
...

...
fn,z1 · · · fn,zn

⎞⎟⎠ , fw =

⎛⎜⎝f1,w1
· · · f1,wd

...
...

fn,w1
· · · fn,wd

⎞⎟⎠ ,

gw =

⎛⎜⎝g1,w1
· · · g1,wd

...
...

gd,w1
· · · gd,wd

⎞⎟⎠ ,

Since the n× n-matrix fz + fwQz when evaluated at 0 is just fz(0), which
is invertible, the inverse (fz + fwQz)

−1 is again defined in a neighbourhood
of 0, and we can apply it to (4) to obtain

Q′
z(f(z,Q), H̄(χ, τ)) = gw(z,Q)Qz(fz + fwQz)

−1.

By Cramer’s rule, the entries of the matrix on the right hand side are rational
functions in fz, fw, Qz, gw, with the denominator being given by det(fz +
fwQz); i.e. for every j, there exists a polynomial Pej such that

Q′
zj (f(z,Q(z, χ, τ), H̄(χ, τ)) =

Pej (fz(z,Q), fw(z,Q), gw(z,Q), Qz(z, χ, τ))

det(fz(z,Q) + fw(z,Q)Qz)
.

Continuing this process, we obtain for every α a polynomial Pα with
(5)

Q′
zα

(
f(z,Q(z, χ, τ), H̄(χ, τ)

)
=

Pα

(
j
|α|
(z,Q(z,χ,τ))H,Qzβ(z, χ, τ) : |β| ≤ |α|

)
(det(fz(z,Q) + fw(z,Q)Qz))

2|α|−1
.

It is convenient to express these formulas in terms of the map

πk
M : M → Hk

d (C
N ), πM(Z, ζ) = jkZSζ̄ ,
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and the analogous map πM′ ; here M and M′ denote the complexifications
of M and M ′, respectively, Hk

d (C
N ) denotes the bundle of k-jets of germs of

complex submanifolds of CN of codimension d, and Sζ̄ = {Z : (Z, ζ) ∈ M}
is the Segre variety associated to ζ. In terms of our normal coordinates
Z = (z, w), we introduce conjugate variables ζ = (χ, τ), so that M is given
by w = Q(z, ζ), and M′ by w′ = Q′(z′, ζ ′). We can thus use coordinates
(z, χ, τ) for M (and also M′). In terms of these coordinates,

(6) πk
M′(z′, ζ ′) =

(
Q′

z′α(z′, ζ ′) : |α| ≤ k
)
.

We can now formulate

Lemma 1. For every k ∈ N there exists a polynomial Pk such that for
any germs of real-analytic generic submanifolds (M, 0) and (M ′, 0) given
in normal coordinates Z = (z, w) ∈ Cn × Cd = CN by w = Q(z, χ, τ) and
w′ = Q′(z′, χ′, τ ′), respectively, if H = (f, g) : (M, 0) → (M ′, 0) is a germ of
a biholomorphism, then

(7) πk
M′(H(Z), H̄(ζ)) =

Pk

(
jkZH, (Qzα(z, ζ))|α|≤k

)
(det(fz(z,Q) + fw(z,Q)Qz))

2k−1
.

3. Inverting the reflection map

In this section, we will collect some definitions and facts from [9], reformu-
lating some of them following [11] and making them suitable for our purpose
here. First of all, we will use the following notion of type of a power series in
variables (x, t) (where we think about x as “tangential” and t as “transver-
sal” later):

(8) tpϕ(x, t) = tp
∑
α,β

ϕα,βx
αtβ = min

{
(|α|, |β|) ∈ N2 : ϕα,β �= 0

}
.

The minimum here is taken with respect to the lexicographic ordering on
N2 defined by

(m,n) ≤ (k, l) if and only if

{
n < l or

n = l and m ≤ k.

We also define the determinantal type dtpΦ(x, t) of a matrix-valued power
series map Φ as the minimum of the type of the determinants of its minors
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of maximal size, and the determinantal type of a map Ψ(x, t) as the deter-
minantal type of its Jacobian. We allow here one of the sizes of the matrix
to be infinite (with the understanding that the corresponding minimum is
actually already realized by a submatrix of finite size).

In order to define the Segre maps associated to a generic real-analytic
submanifold given in normal coordinates Z = (z, w) by w = Q(z, χ, τ), we
use the following notation for coordinates: (x[1;k]; t) ∈ Cnk × Cd, where x[j;k]

= (xj , . . . , xk). We then inductively define Sj : Cnj × Cd → CN :

S0(t) = (0, t); S1(x1; t) = (x1; t),

Sj+1(x[1;j+1]; t) =
(
x1, Q

(
x1, S̄j(x[2;j+1]; t)

))
.

If we evaluate at t = 0, we denote the corresponding maps by Sj
0(x

[1;j]) =
Sj(x[1;j]; 0). An important property of the Segre maps thus defined is that
the map

Sq(x[1;q]; t) =
(
Sq−1

(
x[2,q]; t

)
, S̄q
(
x[1;q]; t

))
is valued in M. We can now recall the sequence of invariant pairs (nq

1, n
q
2)

introduced in [9] to measure the vanishing of πM. We thus consider the
differential dπk

M as a matrix-valued power series map and define

(nq
1, n

q
2) = min

k∈N
dtp (dπk

M ◦ Sq);

the minimum is again taken with respect to the lexicographic ordering
defined above, and is finite for every q (i.e. not equal to (∞,∞)) if and only if
M is holomorphically nondegenerate (see [9]). (nq

1, n
q
2) measures how dtpπM

vanishes “along the Segre maps” and form a lexicographically decreasing
sequence in q. We can now summarize the results of §3 of [9] as follows:

Lemma 2. The numbers (nq
1, n

q
2) are stable in the following sense: If (M, 0)

and (M ′, 0) are generic real-analytic submanifolds of CN and H : (M, 0) →
(M ′, 0) is a germ of a biholomorphic map, then with the biholomorphism
H = (H(Z), H̄(ζ)) between M and M′ we have

dtp dπM′ ◦ (H ◦ Sq) = (nq
1, n

q
2).

Finally, we recall the definition of the transversal jet space Jk
t ((C

p
x,C

q
t , 0),

Cr), which is the set of equivalence classes of germs of holomorphic maps h
from (Cp

x × C
q
t , 0) to Cr with respect to the equivalence relation of agreeing
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up to order k in t, that is,

Jk
t ((C

p
x,C

q
t , 0),C

r) = mC{x, t}r�(t1, . . . , tq)k,

and we have the natural map h 	→ jkt,0h ∈ Jk
t ((C

p
x,C

q
t , 0),C

r), which after
choosing coordinates is given by

jkt,0h = (htα(x, 0) : 1 ≤ |α| ≤ k) .

Thus we can essentially identify Jk
t ((C

p
x,C

q
t , 0),C

r) with a space of germs of
power series in x.

We now recall the following result, which is essentially a restatement of
Theorem 7 and Theorem 8 of [9]:

Theorem 8. Let P : (Cr, 0) → (Cs, 0) be a holomorphic map of generi-
cally full rank s, and (n1, n2) ∈ N2. We write k(	) = max(2n2 − 1, n2 + 	).
Then there exists an integer k0, a finite number of Zariski-open subsets
V 1, . . . , V d ⊂ Jk0((Cp+q, 0), (Cr, 0)) covering Jk0((Cp+q, 0), (Cr, 0)) and for
every 	 ∈ N holomorphic mappings

Φj
� : V

j × J
k(�)
t,0 ((Cp × Cq, 0),Cs) → J �

t ((C
p × Cq, 0),Cr)

with the property that

j�t,0h = Φj
�

(
jk0

0 h, j
k(�)
t,0 (P ◦ h)

)
(9)

whenever dtpPy ◦ h = (n1, n2) and jk0

0 h ∈ Vj .

Moreover, Φ� can be chosen to be of the following form:

(10) Φj
�(Λ, Λ̃(x))(x) =

∑
α∈Np

pα(Λ, Λ̃β : |β| ≤ a+ b|α|)
ej(Λ)dα,�

xα,

where pα and ej are polynomials, V j = {ej = 0}c, and a, b, and dα,� are
integers, and we write Λ̃(x) =

∑
β Λ̃βx

β.

Before we can deduce our first parametrization result, we also need to
recall the following lemma on derivatives.
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Lemma 3. For every q ∈ N, k ∈ N, there exists a real-analytic map

Dq
k : J

k((Cqn+d, 0), (Cm, 0))× C{z, χ, τ}
→Hol((Cqn+d, 0), Jk((CN , 0), (Cm, 0))),

which is a complex polynomial in its first argument, such that for any power
series map h(z, w), we have that

(11) jkZh

∣∣∣∣
Z=Sq(x[1;q];t)

= Dk
q

(
jk(x[1;q];t)(h ◦ Sq), Q

)
,

where Dk
q is of the form

Dk
q (Λ, Q)(x[1;q], t) =

∑
α,β

pα,β(Λ, j
|α|+|β|
0 Q)(x[1;q])αtβ

for some polynomials pα,β (which are complex polynomials in their first and
real polynomials in their second variable).

For the notion of analyticity used here, we refer the reader to Remark 1.

Proof. In the proof of this Lemma, we write Sj(x
[1;j]; t) = (x1, U j(x[1;j]; t))

according to the decomposition CN = Cn × Cd and employ again the matrix
notation (see Section 2). We are going to use the facts that U q

x1(0; 0) = 0n×d

and U q
t (0; 0) = Id×d. We start by verifying the claim for k = 1: setting f =

h ◦ Sq, we have (here the dimension of the matrices involved is left implicit
and we write (x, t) for (x[1;q]; t))

fx1(x, t) = hz(S
q(x, t)) + hw(S

q(x, t)) · U q
x1(x, t),

ft(x, t) = hw(S
q(x, t)) · U q

t (x, t).

When (x, t) = (0, 0) the system reduces to fx1(0, 0) = hz(0, 0), ft(0, 0) =
hw(0, 0), so that it can be solved for hz and hw. By Cramer’s rule, the
solution is a linear function of fx1(x, t), ft(x, t) with coefficients which are
rational functions of U q

x1(x, t), U
q
t (x, t); the conclusion for k = 1 then follows

from the definition of U q.
Assume, now, that k > 1 and that the conclusion is valid for k − 1; we

decide here to abuse notation in a pretty straightforward manner, and leave
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it to the reader to make the computation formally correct:

hzk−1(Sq(x, t)) =
∑
α,β

qk−1,0
α,β (jk−1

(x,t)f, j
|α|+|β|
0 Q)xαtβ ,

hzk−2w(S
q(x, t)) =

∑
α,β

qk−2,1
α,β (jk−1

(x,t)f, j
|α|+|β|
0 Q)xαtβ ,

· · ·
hwk−1(Sq(x, t)) =

∑
α,β

q0,k−1
α,β (jk−1

(x,t)f, j
|α|+|β|
0 Q)xαtβ ,

where each qi,jα,β(Λ, Q) is a complex polynomial in Λ and a real polynomial

in (the appropriate jet of) Q. Differentiating this system with respect to x1

and (only the last equation) with respect to t, we obtain

hzk(Sq(x, t)) + hzk−1w(S
q(x, t)) · U q

x1(x, t)

=
∑
α,β

rk,0α,β(j
k
(x,t)f, j

|α|+|β|
0 Q)xαtβ ,

hzk−1w(S
q(x, t)) + hzk−2w2(Sq(x, t)) · U q

x1(x, t)

=
∑
α,β

rk−1,1
α,β (jk(x,t)f, j

|α|+|β|
0 Q)xαtβ ,

· · ·
hzwk−1(Sq(x, t)) + hwk(Sq(x, t)) · U q

x1(x, t)

=
∑
α,β

r1,k−1
α,β (jk(x,t)f, j

|α|+|β|
0 Q)xαtβ ,

hwk(Sq(x, t)) · U q
t (x, t)

=
∑
α,β

r0,kα,β(j
k
(x,t)f, j

|α|+|β|
0 Q)xαtβ ,

where each ri,jα,β(Λ, Q) is again a complex polynomial in Λ and a real poly-
nomial in Q. Computing in (x, t) = (0, 0), one sees that the system can be
solved for hziwj as a linear function of the right hand sides, with coefficients
which are rational functions of U q

x1(x, t), U
q
t (x, t); in the same way as before,

this implies the claim. �

Remark 2. In the following, we will often have to substitute jk0ϕ into
functions which depend on j�0ϕ for 	 < k; in order to lighten the notation,
we suppress the application of j�0 in that case; i.e. if ψ(Λ) is a function which
depends on a k–jet Λ, we define ψ(Λ̃) for an 	-jet Λ̃ by ψ(Λ̃) = ψ(j�0Λ̃).
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We can now state and prove the parametrization theorem for deforma-
tions, first along the Segre varieties.

Theorem 9. Let (M ′, 0) be a germ of a real-analytic generic submanifold of
CN which is holomorphically nondegenerate. Then for every (q, 	) ∈ N2 there
exist an integer s(q, 	), a finite set L = L(q, 	) and for each J ∈ L a Zariski-

open subset V J ⊂ J
s(q,�)
0 ((CN , 0), (CN , 0))× J

s(q,�)
0 ((C2n+d, 0), (Cd, 0)), and

a real-analytic map ΨJ
q,� defined on V J×C{z, χ, τ} with values in J �

t,0((C
nq+d,

0), (CN , 0)) such that

j�t,0 (H ◦ Sq) = ΨJ
q,�

(
j
s(q,�)
0 H, j

s(q,�)
0 Q,Q

)
,

if w = Q(z, z̄, w̄) defines a real-analytic generic submanifold MQ in nor-
mal coordinates (z, w), and H is a biholomorphism taking the germ (MQ, 0)

into (M ′, 0) satisfying (j
s(q,�)
0 H, j

s(q,�)
0 Q) ∈ V J ; for any such H and Q, there

exists at least one J with this property. Furthermore, ΨJ
q,� can be chosen

such that

(12) ΨJ
q,�(Λ, Q)(x) =

∑
α

qα(Λ, j
cα
0 Q)

|eJ(Λ)|2dα
xα,

with real polynomials qα, complex polynomials eJ for which V J = {eJ �= 0},
and integers cα, dα.

Proof. The proof is by induction on q. We start with q = 1 and choose k
large enough such that dtp dπk

M′ = (n1
1, n

1
2), and use Lemma 1 to see that

πk
M′ ◦ H ◦ S1 =

Pk

(
jk(0,t)H, (Qzβ(0, x1, t))|β|≤k

)
det(fz(0, t) + fw(0, t)Qz(0, x1, t))2k−1

(13)

=
∑
α,β

Pα,β

(
j
2k−1+|β|
0 H, j

k+|α|+|β|
0 Q

)
det fz(0)

2k−1+|α|+|β| (x1)αtβ

=: P1
k(H,Q)(x, t).

The last expression P1
k(H,Q) then defines an analytic map in our sense (as

a composition map). For any s ∈ N, we write

jst,0P1
k(H,Q) = Q1

k,s(j
k+s
0 H,Q).
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By Lemma 2, dtp dπk
M′ ◦ H ◦ S1 = (n1

1, n
1
2). We can now apply Theorem 8

with P = πk
M′ and (n1, n2) = (n1

1, n
1
2) and obtain an integer k1 and polyno-

mials ej such that with ϕ = H ◦ S1 we have

j�t,0ϕ(x
1, t) =

(
Φ̃j
�

(
jk1

0 ϕ, j
k(�)
t,0 πM′ ◦ ϕ

)
, Φ̂j

�

(
jk1

0 ϕ, j
k(�)
t,0 πM′ ◦ ϕ

))
whenever dtp dπM′ ◦ ϕ = (n1

1, n
1
2) and ẽj(j

k1

0 ϕ) �= 0, where we split Φ into
components (Φ̃, Φ̂) corresponding to the coordinates (Z, ζ) for M′, with the
analogous notation for ϕ. We also note that by the definition of πM′ and
the construction of the ẽj and Φ we can actually write

j�t,0ϕ(x
1, t) =

(
Φ̃j
�

(
jk1

0 ϕ̂, j
k(�)
t,0 πM′ ◦ ϕ

)
, Φ̂j

�

(
jk1

0 ϕ̂, j
k(�)
t,0 πM′ ◦ ϕ

))
whenever ẽj(j

k1

0 ϕ̂) �= 0. In particular, if w = Q(z, χ, τ) defines the germ of
a complexification of a real-analytic generic submanifold in normal coordi-
nates, H takes w = Q(z, z̄, w̄) into (M ′, 0)

j�t,0
(H ◦ S1

)
=
(
Φ̃j
�

(
jk1

0

(
H̄ ◦ S̄1

)
, j

k(�)
t,0 πM′ ◦ H ◦ S1

)
,(14)

Φ̂j
�

(
jk1

0

(
H̄ ◦ S̄1

)
, j

k(�)
t,0 πM′ ◦ H ◦ S1

))
,

the second component of which is just

j�t,0H̄ ◦ S̄1 = Φ̂j
�

(
jk1

0

(
H̄ ◦ S̄1

)
, j

k(�)
t,0 πM′ ◦ (H ◦ S1

))
.

We note that

jk1

0

(
H̄ ◦ S̄1

)
= R
(
jk1

0 H̄, jk1

0 Q̄
)
;

here R is some polynomial. Furthermore, at least one of the ẽj ◦R is nonzero
if H : (MQ, 0) → (M ′, 0) is a biholomorphism. We can now define L1 =
{1, . . . , d} and ej(Λ) = (detλ0)ẽJ(R(Λ)), where λ0 is the part of Λ corre-
sponding to f̄z(0).

Now by (10), we have with Λ denoting the jet variable in

Jk1

0 ((CN , 0), (CN , 0))× Jk1

0 ((C2n+d, 0), (Cd, 0)),

that

Φ̂j
�

(
Λ, Λ̃(x)

)
=
∑
α∈Np

pα(Λ, Λ̃β : |β| ≤ a+ b|α|)
ẽj(Λ)d̃α

xα,
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so that if we choose cα large enough and define

q̃α(Λ, κ) = pα

⎛⎝R(Λ),

((
β!Pγ,β(Λ̄, κ̄)

(det λ̄)|α|+|β|

)
β≤k(�)

)
|γ|≤a+b|α|

⎞⎠ .

There exists a real polynomial qα and an integer dα such that

(15)
q̃α(Λ, κ)

ẽj(R(Λ))d̃α

=
qα(Λ, κ)

|eJ(Λ)|dα
,

and (13) and (14) together with the last computations then show that under
the assumptions of the Theorem, we have that

j�t,0H̄ ◦ S̄1 = ΨJ
1,k(j

s
0H, js0Q,Q) = Φ̂j

�(R(jk1

0 H̄, jk1

0 Q̄),Q1
k,k(�)(j

k+k(�)
0 H,Q)),

for which we set s(1, 	) := s = max(k1, k + k(	)); clearly, the Ψ thus defined
is of the form (12). This proves the conclusion of the theorem for q = 1.

We now prove the induction step, and assume that the conclusion of the
theorem holds for q − 1. In order to do so, we again choose k large enough
and use Lemma 1 to see that

πk
M′ ◦ H ◦ Sq(x[1;q]; t)(16)

=
Pk

(
jkSq−1(x[2;q],t)H, (Qzβ(x2, S̄q(x[1;q]; t))|β|≤k

)
det
(
fz(Sq−1(x[2;q], t)) + fw(Sq−1(x[2;q], t))Qz(x2, S̄q(x[1;q]; t))

)2k−1
;

in this equation, we substitute for jkSq−1(x[2;q],t)H, using Lemma 3 and the
induction hypothesis applied for the map corresponding to one of the J ∈ L

which satisfies eJ(j
s(q−1,|β|+k)
0 H, j

k+|α|+|β|
0 Q) �= 0, to see that

πk
M′ ◦ H ◦ Sq(x[1;q]; t)(17)

=
∑
α,β

P q−1
α,β (j

s(q−1,|β|+k)
0 H, j

k+|α|+|β|
0 Q)

det fz(0)2k−1+|α|+|β|(eJ(jk0H, jk0Q))gα
xαtβ = Pq

k,J(H,Q)(x, t).

Here K and gα are some integers. Analogously to the case q = 1, we will
write

jst,0Pq
k,J(H,Q) = Qq

k,s,J(j
k+s(q−1,s+k)
0 H,Q)

We again apply Theorem 8, this time with (n1, n2) = (nq
1, n

q
2), and with

P = πk
M′ ; we thus obtain similarly as before in the case q = 1 an integer kq,
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finitely many complex polynomials ej , j = 1, . . . , sq, and for every such j a

map Φ̂q,j
� such that

j�t,0H̄ ◦ S̄q = Φ̂q,j
�

(
j
kq

0

(
H̄ ◦ S̄q

)
, j

k(�)
t,0 πM′ ◦ (H ◦ Sq−1

))
.

We are thus lead to define Lq = {1, . . . , s} × Lq−1, and ej,J = ejeJ , and see

that if we put s(q, 	) = max(kq, k(	)+s(q − 1, k+k(	))), then if ej,J(j
s(q,�)
0 H,

j
s(q,�)
0 Q) �= 0, we have that

j�t,0H̄ ◦ S̄q = Ψ
(j,J)
q,�

(
j
s(q,�)
0 H, j

s(q,�)
0 Q,Q

)
= Φ̂q,j

�

(
Rq
(
j
kq

0 H̄, j
kq

0 Q
)
,Qq

k,k(�)(j
s(q,k)
0 H,Q)

)
,

where we have written j
kq

0 H̄ ◦ S̄q = Rq(j
kq

0 H̄, j
kq

0 Q). We conclude that if we
define

Ψ
(j,J)
q,� (Λ, Q) = Φ̂j

�

(
Rq (Λ) ,Qq

k,k(�),J(Λ, Q)
)
,

the requirements of the theorem are fulfilled; a computation along the lines
of the first part of the proof shows that again Ψ is of the form (12) as
desired. �

4. Inverting the Segre map

In the last section, we have obtained a general deformation of the param-
etrization of biholomorphisms along the Segre varieties. If we furthermore
assume that (M ′, 0) is minimal, we shall now obtain the proof of Theorem 4.

First, we need to recall a theorem from [9] which we are going to use; in
order to formulate it, we need some definitions. For a formal map A(z) : (Cm,
0) → (Cn, 0) we denote by ν(A) the minimum order of vanishing of minors
of the Jacobian of A. We denote by D = {(δ1, . . . , δn) ∈ {1, . . . ,m}n : δ1 <
· · · < δn}, and for δ ∈ D and a map A ∈ Hol, we define

(18) δ(A) =

∣∣∣∣∣∣∣∣
∂A1

∂zδ1
· · · ∂A1

∂zδn
...

...
∂An

∂zδ1
· · · ∂An

∂zδn

∣∣∣∣∣∣∣∣ .
We can thus define

(19) ν(A) = min
δ∈D

ord δ(A).
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We will simplify notation and write Hol(m,n) (Ĥol(m,n)) for the space
of (formal) holomorphic maps (Cm, 0) → (Cn, 0). If the dimensions are clear,
we simply write Hol or Ĥol. We can thus consider ν : Ĥol → N; note that the
maps of generic full rank are exactly the ones for which ν < ∞.

Theorem 10. For every s ≥ 0 there exists a finite family of polynomials
ψ1, . . . , ψ�(s) on Js+1

0 ((Cm, 0), (Cn, 0)) and corresponding holomorphic func-
tions

(20) Φk(A, f) : Ûk × C�z� → C�w�, 1 ≤ k ≤ 	(s),

where Uk =
{
A ∈ Hol : ψk(j

s+1
0 A) �= 0

}
, Ûk =

{
A ∈ Ĥol : ψk(j

s+1
0 A) �= 0

}
,

and Φk is linear in its second variable, such that with A∗g = g ◦A we have
that

(21) Φk(A,A∗g) = g, for every g and for A ∈ Ûk with ν(A) = s,

and ⋃
k

Ûk ⊃ {A ∈ Ĥol : ν(A) = s},
⋃
k

Uk ⊃ {A ∈ Hol : ν(A) = s}

Furthermore, if A ∈ Uk, the operator Φk(A, ·) restricts to a linear operator
from C{w} to C{z}, and the map Φk : Uk × C{z} → C{w} is holomorphic,
where Hol, C{w}, and C{z} are all equipped with their natural inductive
limit topologies.

Moreover, Φk(A, f) can be written as

(22) Φk(A, f)(w) =
∑
α

Pα,k(j
�(α)
0 A, j

�(α)
0 f)

ψk(j
s+1
0 A)2|α|−1

wα.

The crucial observation is that one has the necessary invariance property
of the Segre maps to apply this theorem to the Segre maps of a biholomorphic
perturbation of any fixed CR manifold.

Lemma 4. Let Sq(x[1;q]; t) : Cqn+d → Cn+d be the Segre map of order q
associated to (M, 0) given in normal coordinates (z, w) by w = Q(z, z, w),
and let ν(Sq

0) < +∞ be defined as above. Assume that M ′ = {w′ = Q′(z′, z′,
w′)} is biholomorphic to M , and denote by S′q

0 the Segre maps based on Q′.
Then ν(S′q

0 ) = ν(Sq
0).
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Proof. Let q ∈ N, and let Y : Cqn+d → Cqn+d, Y = (y1, . . . , yq, u), yj ∈ Cn,
u ∈ Cd, be defined as

y2j+1 = F (Sq−2j(x[2j+1;q]; t)), y2j = F (Sq−2j+1(x[2j;q]; t)),

u = G(xq; t) (q odd), u = G(xq; t) (q even),

where H = (F,G) is a germ of a biholomorphism taking (M, 0) to (M ′, 0).
We first claim that Y is a germ of a biholomorphism at 0. To compute its
differential, we use the notation

dxjym =

(
∂ymr

∂xjs

)
r,s=1,...,n

,

and similar ones for dxju, dty
m and dtu. Since Y is defined in an upper

triangular way, we have (where we set X = (x1, . . . , xq, t))

dY (X) =

⎛⎜⎜⎜⎜⎜⎝
dx1y1(X) dx2y1(X) · · · dxqy1(X) dty

1(X)
0 dx2y2(X) · · · dxqy2(X) dty

2(X)
...

...
. . .

...
...

0 0 · · · dxqyq(X) dty
q(X)

0 0 · · · dxqu(X) dtu(X)

⎞⎟⎟⎟⎟⎟⎠ .

By definition, dxqu(0) = dxqG(0, 0) = 0 and |dtu(0)| = |dtG(0, 0)| �= 0, thus
in order to check that dY (0) is invertible it is sufficient to verify that the
determinants |dxkyk(0)|, k = 1, . . . , q, don’t vanish. Assume that k = 2j + 1
(the other case is analogous); then

y2j+1(X) = F (Sq−2j(x[2j+1;q]; t)) = F (x2j+1, Q(x2j+1, S
q−2j−1

(x[2j+2,q];t)))

from which follows (here (z, w) ∈ Cn × Cd are the normal coordinates)

dx2j+1y2j+1(0) = dzF (0) + dwF (0) · dzQ(0).

Since dzQ(0) = 0 (in fact d(z,χ)Q(0) = 0) and |dzF (0, 0)| �= 0, the claim is
verified.

The Lemma is now a direct consequence of Lemma 3 in [9] and of the
claim after restricting to t = 0 (since G(xq, 0) = 0). �
Proof of Theorem 4. By the Baouendi-Ebenfelt-Rothschild minimality cri-
terion [1], there exists a q for which S′q

0 is of generically full rank, i.e.
ν(S′q

0 ) < ∞. By Theorem 9 there exist an integer s(q, 0) and a finite fam-
ily of complex polynomials eJ , J ∈ Lq defined on Js(q,0)((CN , 0), (CN , 0))×
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Js(q,0)((C2n+d, 0), (Cd, 0)), and corresponding maps ΨJ
q,0 such that if H and

Q are as in the Theorem, then

H ◦ Sq
0 = ΨJ

q,0(j
s(q,0)
0 H, j

s(q,0)
0 Q,Q).

We now apply Theorem 10 with s = ν(S′q
0) and obtain a finite set of polyno-

mials ψk and maps Φk, k = 1, . . . , 	(s) such that if ψk(j
s+1
0 Sq

0) = ψ̃k(j
s+1
0 Sq

0)
�= 0 and ν(Sq

0) = s, then

Φk(S
q
0 , H ◦ Sq

0) = H.

We set 	 = max(s+ 1, s(q, 0)) and consider the finite set of polynomials given
by eJ,j = |eJ |2ψ̃j , i.e. we set L = Lq × {1, . . . , 	(s)}. If the assumptions of
the theorem are satisfied for H and Q, then for one pair (J, j) we have
that eJ,j(j

�
0H, j�0Q) is nonzero by Lemma 4 and Theorem 9. For any pair

(J, j) ∈ L we proceed to define

Ψ(J,j)(Λ, Q) = Φj

(
Sq
0 ,Ψ

J
q,0(Λ, j

s(q,0)
0 Q,Q)

)
.

Then, if H ∈ Bihol((MQ, 0), (M
′, 0)) with e(J,j)(j

�
0H, j�0Q) �= 0, we have that

Ψ(J,j)(j
�
0H,Q) = Φj

(
ΨJ

q,0(S
q
0 , j

�
0H, j

s(q,0)
0 Q,Q)

)
= Φj (S

q
0 , H ◦ Sq

0) = H.

The proof of the theorem is concluded by an easy computation utilizing (12)
and (22) in order to show iii). �

5. Finite order equivalence and semi-algebraicity

5.1. Finite order equivalences

Let (M,p) and (M ′, p′) be two germs of real submanifolds of CN of real
codimension d, locally given by defining functions ρ, ρ′ respectively, and let
k ∈ N, i.e. ρ : (CN , p) → (Rd, 0) is a germ of a real-analytic function with
dρ(p) of rank d. We note that alternatively, we can parametrize (M,p) by
a germ of a real-analytic function ψ(t) with t ∈ (R2n+d, 0) with dψ(0) of
rank 2n+ d. Then (M,p) and (M ′, p′) are said to be equivalent of order k or
k-equivalent if there exists a local biholomorphism H ∈ B((CN , p), (CN , p′))
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and a (d× d)-matrix-valued map A, such that A(p, p̄) is non-singular and

ρ′(H(Z), H(Z)) = A(Z,Z)ρ(Z,Z) + o(|Z|k),

or equivalently, if

(23) ρ′
(
H(ψ(t)), H(ψ(t))

)
= o(|t|k).

Of course, only the k-jet jkpH ∈ Jk((CN , p), (CN , p′)) is involved in the def-
inition, and the property only depends on the k-jets of (M,p) and (M ′, p′)
in the following sense:

Lemma 5. Let (M, 0) be a real-analytic submanifold of CN of codimension
d. Then there exists a sequence of real polynomials (ϕ�)�, only depending on
(M,p),

ϕ� : J
�
0((C

N , 0), (Rd, 0))× J �
0((C

N , 0), (CN , 0)) → Rn� ,

with the following property: If ρ′ is a defining function of a real-analytic
submanifold (M ′, 0), also of codimension d, then H defines an 	-equivalence
of (M, 0) and (M ′, 0) if and only if

ϕ�(j
�
0ρ

′, j�0H) = 0.

For the proof, let ψ : (R2n+d, 0) → (CN , 0) be a real-analytic parametriza-
tion of (M, 0), and define

ϕ�

(
j�0ρ

′, j�0H
)
=

(
∂|α|

∂tα

∣∣∣∣
t=0

ρ′
(
H(ψ(t)), H(ψ(t))

))
|α|≤�

,

which is of the form claimed above by the chain rule and satisfies the prop-
erties of the Lemma by the definition given above in (23).

In what follows, we will apply this system to a deformation ρ(Z,Z, ε)
of the germ ρ, where ε ∈ X and X is a germ of real-analytic manifold, see
Section 1. For convenience, we will use the notation

(24) rk(ε) = jk0ρ(·, ε);

rk : X → Jk((CN , 0), (Rd, 0)) is thus a real-analytic mapping. In the case
when the deformation is given by the collection of germs (M, q) for q in a
neighborhood of p in M , we will consider rk as a germ of a real-analytic
mapping defined near p.
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From now on we assume that the real-analytic CR manifold M is mini-
mal and holomorphically nondegenerate, as in the previous section. We will
recall some known results regarding the relationship among finite order, for-
mal and biholomorphic equivalence that we are going to employ later. First
of all, from [18, Theorem 5.1] we have the following fact: for every κ > 1
there exists k > 1 such that for every k-equivalence H : (M, 0) → (M, 0)
there exists a formal equivalence H̃ which coincides with H up to order κ.
(Zaitsev’s result applies to equivalences of formal real-analytic sets, without
minimality or nondegeneracy assumptions, given that they are equivalent
to any finite order, which is trivially fulfilled in our setting). Combining
this statement with [2], we have that H̃ is actually a local biholomorphism.
Moreover, [18, Theorem 2.1] and [2] show that if (M, 0) and (M ′, 0) are
k-equivalent for all k ∈ N then they are also biholomorphically equivalent.
We also refer the reader to [4], where the result was proved in the finitely
nondegenerate case.

Remark 3. If (M ′, 0) is biholomorphic to (M, 0), then for all κ > 1 and
for the same k(κ) as above we also have that for every k-equivalence H :
(M, 0) → (M ′, 0) there exists a formal (hence, in our setting, convergent)
equivalence H̃ which coincides with H up to order κ. In fact, let φ : M → M ′

be a biholomorphism, andH ′ : M → M ′ a k-equivalence; thenH = φ−1 ◦H ′

is a k-equivalenceM → M . Let H̃ be an automorphism ofM which coincides
withH up to order κ; then H̃ ′ = φ ◦ H̃ agrees with φ ◦H = H ′ up to order κ.

As observed above, the k-equivalence condition gives rise to a real alge-
braic subset {ϕk = 0} defined in Lemma 5; what we are really interested in,
however, is the projection of this set on its first component. For this purpose,
we shall now recall some well-known notions and facts about real algebraic
geometry.

5.2. Basics from real-algebraic geometry

A set A ⊂ Rn is said to be semi-algebraic if it is a finite union of intersections
of sets defined by real polynomial equations and inequalities:

A =

k⋃
i=1

h(i)⋂
j=1

Aij



Deformations of CR manifolds 1113

where Aij is either of the form {Pij = 0} or {Pij > 0} for some real polyno-
mial Pij ∈ R[x1, . . . , xn]. The importance of semi-algebraic sets is highlighted
by the following fundamental result:

Theorem 11. (Tarski-Seidenberg) Let A ⊂ Rn be a semi-algebraic set,
and let π be the projection π : Rn → Rn−1. Then π(A) is semi-algebraic.

More generally, if R is any ring of real functions over a set E, a sub-
set A ⊂ E is called definable if it can be expressed as before, with Aij

being either of the form {fij = 0} or {fij > 0} for some fij ∈ R. We will
need the following consequence of �Lojasiewicz’s generalization of the Tarski-
Seidenberg result (see e.g. [6]):

Theorem 12. (�Lojasiewicz) Let X be an analytic manifold, let A ⊂ X ×
Rk be definable over the ring Cω(X)[x1, . . . , xk] and let π : X × Rk → X be
the projection on the first factor. Then π(A) is semi-analytic, i.e., definable
over Cω(X).

We have now gathered all the tools we need in order to prove Theorem 2.

Proof of Theorem 2. Let (Mε, 0)ε∈X be a deformation of (M, 0). Given a
subset E ⊂ X, we will denote by Cω(E) the set of real-analytic functions
defined in a neighborhood of E in X; moreover, given a point ε0 ∈ X we
denote by Cω

ε0 the set of germs of real-analytic functions at ε0. In what fol-
lows, for every k we regard the map rk defined in Section 5 as a real-analytic
map X → Jk((C2n+d, 0), (Cd, 0)); i.e., we take a choice of real-analytic func-
tions Q(z, χ, τ, ε) such that for ε ∈ M , Q(z, z̄, w̄, ε) defines (Mε, 0) in normal
coordinates (z, w), and write

rk(ε) = jk0Q(·, ·, ·, ε);

we also write r(ε) = Q(·, ·, ·, ε) ∈ C{z, χ, τ}. Let ej and pj,α be defined as
in Theorem 5, and fix any j0; moreover, fix any relatively compact, open
semianalytic set B ⊂ X. Since Cω(B) is Noetherian (see [8], and also [10,
14]), the same is true for Cω(B)[Λ]: it follows that there exists K ∈ N such
that

{pj0,α(Λ, rcα(ε)) = 0} = {pj0,α(Λ, rcα(ε)) = 0}|α|≤K

for (Λ, ε) ∈ J �((CN , 0), (CN , 0))×B.
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Consequently, if we define for every j the set Aj ⊂ J �((CN , 0), (CN , 0))×
B as

Aj = {(Λ, ε) ∈ J �((CN , 0), (CN , 0))×B : ej(Λ, r�(ε)) �= 0, ψj(Λ, r(ε)) = 0}

and set A = A1 ∪ · · · ∪Ak, then A is definable over the set of real polyno-
mials in J �((CN , 0), (CN , 0)) with coefficients in Cω(B). Theorem 5 then
implies that (where we denote by π the projection J �((CN , 0), (CN , 0))×
X → X) π(A) corresponds to the the points ε ∈ B such that (Mε, 0) is locally
biholomorphic to (M, 0), i.e. π(A) = EM ∩B. Thus �Lojasiewicz’s theorem
implies that π(A), and thus EM , is a semianalytic subset of B. �

6. Lifting

In order to proceed with the proof of the lifting statements, we still need
to collect two facts. We first recall that, if A1 ⊂ Rn and A2 ⊂ Rm are semi-
algebraic set, a map f : A1 → A2 is said to be a semi-algebraic map if the
graph of f is a semi-algebraic subset of Rn+m.

A (semi algebraic) cell decomposition of a semi-algebraic set A is a finite
collection of subsets {Cq

j } such that each Cq
j is semi-algebraically home-

omorphic to the ball Bq = {x ∈ Rq : |x| < 1} (Cq
j is then called a cell of

dimension q) and satisfying the following properties:

1) A =
⋃

j,q C
q
j ;

2) the closure C
q
j of a q-cell is the union of Cq

j and cells of strictly smaller
dimension.

In other words, the sets Cq
j form what is called a stratification. An important

result in the theory of semi-algebraic sets is that a cell decomposition always
exists (see [5]).

Remark 4. LetX ⊂ Rn, Y ⊂ Rm be semi-algebraic sets and let f : X → Y
be a semi-algebraic homeomorphism. Moreover, let K ⊂ X be any subset.
Then there exists p ∈ K, a neighborhood U of p in Rn and a real-analytic
submanifold N ⊂ U such that K ∩ U ⊂ N and f |N is a real-analytic map.
To verify this fact, let Γ(f) ⊂ Rn+m be the graph of f , and let π1, π2 be the
projections of Γ(f) onto X and Y respectively. We note that Γ(f) admits a
stratification by real-analytic cells (see [5, Theorem 2.6.12]: the decomposi-
tion can be in fact chosen to be a triangulation); let C be a cell of maximal
dimension intersecting K ′ = π−1

1 (K), and choose p′ ∈ C ∩K ′, p = π1(p
′).
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Then there exists a neighborhood U ′ of p′ such that U ′ ∩K ′ ⊂ C: if not, we
can choose a sequence of points p′k converging to p′ such that p′k ∈ D ∩K ′

for some cell D �= C, which by the choice of C is of necessarily lower dimen-
sion; hence p ∈ D̄ ∩ C = ∅ since the cells form a stratification (for a similar
argument, see also the proof of Lemma 6 below). Take N = π1(C ∩ U ′) (N
is a real-analytic submanifold since π1|C is a diffeomorphism); then K is
locally contained in N and f = π2 ◦ π−1

1 is real-analytic.

We will also need the following local triviality result, due to Hardt (see
e.g. [5]), concerning semi-algebraic continuous maps.

Theorem 13. (Hardt) Let f : X → Y be a continuous, semi-algebraic
map. Then there exist a finite semi-algebraic stratification {Y1, . . . , Yk} of Y ,
a collection {F1, . . . , Fk} of semi-algebraic sets, and semi-algebraic homeo-
morphisms

gj : f
−1(Yj) → Yj × Fj

such that

f |f−1(Yj) = p ◦ gj
where p is the projection p : Yj × Fj → Yj.

Let (Mε, 0)ε∈X be a real-analytic deformation of the germ (M, 0), as
defined in Section 1, and EM be the locus {ε ∈ X : (Mε, 0) ∼ (M, 0)}. By def-
inition, for all ε ∈ EM there exists a local biholomorphism (M, 0) → (Mε, 0);
however it is not clear, in principle, that these biholomorphisms can be cho-
sen to depend nicely on ε. The next lemma shows that this can in fact be
done at least boundedly in the neighborhood of each point of a dense subset
of EM .

Lemma 6. Let p ∈ EM , and fix a neighborhood U of p. Then there exists
q0 ∈ EM ∩ U such that for every biholomorphism Hq0 : (M, 0) → (Mq0 , 0),
any κ ∈ N, and for every neighbourhood W of jκ0H

q0 there exists a neigh-
bourhood V of q0 with the following property: for all q ∈ V ∩ EM there is a
biholomorphism Hq : (M, 0) → (Mq, 0) such that the jκ0φq ∈ W .

Proof. Choose k > 0 (associated to κ) as in Remark 3, and let ϕk be the set
of polynomials defined in Lemma 5. Then Ak = {ϕk = 0} is a real algebraic
subset of Jk

0 ((C
N , p′), (Rd, 0))× Jk

0 ((C
N , 0), (CN , 0)); let us denote by π the

projection to Jk
0 ((C

N , p′), (Rd, 0)). Let rk(q) be the map defined in (24); then
(Mq, 0) is k-equivalent to (M, 0) if and only if rk(q) belongs to π(Ak); in par-
ticular the points of EM satisfy this property. Let C1, . . . , Cm be a partition
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of π(Ak) into semi-algebraic sets in such a way that π|π−1(Cj) is trivial for
1 ≤ j ≤ m (see Hardt’s Theorem above and [5]), and let Ci

j be a cell decom-
position respecting {C1, . . . , Cm} and forming a stratification in the sense

specified above, i.e. C
i
j is the union of Ci

j and cells of strictly smaller dimen-

sion (cfr. [5]). Let d = max{d′ : ∃q ∈ EM ∩ U s.t. rk(q) ∈ Ci
j and dimCi

j =

d′}, and choose q0 ∈ EM ∩ U realizing the maximum, rk(q0) ∈ Ci0
j0
. We claim

that, for q′ ∈ EM lying in a small enough neighborhood of q0, we still
have rk(q

′) ∈ Ci0
j0
. Otherwise, there would exist a sequence q′n → q0 (hence

also rk(q
′
n) → rk(q0)) such that rk(q

′
n) ∈ Ci1

j1
for some fixed indexes i1, j1,

with dimCi1
j1

≤ d. It would follow that Ci0
j0
∩ C

i1
j1 �= ∅, which contradicts

the fact that the sets Ci
j form a stratification. So rk(q

′) ∈ Ci0
j0

for all the
q′ ∈ V ′ ∩ EM for some small enough neighborhood V ′ of q0; in particular
rk(q

′) ∈ Cj0 . By the triviality over π−1(Cj0) we have that, fixed a biholo-
morphism Hq0 : (M, 0) → (Mq0 , 0), there exists a neighbourhood V of q0
such that for all q′ ∈ V there exists a k-equivalence H̃q′ : (M, 0) → (Mq′ , 0)
whose k-jet belongs to jk0 (j

κ
0 )

−1W where W is the given neighbourhood of
jκ0H

q0 . By [18, Theorem 5.1] and [2] it now follows that there also exists a
biholomorphism Hq′ : (M, 0) → (Mq′ , 0) whose κ-jet belongs to W . �

If the deformation (Mq, 0) is given by moving the basepoint q of a fixed
germ (M,p), then the conclusion of Lemma 6 can be strenghtened:

Corollary 7. Let p ∈ M . Then for every κ ∈ N and for every neighbour-
hood V of jκp id there exists a neighborhood U of p such that for all q ∈ Ep ∩ U
there is a biholomorphism φq : (M,p) → (M, q) with jκpφq ∈ V .

Proof. Let q0 be as in Lemma 6, and fix any biholomorphism φq0 : (M,p) →
(M, q0). Then the claim is proved by composing the family φq of Lemma 6
with the inverse of φq0 . �

We now want to show that, if EM contains a real-analytic submanifold,
the lifting property of Lemma 6 gives real-analytic sections:

Lemma 8. Assume that EM contains a (real-analytic) submanifold R of X;
let p ∈ R and fix an open neighborhood U of p. Then for every κ ∈ N there
exist q1 ∈ R ∩ U , a neighbourhood V of q1, and a real-analytic map Lκ :
V ∩R → Gκ

0(C
N ) and (for all q ∈ V ∩R) a biholomorphism φq : (M, 0) →

(Mq, 0) whose κ-jet is Lκ(q).
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Proof. Along the same lines as Lemma 6, we work with the k which is
obtained from κ as in Remark 3. The conclusion will follow from the fol-
lowing claim: there exist x0 ∈ Ak (with π(x0) ∈ rk(R ∩ U)), q1 ∈ R ∩ U with
rk(q1) = π(x0), a neighborhood V ′ of rk(q1), a neighbourhood V of q1, and a
submanifold L of a neighborhood of x0 in Ak such that the map π : L → V ′ ∩
π(Ak) is 1− 1 and the map π−1 ◦ rk : V ∩R → L is real-analytic. Let Ci0

j0
be

the d-cell chosen in the proof of Lemma 6; since π is trivial over Cj0 , there
exists a semi-algebraic homeomorphism fj0 : Ak ∩ π−1(Cj0) → Cj0 × Fj0 (for
a certain semi-algebraic set Fj0) such that π|π−1(Cj0 )

= p ◦ fj0 (where p is the

projection Cj0 × Fj0 → Cj0). We apply Remark 4 to X = Ak ∩ π−1(Cj0),
Y = Fj0 × Cj0 and K = π−1(rk(R) ∩ Cj0) ∩Ak: we can then choose x0 ∈ Ak

in such a way that π(x0) ∈ rk(R) and fj0 is real-analytic on a submanifold N
of a neighborhood of x0 in Ak, locally containing π−1(rk(R)) ∩Ak. The claim
is then obtained by taking L to be the intersection of f−1

j0
(Ci0

j0
× {fj0(x0)})

with a small neighborhood of x0 in N . �
Again, if (Mq, 0) is given by the germs (M, q) induced at q ∈ M by a

fixed germ (M,p), the analogous of Corollary 7 holds with the same proof
to give us real-analytic sections:

Corollary 9. Let p ∈ M . Then for every κ ∈ N and for every neighbour-
hood V of jκp id there exists a neighborhood U of p, a real-analytic map
L : U → V ⊂ Jκ

p ((M,p),M), and biholomorphisms φq : (M,p) → (M, q) de-
fined for q ∈ Ep ∩ U such that for all q ∈ Ep ∩ U we have L(q) = jκpφq.

Theorem 14. Let (Mε, 0)ε∈X be a deformation of (M, 0), which we assume
to be holomorphically nondegenerate and minimal. Then there exists a dense
subset D ⊂ EM with the following properties:
i) Each component of D is real-analytic submanifold of X;
ii) For every q ∈ D there exists a neighbourhood U of q in D and a real-

analytic map ϕ(p, q) defined in a neighbourhood of {0} × U in M ×D
such that for each q ∈ U the map p 	→ ϕ(p, q) : (M, 0) → (Mq, 0) is a CR
equivalence.

Proof. We first note that since EM is a semianalytic subset of X by Theo-
rem 2, we can find a dense open subset D′ of EM each of whose components
are real-analytic submanifolds of X. By Lemma 8, we can find a dense subset
D ⊂ D′ each of whose points fulfills the property of Lemma 8 with κ being
the number 	 required in Theorem 3. From this Theorem, we conclude that
φq = Ψ(·, (L(q))−1, q)−1, where the inverse is taken as a map in the first
component, which is of the form claimed in ii). �
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Proof of Theorem 6. The second part of the Theorem is now either an imme-
diate consequence of Theorem 14 and the homogeneity of Ep, or one could
repeat the proof of that theorem with Lemma 8 replaced by Corollary 9 and
using the fact that Ep is a real-analytic submanifold. The first part of the
Theorem is implied by the second part, since we obtain an infinitesimal CR
automorphism of M at p by taking any curve γ(t) in Ep with γ(0) = p and
setting

X =
d

dt

∣∣∣∣
t=0

ψ(·, γ(t));

since ψ(p, q) = q, X(p) = γ′(0). �

7. Examples

7.1. Real-analytic examples

By Theorem 1, if M is a holomorphically nondegenerate, minimal real-
analytic manifold, and p ∈ M , the structure of the locus Ep is – at least
on a neighborhood of p – very simple. We present here several examples to
illustrate how, from a global point of view, the situation can be more compli-
cated. Also of interest are questions regarding the relationship between Ep

and the loci nearby, as well as the possibility to extend the automorphisms
of Ep to automorphisms of a neighborhood of Ep in M .

In some cases, where no simple invariant (for example involving degen-
eracy or type) is available, the actual computation of the locus can be a
complicated task. In such a situation, one can employ the characterization
in Theorem 6 , which, while only allowing to find the connected component
of Ep through p, in principle reduces the calculation to a linear problem.

Example 5. For a generic (M,p) the locus is trivial, i.e. Ep = {p}. On the
opposite side of the spectrum, we have the homogeneous manifolds where
Ep = M . Many of the results we have proved in this paper for the equiva-
lence locus (and actually, some more) are already known in the setting of
homogeneous CR manifolds from work of Zaitsev [17].

An interesting aspect of our results here is that they exhibit homoge-
neous CR manifolds as “building blocks” of holomorphically nondegenerate,
minimal, real-analytic CR manifolds since they are the disjoint union of the
equivalence orbits, which are (by Theorem 1) homogeneous CR manifolds.

A very simple example of a homogeneous CR manifold in C2(z, w) is
given by the Lewy hypersurface {Imw = |z|2}, which is biholomorphic to
the standard sphere S3 ⊂ C2.
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Example 6. Let S = {Imw = |z|4}; then S has type 4 along {z = 0, Imw =
0} and is strongly pseudoconvex elsewhere. It follows that E0 = {z = 0, Imw
= 0} is a real line. On the other hand, S \ E0 is homogeneous: a way to verify
this fact is to consider the map φ : C2 → C2, φ(z, w) = (z2, w). The pull-back
of S through φ is the Lewy hypersurface; since φ is non-singular for z �= 0,
then, the claim follows.

Alternatively, one can consider the group generated by {rθ}θ∈[0,2π) and
{dt}t∈R\{0}, where rθ(z, w) = (eiθz, w) and dt(z, w) = (tz, t4w), which (along-
side with the translation in the Rew-direction) acts transitively on S \ E0.

This example already shows that Ep needs not be, globally, a closed
submanifold of M , since this is not the case for S \ E0. We can also see that
the function p → dimEp is (only) lower semicontinuous.

Example 7. By modifying the previous example, we can get rid of some of
its symmetries and “break” the homogeneity of the strongly pseudoconvex
part. Let S1 = {Imw = |z|4 + |z|6}; then the rotations rθ are still automor-
phisms of S1. A heavy, computer-assisted calculation of dimREq at q = (i, 2)
(as it turns out, the equation defining hol(S1, q) needs to be checked up to
its 8-th jet) showed that the locus at q has dimension 2, as expected.

Let, now, S2 = {Imw = |z|4 +Re(zz3)}. In this case, the only rotation
preserved corresponds to θ = π, while S2 is invariant under the dilations
dt. Similarly as before, an explicit computation (this time involving the 7-th
order jet of the equation defining hol(S1, q)) at q = (i, 0) allows to verify that
dimREq = 2. We remark that in this example Eq is (globally) disconnected,
since it contains (at least) the two connected components {(is1, s2)}s1>0,s2∈R
and {(is1, s2)}s1<0,s2∈R.

Example 8. Let S = {Imw = |z|6 +Re(zz5)}. In this example, the auto-
morphisms of S include the dilations dt(z, w) = (tz, t6w) for t ∈ R and the
rotations rθ for θ = π,±π/2. As in the previous example, we could explicitly
check that the real dimension of Eq at the point q = (i, 2) is 2. Also in this
case, the locus Eq is not connected; moreover, we can see that Eq (while it
is in itself a locally closed submanifold of S) is no longer an open subset
of a regular submanifold of S. The closure of the locus corresponds in fact
to the 2-dimensional real-analytic set {(s1, s2) ∪ (is1, s2)}(s1,s2)∈R2 , which is
singular at 0.

Example 9. Let S = {Imw = |z1|4 + |z1z2|2} ⊂ C3(z1, z2, w): this hyper-
surface is obtained by modifying the homogeneous submanifold S′ = {Imw′

= |z′1|2+|z′2|2} via the map φ(z1, z2, w)=(z21 , z1z2, w). Since φ is non-singular
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for {z1 �= 0}, then, it follows that the open subset E5 = S ∩ {z1 �= 0} is
homogeneous. Moreover, S ∩ {z1 = 0} is the 3-dimensional plane {Imw =
0, z1 = 0} and so it is, by itself, an homogeneous submanifold of C3. Nonethe-
less, the equivalence locus of the point (0, 0, 0) does not coincide with S ∩
{z1 = 0}, but it reduces to the line E1 = (0, 0, s)s∈R (these are the only
points in which S has type 4). The remaining set E3 = S ∩ {z1 = 0, z2 �=
0} also constitutes a locus: looking at the automorphisms (z1, z2, w) →
(cz1, cz2, |c|4w) for c ∈ C \ {0} shows that Ep ⊃ E3 for all p ∈ E3, while con-
sidering the Levi form of S (which has exactly one vanishing eigenvalue only
along E3) shows that Ep ⊂ E3 for all p ∈ E3. To sum it up, S is the dis-
joint union of three loci E1, E3, E5, forming an analytic (in fact algebraic)
stratification.

Example 10. Let S = {Imw=(Rew)2e−Re z1+|z2|2} ⊂ C3. Here the auto-
morphisms of S include the translations along the Im z1-direction as well as
the transformations (z1, z2, w) → (z1 + t, et/2z2, e

tw) for t ∈ R. The group
they generate is transitive on E = {z2 = 0, w = 0} ⊂ S; once again, looking
at the eigenvalues of the Levi form shows that E coincides with the equiv-
alence locus of 0 in S. It follows that, even if S is nondegenerate, the locus
Ep of some point p ∈ S can be a complex submanifold.

From this example, as well as from the previous one, we see that S
needs not be “factorized over Ep”, in the sense of the existence (for some
“transversal” manifold T ) of a CR map from Ep × T to a neighborhood of
p in S; in other words, the loci nearby may not contain submanifolds which
are CR-isomorphic to Ep.

We also see that the group of automorphisms of Ep, considered in itself
as a homogeneous manifold, can be much bigger than the group of automor-
phisms of S which preserve Ep.

7.2. Counterexamples of finite smoothness

The following construction provides examples of hypersurfaces of C2 for
which the equivalence locus of certain points is not locally a manifold, or,
more precisely, is not even locally closed. For all finite k, we could find an
example of class Ck; we were not able, up to now, to find an example of
class C∞.

Let us consider the function g : (−1, 1) → R defined as

g(x) = e− tan2(πx/2);
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observe that g is real-analytic on (−1, 1); moreover, the extension of g to the
whole R by 0 is of class C∞. We are going to define a function f : [0, 1] →
R, vanishing exactly on the standard Cantor set C ⊂ [0, 1], by a suitable
sequence of dilations and translations of the function g. More precisely, for
m ∈ N define

an,m =
n

3m
, bn,m =

n+ 1

3m
, m ∈ N, 0 ≤ n ≤ 3m − 1

and let

Im =
{
i ∈ {0, 1, . . . , 3m − 1} : for all 0 ≤ j < m, 1 ≤ r ≤ 3m−j−1,

i �∈ {(3r − 2)3j , . . . , (3r − 1)3j − 1}
}
,

Jm = {0, 1, . . . , 3m − 1} \ Im.

We will consider the following family of linear (affine) transformations of R:

ψn,m : [0, 1] → [an,m, bn,m], ψn,m(x) =
x+ n

3m
;

note that ψn,m restricts to an automorphism of the Cantor set C as long as
n ∈ Im. For a choice of h > 0, we define

f(x) =

{
h−mg(2 · 3mx− 2n− 1), if x ∈ (an,m, bn,m) with n ∈ Jm,

0 otherwise (i.e. x ∈ C).

Then f satisfies the following relation:

f(ψn,m(x)) = h−mf(x) for all m ∈ N, n ∈ Im.

In fact, if x ∈ C then also ψn,m(x) ∈ C and f(x) = f(ψn,m(x)) = 0. Other-
wise, we have that x ∈ (ap,q, bp,q) for some q ∈ N, p ∈ Jq. Then ψn,m(x) ∈
(ap+n3q,m+q, bp+n3q,m+q) and since p+ n3q ∈ Jm+q, we have

f(ψn,m(x)) = h−(m+q)g(2 · 3m+q

(
x+ n

3m

)
− 2(p+ n3q)− 1)

= h−m
(
h−qg(2 · 3qx− 2p− 1)

)
= h−mf(x).

In other words, the graph {u = f(x)} of the function f in R2(u, x) is invari-
ant under the affine transformation (x, u) → (ψn,m(x), h−mu) for all m ∈ N

and n ∈ Im.
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Now, for k ∈ N, assume that h > 3k; we will show that f is of class Ck.
For every l ∈ N, define a function fl by “truncating the construction of f at
the step l”:

fl(x) =

{
h−mg(2 · 3mx− 2n− 1), if x ∈ (an,m, bn,m) with m ≤ l, n ∈ Jm,

0 otherwise;

observe that fl is smooth for any fixed l ∈ N, in particular it belongs to
Ck([0, 1]). Let M = ‖g‖Ck([−1,1]) = max0≤i≤k(supx∈[−1,1] |g(i)(x)|). Then, for
every 0 ≤ j ≤ k and x ∈ (an,m, bn,m) (n ∈ Jm),

∣∣∣∣ djdxj
f(x)

∣∣∣∣ = |h−m(2 · 3m)jg(j)(2 · 3mx− 2n− 1)| ≤
(
3k

h

)m

2kM.

If l1, l2 ∈ N, l2 > l1, then for j ≥ 0 the j-th derivative of fl2 − fl1 is only non
vanishing on

⋃
l1≤m≤l2,n∈Jm

(an,m, bn,m), hence for 0 ≤ j ≤ k

∣∣∣∣ djdxj
(fl2 − fl1)(x)

∣∣∣∣ ≤ sup
x∈⋃m≥l1

(an,m,bn,m)

∣∣∣∣ djdxj
f(x)

∣∣∣∣ ≤ (3kh
)l1

2kM.

Therefore {fl}l∈N is a Cauchy sequence in Ck([0, 1]); since by construction
fl → f , it follows that f is in turn of class Ck.

Now, consider in C2 complex coordinates (z = x+ iy, w = u+ iv), and
let S be the real, tubular hypersurface defined by

S = {(z, w) ∈ C2 : u = f(x)}.

Note that, for m ∈ N and n ∈ Im, the (affine) complex linear transformation
(z, w) → (ψn,m(z), h−mw) is an automorphism of S, where ψn,m(z) = (z +
n)/3m. Moreover, for t, s ∈ R the translation (z, w) → (z + it, w + is) and
(since g was chosen to be an even function) the reflection (z, w) → ((−z +
1/2), w) are also automorphisms of S. Combining these, it is easy to see that

Fp = {(an,m + iy, iv) and (bn,m + iy, iv) : y, v ∈ R,m ∈ N, n ∈ Jm}

is contained in the equivalence locus Ep of any p = (an0,m0
, 0) for m0 ∈ N

and n0 ∈ Jm. We claim that actually Fp = Ep.
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In fact, consider the set

A = {(z, w) ∈ S : Rez ∈ [0, 1] \ C};

then S is real-analytic in a neighborhood of a point q ∈ S if and only if q ∈ A.
In particular, φ(A) ⊂ A for any local automorphism φ of S, which implies
that (with p as above) Ep ⊂ C × iR2 = {(x+ iy, iv) : x ∈ C}. Choose, then,

x1 ∈ C \
⋃

m∈N,n∈Jm

{an,m, bn,m}

and let p1 = (x1, 0). Then p1 doesn’t belong to the boundary of any con-
nected component of A. Since, on the other hand, p does belong to the
boundary of {(x+ iy, f(x) + iv) : x ∈ (an0,m0

, bn0,m0
), y, v ∈ R} (which is a

connected component of A), it follows that p1 �∈ Ep; hence we obtain Ep

= Fp.
Finally, we observe that Ep is dense in C × iR2; since the latter is a

perfect set, it follows that Ep is nowhere locally closed.

8. Global automorphisms

Our first step in studying the global automorphism group is once again a
local result. We shall show that, given a point p ∈ M , the germs of biholo-
morphisms of M at p can be analytically parameterized in the following
way:

Theorem 15. Let M be a real-analytic CR manifold which is holomor-
phically nondegenerate and minimal. Then for every p ∈ M there exists a
neighbourhood U of p in M , an integer 	, a neighbourhood V of j�p id, and a
real-analytic map Ψ: Ω → M , defined on U × V such that for any germ at
q of a real-analytic CR automorphism f with j�qf ∈ V for some q ∈ U ∩ Ep,
we have

f(z) = Ψ(z, j�qf)

for z near q.

Let us first see how Theorem 15 implies Theorem 7. We will follow the
line of reasoning due to Baouendi, Rothschild, Winkelmann, and Zaitsev [3],
and thus restrict ourselves to a sketch: In order to show that there exists a
neighbourhood of id ∈ AutωCR(M) which is locally compact, we show that
for a judiciously chosen neighbourhood U of id ∈ AutωCR(M), any sequence
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of CR automorphisms (fn)n∈N ⊂ U contains a subsequence which converges
everywhere on M to an automorphism. Let K be the compact set given in
Theorem 7. For any p ∈ K, we can find a neighbourhood U(p), an integer
	p, and maps Ψp, from Theorem 3 applied to the deformation of moving the
basepoint and considering the inverse, as in the proof of Theorem 2, such
that

f(z) = Ψp(z, jpf),

for any f with j
�p
p f in a neighbourhood Vp of j

�p
p id. By possibly shrinking

Up and Vp, we can assume that j1qΨp(·,Λ) is invertible for every Λ ∈ Vp and
q ∈ Up.

We can cover K with finitely many such Upj
=: Uj and by requiring that

U consists only of maps f for which jkpj
f is sufficiently close to jkpj

id where
k = maxj 	pj

, we have that

f(z) = Ψpj
(z, jkpj

f), f ∈ U .

Let now (fn) be a sequence in U . We first claim that there exists a
subsequence of (fn) such that fn converges on U = ∪jUj ⊃ K to a map
with invertible Jacobian at every point. For this, we choose a subsequence
fns

such that for every j, jkpj
fns

converges to a jet Λ0
j ∈ Vj ; then of course

the fn converge on U (uniformly on compact subsets, in particular, on K),
and the limit map has an invertible Jacobian at every point of U by our
choice of Uj and Vj .

We now consider the set O of points p ∈ M which have a neighbourhood
on which fn converges to a map whose Jacobian is invertible. We will show
that that O = M ; one can then follow the arguments of [3] in order to finish
the proof. For every p ∈ M , denote by Ẽp the connected component of Ep

containing p. By assumption, Ẽp ∩K is not empty, and thus, O ∩ Ẽp is also
not empty. Obviously the latter set is open in Ẽp; we shall show that it is
also closed in Ẽp and thus O ∩ Ẽp = Ẽp. This implies that O = M .

Now the assertion that O ∩ Ẽp is closed in Ẽp follows from Theorem 15
with exactly the same proof as [3, Lemma 3.3] follows from [3, Proposi-
tion 2.2.]. We thus only need to give a proof of Theorem 15.

Proof of Theorem 15. We first claim that we can find a real-analytic map
ψ(x, y, z) defined on Ũ × (Ũ ∩ Ep)× (Ũ ∩ Ep), where Ũ is some neighbour-
hood of p, with the following properties:

x 	→ ψ(x, y, z) is CR on U for any (y, z) ∈ Ũ × Ũ ;

ψ(y, y, z) = z, x = ψ(x, p, p).
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Indeed, by Theorem 6, there exists a map ϕ defined on V ×W for some
neighbourhood V of p in M and W ⊂ Ep of p in Ep which is a CR automor-
phism on V for every q ∈ W and ϕ(p, q) = q. We now define

ψ(x, y, z) = ϕ(ϕ−1(x, y), z),

where the inverse is understood with respect to the x variable. By shrinking
V and W , respectively, we can assume that the formula on the right hand
side makes sense on a set of the form Ũ × (Ũ ∩ Ep)× (Ũ ∩ Ep).

From [9], we know that there exists an integer 	 such that for a neigh-
bourhood V of p and a neighbourhood W of j�p id ∈ Gk

p(M) there is a real-
analytic map Ψ0, CR in its first variable, such that for any f ∈ Aut(M,p)
with j�pf ∈ W , we have Ψ0(x, j

�
pf) = f(x) for every CR automorphism of

M fixing p. By restricting to a probably smaller neighbourhood W , we can
assume that all such automorphisms with j�pf ∈ W are actually defined in

the neighbourhood Ũ of p (again, after possibly shrinking Ũ).
From ϕ and Ψ0, we can manufacture a parametrization of Aut(M, q)

for q ∈ Up by pushing Ψ0; i.e., let us for simplicity define for Λ ∈ G�
q(M)

the jet associated to it via ϕ at p by TpΛ = j�pϕ(·, q)Λj�qϕ−1(·, q) ∈ G�
p(M).

We can also, if we write π for the map associating to any jet its basepoint,
understand TpΛ = j�pϕ(·, π(Λ))Λj�qϕ−1(·, π(Λ)) as a map defined on an open

neighbourhood of j�p id ∈ G�(M). We then set

Ψ1(x,Λ) = ϕ−1 (Ψ0 (ϕ(x, q), TpΛ) , q) ,

which is defined on Ũ ×W , where W is an open subset of G�(M) with
π(W ) = Ũ which contains j�p id such that for every q ∈ Ũ ∩ Ep, and every

F ∈ Aut(M, q) with j�qF ∈ W we have F = Ψ1(·, j�qF ) on Ũ . Let us now

write for a jet Λ ∈ G�(M) Λ0 = Λ(π(Λ)) for the image of its basepoint. We
now define

Ψ(x,Λ) = Ψ0(ψ(x, π(Λ),Λ0), (j
�
π(Λ)ψ(·, π(Λ),Λ0))

−1Λ),

which has the claimed properties. �
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