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On values of binary quadratic forms

at integer points

Manoj Choudhuri and S. G. Dani

We obtain estimates for the number of integral solutions in large
balls, of inequalities of the form |Q(x, y)| < ε, where Q is an indef-
inite binary quadratic form, in terms of the Hurwitz continued
fraction expansions of the slopes of the lines on which Q vanishes.
The method is based on a coding of geodesics on the modular sur-
face via Hurwitz expansions of the endpoints of their lifts in the
Poincaré half-plane.

1. Introduction

Consider a binary quadratic form Q(x, y) = (ax+ by)(cx+ dy), where a,
b, c, d ∈ R and ad− bc �= 0. In this paper we exhibit a close relationship
between the growth of the number of solutions (x, y), with x, y ∈ Z, with
gcd(|x|, |y|) = 1, of

(1) |Q(x, y)| < ε and ‖(x, y)‖ ≤ ρ,

asymptotically as ρ→ ∞ and the continued fraction expansions of a/b and
c/d with respect to the Hurwitz algorithm (see below for details), when at
least one of the ratios are irrational. Here and in the sequel ‖ · ‖ stands
for the Euclidean norm on R2. For any set E we shall denote by #E the
cardinality of E.

We recall (see [3] for instance) that any irrational number ξ can be
expressed as

ξ = a0 − 1

a1 − 1
a2−···

,

with aj ∈ Z and (i) |aj | ≥ 2 for all j and if (ii) |aj | = 2 for some j then
ajaj+1 < 0 (i.e. if |aj | = 2 then aj and aj+1 have the opposite sign); here
the right hand side stands, as usual, for the limit (with existence assured) of
the sequence of rational numbers represented by terms corresponding to the
truncated expressions. We bring it to the reader’s attention that in writing

1023



1024 M. Choudhuri and S. G. Dani

the expression as above the successive terms are substracted, rather than
added; this is often done in literature (see [3] for instance) on account of its
being in consonance with the action of the modular group; an expansion as
above is called the minus continued fraction expansion with respect to the
nearest integer algorithm (or also as the Hurwitz algorithm). We shall, as
usual, denote the expression on the right hand side by [a0, a1, . . . ]. We recall
also that, conversely, given a sequence {aj} of integers satisfying conditions
(i) and (ii) as above there is a unique irrational number ξ such that ξ =
[a0, a1, . . . ].

We recall that an integral pair (x, y) is said to be primitive if it is nonzero
and 1

k (x, y) is not an integral pair for any natural number k ≥ 2; in other
words, if (x, y) �= (0, 0) and gcd(|x|, |y|) = 1. In the sequel we denote by p
the set of all primitive integral pairs.

We shall be interested in primitive solutions of inequalities as in (1), with
Q(x, y) = (ax+ by)(cx+ dy), where we assume the ratio a/b to be irrational.
It will be convenient to consider primitive solutions in the region defined by

(2) {(x, y) : 0 < |Q(x, y)| < δ, cx+ dy > κ and ‖(x, y)‖ ≤ ρ},

with κ > 0; estimates for the number of primitive integral solutions to in-
equalities as in (1) can then be obtained by putting together the solutions in
various subregions (from various tentacles as in Figure 1); see Remark 1.3 for
details. Theorem 1.1 below addresses this in terms of the minus continued
fraction of a/b, giving lower and upper estimates for the number of solutions
when ρ is sufficiently large. We mention here that in the course of the proof
a more concrete relationship is proved for a special class of quadratic forms
called H-reduced forms (see §4 for definition of H-reduced, and Theorem 4.1
for the result involved). It may also be noted that a somewhat sharper, but
more technical, version of the following theorem is contained in Corollary 5.1;
the various constants involved are also given in sharper form in the latter.

Theorem 1.1. Let Q(x, y) = (ax+ by)(cx+ dy) be a quadratic form, where
a, b, c, d ∈ R, ad− bc = 1, b �= 0 and a

b is irrational. Let [a0, a1, . . . ] be the
minus continued fraction expansion of a

b . Let

α− = lim inf
1

n

n−1∑
j=0

log |aj | and α+ = lim sup
1

n

n−1∑
j=0

log |aj |.

Let 0 < δ < 1
π and let e(δ) and f(δ) respectively denote the (asymptotic)

lower density of {j ≥ 0 | |aj | ≥ 2δ−1 + 1} and the upper density of {j ≥ 0 |
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cx
+
dy

=
κ t→ ∞

t→
−∞

R

Figure 1: The curves Q(x, y) = δ and cx+ dy = κ

|aj | ≥ 2δ−1 − 3
2}. Let κ > 0 be fixed and let

H = {(x, y) ∈ R2 | 0 < |Q(x, y)| < δ, cx+ dy > κ}.

(In Figure 1, R illustrates {(x, y) ∈ H | Q(x, y) > 0}). For any ρ > 0 let

G(ρ) = {(x, y) ∈ p ∩H | ‖(x, y)‖ ≤ ρ}.

Then we have the following :
i) if α+ <∞ then there exists ρ0 such that for all ρ ≥ ρ0 we have

#G(ρ) ≥ e(δ)

(α+ + 3)
log ρ;

ii) given m > f(δ), andM ≥ 1
4 log

9
5 such thatM < 1

8α
− if α− > 2 log 9

5 ,
there exists ρ0 such that for all ρ ≥ ρ0 we have

#G(ρ) ≤ m

M
log ρ;

(if α− is infinite, the assertion holds for all positive M).

Remark 1.2. The assertion in (ii) shows in particular that for any quadratic
form Q as in Theorem 1.1 and 0 < δ < 1

π , for all sufficiently large ρ we
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have #G(ρ) ≤ (14 log
9
5)

−1 log ρ. The area of the region H ∩B(ρ), where
B(ρ) = {(x, y) | ‖(x, y)‖ ≤ ρ}, H is as in the theorem and for some choice of
κ > 0, is proportional to log ρ, and the preceding observation signifies that
the number of primitive integral pairs in H ∩B(ρ) is bounded, for all large
ρ, by a fixed multiple of the area of the region. We note that this contrasts
the situation for linear forms (in place of the quadratic forms) where the
number of primitive integral points in analogously defined regions can be
arbitrarily large in proportion to the area of the region, depending on the
linear form, on account of existence of very well approximable numbers. We
may also mention here the following, concerning quadratic forms in higher
number of variables. For all nondegenerate indefinite, irrational (not a scalar
multiple of a form with rational coefficients) forms in n ≥ 3 variables such
a ratio is bounded below, and for n ≥ 5 the ratio converges to 1; for n = 3
or 4 there are counter-examples to the second part; see [5] for details.

Remark 1.3. Let Q be the quadratic form as in Theorem 1.1 such that
both a/b and c/d are irrational. Let 0 < δ < 1

π and for any ρ > 0 let

D(ρ) = {(x, y) ∈ p | 0 < |Q(x, y)| < δ and ‖(x, y)‖ ≤ ρ}, and

G′(ρ) = {(x, y) ∈ p | 0 < |Q(x, y)| < δ, ax+ by >
√
δ and ‖(x, y)‖ ≤ ρ}.

Then for any ρ > 0 we have that #D(ρ) differs from 2(#G(ρ) + #G′(ρ)) by
at most 2, as maybe observed from Figure 1; note that here κ is chosen to
be

√
δ. Also, #G′(ρ) admits analogous estimates as #G(ρ) with the con-

tinued fraction expansion of c/d in place of a/b. Thus the theorem provides
estimates for #D(ρ) under appropriate conditions as in the hypothesis of
the theorem.

Remark 1.4. It may be emphasized that Theorem 1.1 applies to all irra-
tional numbers α; thus, given any sequence {aj} with aj ∈ Z such that
|aj | ≥ 2 for all j and ajaj+1 < 0 if |aj | = 2 we have an irrational num-
ber α = [a0, a1, . . . ] and a corresponding result for any c, d ∈ R such that
ad− bc = 1. One may ask what the typical, or generic, values of the con-
stants involved are. Specifically the question may be formulated as follows.
As in the case of the usual continued fractions there is a corresponding Gauss
map associated to the minus continued fraction, defined on I = [−1

2 ,
1
2 ]\Q,

by T (x) = − 1
x + ν(x), where ν(x) denotes the integer nearest to x. The

Gauss measure in the usual case also has an analogue, and is given by
μ(E) = c

∫
I

1
4−x2dx, where c > 0 is the normalising constant (see [4], §6). The

measure μ is ergodic with respect to T ; this can be proved along the lines of
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the arguments for the case of simple continued fractions, say as in [1], and we
shall not go into the details here. The ergodicity implies that for almost all
α = [a0, a1, . . . ],

1
n

∑n−1
j=0 log |aj | converges to

∫
fdμ, where f : I → (0,∞)

is the function defined by f(x) = log |a| if either x ∈
(

1
a+ 1

2

, 1
a− 1

2

)
for a > 0

or x ∈
(

1
a− 1

2

, 1
a+ 1

2

)
for a < 0 (see the proof of (3.26) in [1]); we note that

f is integrable and
∫
fdμ is a positive constant; this constant then is the

generic value of α+ and α− as in the statement of the theorem. Similarly,
for a δ > 0 the generic values of e(δ) and f(δ) are seen to μ([− 1

k ,
1
k ]) and

μ([−1
l ,

1
l ]) respectively, where k = [2δ−1 + 1] and l = [2δ−1 − 3

2 ].

2. A correspondence

Let G = SL(2,R). We denote by {e1, e2} the standard basis of R2. Let Q0

be the quadratic form on R2 defined by Q0(xe1 + ye2) = xy for all x, y ∈ R.
For g ∈ G we denote by Qg the quadratic form defined by Qg(v) = Q0(g

−1v)
for all v ∈ R2.

For t ∈ R we denote by at the matrix diag (et/2, e−t/2) ∈ G. For g ∈ G
and t ∈ R, if gt = gatg

−1, then for any v ∈ R2 we have Qg(gtv) = Q0(g
−1gtv)

= Q0(atg
−1v) = Q0(g

−1v) = Qg(v); thus {gt}t∈R is contained in SO(Q), and
in fact coincides, by dimension considerations, with SO(Q)+, the connected
component of the identity in SO(Q). In particular {v ∈ R2 | Qg(v) �= 0}
is {gt}-invariant. We note that in each connected component of {v ∈ R2 |
Qg(v) �= 0} the orbits of {gt}t∈R are the level curves of Qg and they are
asymptotic to the pair of lines defined by Qg(v) = 0. We denote by L+

g and
L−
g the linear forms on R2 such that Qg = L+

g L
−
g and the level curves of

Qg, viewed as orbits of {gt}, are asymptotic to L+
g (v) = 0 as t→ ∞ and

L−
g (v) = 0 as as t→ −∞; see Figure 1.
Through the rest of the section we fix a g ∈ G and let Q = Qg. It may

be mentioned that the results will have nontrivial content only when at least
one of L+

g and L−
g is not a rational form, but we make no specific assumption

in this respect. Let gt = gatg
−1 for all t ∈ R. For any v ∈ R2 and any subset

C of R2 we define

Iv(C) = {t ≥ 0 | v ∈ gtC} and R(C) =
⋃

p∈Z2\{0}
Ip(C).

Proposition 2.1. Let C be a convex subset of R2 containing 0 and with
area less than 1

2 . Then the following holds:
i) for any v ∈ R2, Iv(C) is an interval in R;
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ii) for p, p′ ∈ Z2 , Ip(C) and Ip′(C) are contained in disjoint connected
components of R(C) if and only if p and p′ are linearly independent;

iii) there exists κ > 0 such that the distance between any two (successive)
connected components of R(C) is at least κ.

Proof. i) If gtv, gt′v ∈ C for t < t′ ∈ R, then {gsv | t ≤ s ≤ t′} is a segment
of a hyperbola, and when C is a convex set containing 0 the segment is
contained in C. This proves (i).

ii) Now let p, p′ ∈ Z2 and suppose Ip(C) and Ip′(C) are contained in the
same connected component of R(C). Let t ∈ Ip(C) and t

′ ∈ Ip′(C) be given,
with say t < t′; then t and t′ are contained in the same connected component
of R(C). Since R(C) is the union of intervals of the form Iq(C), q ∈ Z2\{0},
t and t′ being contained in the same connected component implies that
there exist p = p0, p1, . . . , pk−1, pk = p′ ∈ Z2 and t = t0 < t1 < t2 · · · < tk =
t′ such that pj ∈ gsC for all s ∈ [tj , tj+1] and j = 0, . . . , k − 1. Consider any
1 ≤ j ≤ k. We have g−1

tj pj−1, g
−1
tj pj ∈ C, and hence by the condition in the

hypothesis the triangle with vertices at g−1
tj pj−1, g

−1
tj pj and 0 has area less

than 1
2 . It follows that the triangle with vertices as pj−1, pj and 0 has area

less that 1
2 . Since these vertices are integral points the conclusion implies

that pj and pj−1 are linearly dependent, for all j = 1, . . . , k. In particular
we get that p and p′ are linearly dependent.

Now suppose p, p′ are linearly dependent, say p = kp′ with k > 1. Let
t ∈ Ip(C). Then there exists v ∈ C such that p = gt(v). Then p′ = k−1p =
k−1gt(v) ∈ gtC, since k

−1 < 1. This shows that Ip is contained in Ip′ . In
particular Ip(C) and Ip′(C) are contained in the same connected component
of R(C). This proves (ii).

iii) We can find a convex neighbourhood C ′ of C with area less than 1
2 . Then

there exists a κ > 0 such that gtv ∈ C ′ for all v ∈ C and −κ ≤ t ≤ κ. We
see that each connected component of R(C) are contained in a unique con-
nected component of R(C ′). Therefore the successive connected components
of R(C) are at a distance bounded below by κ. This proves (iii). �

Proposition 2.2. Let Q = Qg and θ > 0 and 0 ≤ r < r′, be given. Let

Ω = {v ∈ R2 | 0 < L+
g (v) < θL−

g (v) and r < Q(v) < r′} and S = Ω ∩ Z2.

Let σ ≥ √
r′/θ, and let

T = {v ∈ R2 | 0 < L+
g (v) < θL−

g (v) and 0 ≤ L−
g (v) ≤ σ}.
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Suppose that T has area less than 1
2 . For p ∈ S let Ip = {t ≥ 0 | p ∈ gtT}.

Then each Ip(T ), p ∈ S, is nonempty, and for τ > σ any maximal set of
pairwise linearly independent vectors contained in {p ∈ S | L−

g (p) ≤ τ} has
cardinality equal to the number of connected components of [0, 2 log(τ/σ)] ∩
R(T ∩ Ω).

Proof. The assumption σ ≥ √
r′/θ ensures that the set of values of Q on

the triangle T contain the interval (0, r′). This implies that for p ∈ S there
exists v ∈ T and t ≥ 0 such that p = gtv, showing that Ip(T ) is nonempty.

Now, for τ > 0 let S(τ) = {p ∈ S | L−
g (p) ≤ τ}. Now consider τ > σ and

p ∈ S(τ). Then there exists v ∈ T ∩ Ω with L−
g (v) = σ and t > 0 such that

p = gt(v). Thus L
−
g (p) = et/2L−

g (v) = et/2σ and hence t ≤ 2 logL−
g (p)/σ ≤

2 log(τ/σ). Therefore for each p ∈ S(τ) there exists a t ∈ [0, 2 log(τ/σ)] such
that p ∈ gt(T ∩ Ω); let Jp denote the connected component of [0, 2 log(τ/σ)] ∩
R(T ∩ Ω) containing t. By Proposition 2.1 if p, p′ ∈ S(τ) are linearly inde-
pendent then Ip(T ) and Ip′(T ) belong to disjoint connected components of
R(T ) and hence Jp and Jp′ are disjoint. This shows that the number of ele-
ments in any set of linearly independent vectors in S(τ) is bounded by the
number of connected components of [0, 2 log(τ/σ)] ∩R(T ∩ Ω).

Now let J be any connected component of [0, 2 log(τ/σ)] ∩R(T ∩ Ω), and
let t ∈ J . Then there exists p ∈ Z2 and v ∈ T ∩ Ω such that p = gt(v). Clearly
there exists t′ ∈ J and v′ ∈ T ∩ Ω such that L−

g (v
′) = σ and gt(v) = gt′(v

′),
and hence by modifying notation we may assume that L−

g (v) = σ. Hence

L−
g (p) = et/2L−

g (v) = et/2σ. As t ≤ 2 log(τ/σ), we get that L−
g (p) ≤ τ and

hence p ∈ S(τ). Now suppose t and t′ belong to different connected compo-
nents, and let p, p′ ∈ S(τ) be the elements obtained as above corresponding
to t and t′ respectively. Then t ∈ Ip and t′ ∈ Ip′ . Thus Ip(T ) and Ip′(T )
are intervals containing respectively t and t′ belonging to distinct connected
components of R(T ∩ Ω) and hence by Proposition 2.1 p and p′ are linearly
independent. This shows that there are at least as many mutually linearly
independent vectors in S(τ) as the number of connected components of
[0, 2 log(τ/σ)] ∩R(T ∩ Ω), which proves the proposition. �

We denote by p the set of primitive integral pairs in Z2, namely p =
xe1 + ye2 ∈ Z2 such that gcd(x, y) = 1. For any σ > 0 let

W (σ) = {v = xe1 + ye2 ∈ R2 | 0 < y < x ≤ σ}.

For τ > σ > 0 we denote by n(τ, σ) the the number of connected components
of {t ∈ [0, 2 log(τ/σ)] | gatW (σ) ∩ Z2 �= ∅} or equivalently of the set of t ∈
[0, 2 log(τ/σ)] such that a−tλ ∈W (σ), for some λ ∈ Λ, where Λ := g−1Z2.
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Figure 2: Trajectories passing through W (σ)

Corollary 2.3. Let Q = Qg. Let 0 < ε < 1 be given. For ρ > 0 let

F (ρ) = {p ∈ p | 0 < L+
g (p) < L−

g (p), 0 < Q(p) < ε, ‖p‖ ≤ ρ}.

Then for all sufficiently large ρ, the cardinality of F (ρ) differs from
n(‖ge1‖−1ρ,

√
ε) by at most 1.

Proof. In Proposition 2.2 we choose θ = 1, r = 0, r′ = ε, and let Ω and T be
as in that Proposition. Then for the choices as above Ω contains T . Also,
since ε < 1 the area of T is less than 1

2 . We note also that in the above
notation T coincides with gW (

√
ε), and hence gtT = gatW (

√
ε). Then by

Proposition 2.2, for any τ >
√
ε the number of p in p such that 0 < L+

g (p) <
L−
g (p) ≤ τ and 0 < Q(p) < ε is n(τ,

√
ε). Let δ > 0 be arbitrary. We note

that for v ∈ T and t sufficiently large

| ‖g(e1)‖−1‖gt(v)‖ − L−
g (gtv) | < δ.

Hence we get that for all large ρ the cardinality of F (ρ) is bounded between
n(‖g(e1)‖−1ρ− δ,

√
ε) and n(‖g(e1)‖−1ρ+ δ,

√
ε). By Proposition 2.1 the

successive connected components are at distance bounded below by a posi-
tive constant, and hence when δ is sufficiently small, for all large ρ,
n(‖g(e1)‖−1ρ+ δ,

√
ε) is at most one more than n(‖g(e1)‖−1ρ− δ,

√
ε). Hence

the cardinality of F (ρ) differs from n(‖g(e1)‖−1ρ,
√
ε) by at most 1. This

proves the corollary. �

For δ > 0 let Bδ be the open ball of radius δ in R2, centered at 0, (in
the usual metric) and let B′

δ = {(x, y) ∈ Bδ | 0 < y < x}.



On values of binary quadratic forms at integer points 1031

Corollary 2.4. Let Q = Qg and 0 < δ < 2√
π
be given. Then for all suffi-

ciently large ρ > 0 the cardinality of{
p ∈ p | 0 < L+

g (p) ≤ L−
g (p), 0 < Q(p) <

1

2
δ2, ‖p‖ ≤ ρ

}

differs from the number of connected components of{
t ∈ [0, 2 log(

√
2δ−1‖ge1‖−1ρ)] | gatB′

δ ∩ Z2 �= ∅}
by at most 2.

Proof. In view of Corollary 2.3, for δ < 1 the cardinality of the set under
consideration differs by at most one from the number of connected com-
ponents of {t ∈ [0, 2 log(

√
2δ−1‖ge1‖−1ρ] | gatW (δ/

√
2) ∩ Z2}. Now, each of

these connected components is contained in a connected component of {t ∈
[0, 2 log(

√
2δ−1‖ge1‖−1ρ)] | gatB′

δ ∩ Z2 �= ∅}. Moreover when δ < 2√
π
the area

of B′
δ is less than 1

2 , and hence by Proposition 2.1 distinct connected com-
ponents of the former are contained in distinct connected components of the
latter. Also, at most one connected component of {t ∈ [0, 2 log(

√
2δ−1‖ge1‖−1

ρ)] | gatB′
δ ∩ Z2 �= ∅} can fail to intersect {t ∈ [0, 2 log(

√
2δ−1‖ge1‖−1ρ)] |

gatW (δ/
√
2) ∩ Z2 �= ∅}. The assertion as in the corollary is now immedi-

ate from these observations. �
We shall say that two function f and f ′ on (0,∞) are comparable if the

function |f − f ′| is bounded over (0,∞).

Corollary 2.5. Let Q = Qg and 0 < δ <
√

2
π and κ > 0 be given. For τ > 0

let c+g (τ) and cg(τ) denote, respectively, the number of connected components
of {t ∈ [0, τ ] | gatBδ ∩ Z2 �= ∅} and {t ∈ [−τ, τ ] | gatBδ ∩ Z2 �= ∅}. Then

i) for any ρ > 0 the cardinality of

G+(ρ) =

{
p ∈ p | 0 < |Q(p)| < 1

2
δ2, L−

g (p) > κ, ‖p‖ ≤ ρ

}

is comparable to c+g (2 log ρ).
ii) for any ρ > 0 the cardinality of

G(ρ) =

{
p ∈ p | 0 < |Q(p)| < 1

2
δ2, ‖p‖ ≤ ρ

}

is comparable to 2cg(2 log ρ).
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Proof. i) The intersection of G+(ρ) with {v ∈ R2 | L+
g (v) > 0} differs from

the set as in Corollary 2.4 by only a finite set (consisting of elements of p con-
tained in the compact subset {v ∈ R2 | 0 ≤ L+

g (v) ≤ L−
g (v) ≤ κ and Q(v) ≤

1
2δ

2}) and hence by Corollary 2.4 the cardinality of G+(ρ) is comparable

to the number of connected components of {t ∈ [0, 2 log(
√
2δ−1‖ge1‖−1ρ)] |

gatB
′
δ ∩ Z2 �= ∅}. Since the distance between successive connected compo-

nents is bounded below (by Proposition 2.1), the latter is comparable to the
number of connected components of {t ∈ [0, 2 log ρ] | gatB′

δ ∩ Z2 �= ∅}. Simi-
larly we obtain that the cardinality of G+(ρ) ∩ {v ∈ R2 | L+

g (v) < 0} is com-
parable to the number of connected components of {t ∈ [0, 2 log ρ] | gatB′′

δ ∩
Z2 �= ∅}, where B′′

δ = {(x, y) ∈ Bδ | 0 < −y < x}. We note that since δ <√
2
π the area of the convex closure of B′

δ ∪B′′
δ is less than 1

2 and hence the

connected components of the sets {t ∈ [0, 2 log ρ] | gatB′
δ ∩ Z2 �= ∅} and {t ∈

[0, 2 log ρ] | gatB′′
δ ∩ Z2 �= ∅} are disjoint from each other. Also, their union is

the set of connected components of {t ∈ [0, 2 log ρ] | gatBδ ∩ Z2 �= ∅}, except
possibly for one connected component in the latter corresponding to a p ∈ p
such that L−

g (p) = 0, in case L−
g is a rational linear form. Hence the cardi-

nality of G+(ρ) is asymptotic to c+g (2 log ρ). This proves assertion (i).

ii) Since when p ∈ p belongs to G(ρ) so does −p, from (i) we get also
that the cardinality of {p ∈ p | 0 < |Q(p)| < 1

2δ
2, |L−

g (p)| > κ, ‖p‖ ≤ ρ} is
2c+g (2 log ρ).

Analogously, the set {p ∈ p | 0 < |Q(p)| < 1
2δ

2, |L+
g (p)| > κ, ‖p‖ ≤ ρ} has

cardinality comparable to the number of connected components of {t ∈
[−2 log ρ, 0] | gatBδ ∩ Z2 �= ∅}. We note thatG(ρ) differs fromG+(ρ) ∪G−(ρ)
by a fixed finite set. Therefore we get that the cardinality of G(ρ) is compa-
rable to 2cg(2 log ρ). This proves the corollary. �

3. The geodesic flow and continued fraction expansions

We next relate the conclusion in Corollary 2.4 to the geodesic flow associated
to the modular surface. The reader is referred to [3] for various general results
on this topic used in the sequel.

Let H2 = {z ∈ C | Im z > 0} be the Poincaré upper half plane. We view
R ∪ {∞} as the boundary ∂H2 of H2. We consider H ∪ ∂H2 equipped with
the usual action of G = SL(2,R). We recall that the geodesics {ϕt} in H2

are Euclidean semicircles joining a pair of (distinct) points in R ∪ {∞}, the
boundary of H2; the two end points, say u and w, are the limits of {ϕt} as
t→ −∞ and t→ ∞, and are respectively called the repelling and attracting
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end points of the geodesic; for simplicity we may identify the geodesic as the
geodesic joining u and w.

Let K be the subgroup of G consisting of elements fixing i under the
action on H2, namely the elements of G acting as rotations on R2. The
G-action on H2 is transitive, and as such H2 can be realised as G/K. The
geodesics in H2 then correspond to {gatK}t∈R, g ∈ G (see [2], for instance),
with the latter as the geodesic joining g(0) and g(∞).

We denote by N the subgroup of G consisting of all upper triangular
unipotent matrices. The orbits of the N -action on H2 consist of horizontal
lines. We shall also use the notation A = {at | t ∈ R} and, for δ > 0, Aδ =
{at | t < log δ}.

In the context of Corollary 2.5 we would be interested, for given g ∈
G, in solutions of a−1

t g−1p ∈ Bδ with p ∈ p and t ∈ R. Let Γ = SL(2,Z).
Then p = {γe1 | γ ∈ Γ}. Let γ ∈ Γ be such that p = γe1. Then the condition
as above translates to a−1

t g−1γe1 ∈ Bδ which is equivalent to a−1
t g−1γ ∈

KAδN and in turn to γ−1gat ∈ NA−1
δ K, upon taking inverses. For δ > 0 let

Hδ = {x+ iy | y > δ−2}. Then considering the G-action on H2 we see that
the condition as above is equivalent to γ−1gat(i) ∈ Hδ. Now consider the
quotient map, say η, of H2 onto the “modular surface” M = Γ\H2 and for
δ > 0 let Mδ = η(Hδ). Then the above condition is equivalent to η(gat(i)) ∈
Mδ. Thus we see that

{t ∈ R | a−1
t g−1p ∈ Bδ for some p ∈ p} = {t ∈ R | η(gat(i)) ∈Mδ}. (∗)

Now gat(i) is a geodesic in H2 and η(gat(i)) is its image under the
quotient map (it is a geodesic with respect to the induced metric on M ,
but we will not need to go into the geometry on the quotient). The above
observation enables us, using Corollary 2.4 on the one hand and coding of
geodesics on the other hand to count the number of primitive solutions of
quadratic inequalities in large balls in R2.

Before proceeding with the main results we note the following:

Remark 3.1. If g ∈ G and Q = Qg, and if the inequality |Q(p)| < ε admits
solutions p ∈ Z2 for all ε > 0 then sets on the left hand side of (∗) have to
be nonempty for all δ > 0 (we shall not concern ourselves with the precise
correspondence between the values here). Hence the observation shows in
particular that if the image of the geodesic joining g(0) and g(∞) under the
quotient map onto the modular surface M = Γ\H2 is bounded in M , then
there exists ε > 0 such that |Q(p)| < ε has no nonzero solution p in Z2.
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0 1 2−3 −1−2 5λ−λ μ−μ

C 5 + C−3 + C
z z′
ζ → −1

ζ

Hδ

y = δ−2

Figure 3: Segmentation of the geodesic trajectories

We now begin by introducing some notation, and recalling some defini-
tions and facts about geodesics in H2 and their images in M .

Let T 1(H2) be the unit tangent bundle of H2, viewed as the set of pairs
(z, ζ) with z ∈ H2 and ζ a unit tangent direction at z. For (z, ζ) ∈ T 1(H2)
we denote by ϕ̃(z, ζ) the geodesic ϕ = {ϕt} such that ϕ0 = z and ζ is the
tangent direction to ϕ at z.

We recall, from Katok and Ugarcovici [3], that a geodesic ϕ = {ϕt} in
H2 with u and w the corresponding repelling and attracting endpoints in
R ∪ {∞} is said to be H-reduced if |w| > 2 and sgn (w)u ∈ [λ− 1, λ], where
λ = 1

2(3−
√
5); in [3] the notation is r in place of the λ used here. Now let

μ = (23− 3
√
5)/22 and let C be the arc in H2 defined by

C =
{
z = x+ iy ∈ H2 | |z| = 1, |x| < μ

}
.

We note that μ chosen here is the x-coordinate of the point of intersection
of the geodesic joining λ and 2 with {z ∈ H2 | |z| = 1}. It is straightforward
to verify that for every H-reduced geodesic ϕ = {ϕt} there exists a (unique)
t0 ∈ R such that ϕt0 ∈ C.

We shall be interested in the set of tangent vectors defined by

Φ =
{
(z, ζ) ∈ T 1(H2) | z ∈ C, ϕ̃(z, ζ) is H-reduced

}
.

We recall that every geodesic in H2 is equivalent, under the Γ-action, to a
H-reduced geodesic [3]. Thus every geodesic in H2 is equivalent under the
Γ action to (and hence has the same image in M as) a geodesic of the form
ϕ̃(z, ζ), (z, ζ) ∈ Φ. It is known that Φ as above is a cross-section for the
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geodesic flow (see [3]), though it is not stated in this form. We shall first
give here a direct verification of this, together with information on the return
times that we will be using below.

Let (z0, ζ0) ∈ Φ and ϕ = ϕ̃(z0, ζ0) = {ϕt} be the corresponding geodesic.
Let u and w be the repelling and attracting endpoints of ϕ. We shall suppose
that w is an irrational number. We now consider the (one sided) trajectory
{ϕt}t≥0, and divide it into segments as follows. Let [a0, a1, . . . ] be the minus
continued fraction expansion of w following the Hurwitz algorithm.

We claim that the trajectory {ϕt}t≥0 intersects the arc {a0 + z | z ∈ C},
the translate of C at a0. Suppose first that a0 > 0, so a0 ≥ 2; see Figure 3,
for reference for the following argument, where a0 is chosen to be 5. Since
w ∈ (a0 − 1

2 , a0 +
1
2), the trajectory {ϕt}t≥0 intersects the semicircle {z ∈

H2 | |z − a0| = 1}; let z′ be the point of intersection and let ξ ∈ (−1, 1) be
such that a0 + ξ is real part of z′. If w > a0, which is in particular necessarily
the case if a0 = 2, then we have ξ ≤ 1

2 < μ and hence z′ ∈ {a0 + z | z ∈ C}.
We may therefore suppose that a0 ≥ 3 and w < a0. We next observe that
as u ≤ λ and w > 2, if ξ0 is such that a0 + ξ0 is the real component of the
point of intersection of the geodesic joining λ and a0 − 1

2 then ξ0 < ξ < 0.
A direct computation shows that ξ0 = −μ if a0 = 3 and if a0 > 3 in fact
ξ0 > −μ. This shows that z′ is contained in {a0 + z | z ∈ C}. Let ζ ′ be the
unit tangent vector at z′, tangent to ϕ.

Now let z1 = −1/(z′ − a0), and ζ1 be the tangent vector at z1, which
is the image of the ζ ′ under the map z �→ −1/(z − a0). Then z1 ∈ C, and
we claim that (z1, ζ1) ∈ Φ, namely that ϕ̃(z1, ζ1) is H-reduced. Clearly the
repelling and attracting endpoints of ϕ̃(z1, ζ1) are given by u1 = −1/(u−
a0) and w1 = −1/(w − a0) respectively. Since |w − a0| < 1

2 we have |w1| =
|1/(w − a0)| > 2, as required. Since a0 ≥ 2 and u ≤ λ < 1, u1 = −1/(u− a0)
is positive, and we only need to confirm that the appropriate upper bounds
hold for u1, depending on the sign of w1. If w > a0 then w1 < 0, and we have
u1 =

1
a0−u ≤ 1

2−λ = 1− λ, and on the other hand if w < a0 then w1 > 0 and

a0 ≥ 3, and in this case we have u1 =
1

a0−u ≤ 1
3−λ = λ. Thus (z1, ζ1) ∈ Φ,

which proves the claim.
Let t1 > 0 be such that ϕt1 = z′, the latter being as above. We note

also that for w1, which is the attracting endpoint of of ϕ̃(z1, ζ1), the minus
continued fraction is given by [a1, a2, . . . ]. An analogous arguments works
by symmetry with when a0 < 0 and we get (z1, ζ1) ∈ Φ, and t1 > 0 such
that z1 = −1/ϕt1 , ζ1 is the image of the unit tangent to ϕ at ϕt1 under the
corresponding map, and the attracting endpoint of of ϕ̃(z1, ζ1), is given by
[a1, a2, . . . ].
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Repeating the procedure we get a sequence {(zj , ζj)} in Φ and a sequence
{tj} of positive numbers such that zj = −1/(ϕtj (zj−1)− aj−1) and the tan-
gent to ϕ at ϕtj (zj−1) is mapped to ζj under the corresponding tangent
map (in particular the pair ϕtj (zj−1) together with the unit tangent to ϕ at
the point is equivalent to (zj , ζj) under the Γ action). Also, the attracting
endpoints of ϕ̃(zj , ζj) have the continued fraction expansion [aj , aj+1, . . . ],
for all j.

We call {tj} as above the sequence of return times corresponding to the
(z0, ζ0) or equivalently to the reduced geodesic ϕ = ϕ̃(z0, ζ0).

Now let (z0, ζ0) ∈ Φ, ϕ = ϕ̃(z0, ζ0), and ψ the image of ϕ under the quo-
tient map η : H2 →M . Let ϕ = {ϕt}t∈R; we equip ψ with the parametriza-
tion given by ψt = η(ϕt) for all t ∈ R. In the following we shall concern our-
selves only with the (forward) trajectory {ψt}t≥0. Using the return times of
ϕ we divide the trajectory into parts ψ(j), j ≥ 0; the indexing starting with
0 is chosen for notational convenience with respect to the related indices, as
will be seen below. For each j ≥ 0 let

ϕ(j) = {ϕ̃(zj , ζj)(t) | 0 ≤ t < tj+1} and ψ(j) = η(ϕ(j)).

In the following propositions we collect properties of the segments ϕ(j)

to be used in our counting results in the next section. In the following let
[a0, a1, . . . ] be the minus continued fraction of the attracting endpoint of
ϕ̃(z0, ζ0). Also let uj and wj be the repelling and attracting endpoints,
respectively, of ϕ̃(zj , ζj).

Proposition 3.2. Let δ ∈ (0, 1) and j ≥ 0 be given. If ϕ(j) ∩Hδ �= ∅ then
|aj | > 2δ−2 + λ− 3

2 , and if |aj | > 2δ−2 + λ+ 1
2 then ϕ(j) ∩Hδ �= ∅. When

nonempty the intersection is an arc along the geodesic.

Proof. We recall that ϕ(j) is the segment of the (euclidean) semicircle join-
ing uj and wj lying between C and aj + C (both of which it intersects),
and its intersection with Hδ is the same as that of the semicircle; in par-
ticular, when nonempty it is an arc. Since |wj − aj | < 1

2 and sgn(w)uj ∈
[λ− 1, λ] it follows that the radius of the circle is between 1

2(|aj | − 1
2 − λ)

and 1
2(|aj |+ 1

2 − (λ− 1)). The assertion in the proposition is immediate from
these observations. �

Remark 3.3. In particular Proposition 3.2 shows that {ψ}t≥0 is bounded
(has compact closure) in M if and only if the sequence of partial quotients
{aj} is bounded. Together with Remark 3.1 this shows that if g ∈ G is such
that g(0) and g(∞) are irrational numbers whose minus continued fraction
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expansion with respect to the Hurwitz algorithm have bounded partial quo-
tients then for Q = Qg the inequality |Q(p)| < ε has no nonzero solution for
sufficiently small ε > 0. We note also that this also shows, independently,
that the partial quotients in the Hurwitz expansion of an irrational number
are bounded if any only if the number is badly approximable in the usual
sense.

Proposition 3.4. Let 0 < δ < 1. Then for any j ≥ 0 the arc ϕ(j) ∩Hδ

(when nonempty) is a connected component of η−1(ψ(j) ∩Mδ). Moreover,
if δ < (1− μ2)1/4 then it is the only connected component of η−1(ψ(j) ∩Mδ)
contained in Hδ.

Proof. For δ < 1, for any γ ∈ Γ which does not leave Hδ invariant γHδ is
contained in {z = x+ iy ∈ H2 | y < 1}. Hence the intersection of ϕ(j) with
any such γHδ is separated from ϕ(j) ∩Hδ. This proves the first statement. If
δ < (1− μ2)1/4 then for any γ ∈ Γ which does not leave Hδ invariant γHδ is
contained in {z = x+ iy ∈ H2 | y <

√
1− μ2}. Since the endpoints of ϕ(j)

have the y coordinates greater than
√

1− μ2, ϕ(j) does not intersect γHδ

which is different from Hδ. This completes the proof. �

We shall denote by d(z, z′), where z, z′ ∈ H2, the (hyperbolic) distance
between z and z′ in H2. Let {χj} be the sequence of numbers defined by

χj =
1
2 log 3

√
5 if |aj | ≥ 3 and χj = log 2− 1

2d
(
μ+ i

√
1− μ2, 12(3 + i

√
3)
)
if

|aj | = 2.

Proposition 3.5. −2χj ≤ tj − 2 log |aj | ≤ log 3
√
5 + log

(
3
4 +

√
1
2

)
, for all

j ≥ 0.

Proof. Recall that each ϕ(j) is a geodesic segment joining a point of C to
another on aj + C, and tj is its length. The distances of the initial point
and the end point of the segment from i and aj + i respectively are bounded

by d(μ+ i
√

1− μ2, i), where, as before, μ = 23−3
√
5

22 is the x co-ordinate of

the right endpoint of C. The latter distance is 1
2 log

1+μ
1−μ , and a numerical

calculation shows that it equals 1
2 log 3

√
5. Now let dj = d(i, aj + i). Then

from the above observations we get that

dj − log 3
√
5 ≤ tj ≤ dj + log 3

√
5,
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for all j. By a standard formula for distances in H2 (see [2]) we have

dj = log

(
1

2
|a2j |+

1

2
|aj |

√
|aj |2 + 4 + 1

)

= 2 log |aj |+ log

(
1

2
+

1

2

√
1 + 4|aj |−2 + |aj |−2

)

and since |aj | ≥ 2 for all j the second term is (positive and) bounded by

log
(
3
4 +

√
1
2

)
. Combining, we get that

− log 3
√
5 ≤ tj − 2 log |aj | ≤ log 3

√
5 + log

(
3

4
+

√
1

2

)
,

for all j ≥ 0. From the definition of χj ’s we see that this proves the propo-
sition in the case |aj | ≥ 3, and also the second inequality when |aj | = 2.

It remains to prove the first inequality in the case when |aj | = 2. For this
we note that ϕ(j) is a segment joining a point of C to a point of a2 + C ′,
where C ′ = {z = x+ iy ∈ C | |x| ≤ 1

2}. It can be verified directly that the

geodesic joining the endpoints μ+ i
√

1− μ2 and 1
2(3 + i

√
3) of C and 2 + C ′

is, along with its mirror image, is the shortest of the segments as above. Thus
tj ≥ d

(
μ+ i

√
1− μ2, 12(3 + i

√
3)
)
. Hence

tj − 2 log |aj | ≥ d

(
μ+ i

√
1− μ2,

1

2
(3 + i

√
3)

)
− 2 log 2 = −2χj ,

by the definition of χj when |aj | = 2. �

Remark 3.6. Let χ = log 2− 1
2d

(
μ+ i

√
1− μ2, 12(3 + i

√
3)
)
, namely the

value of χj when |aj | = 2. We note that 1
2 log

16
11 ≤ χ ≤ 1

2 log
3
2 . The semi-

circular geodesic segment joining 1
2(3 + i

√
3) to 3

4 + i
√
7
4 may be seen to be

orthogonal to the unit circle at the latter point. Hence we have

d

(
μ+ i

√
1− μ2,

1

2
(3 + i

√
3)

)
≥ d

(
3

4
+ i

√
7

4
,
1

2
(3 + i

√
3)

)
.
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By a direct computation we see that d
(
3
4 + i

√
7
4 ,

1
2(3 + i

√
3)
)
= log 2+

√
7√

3
≥

log 8
3 . Hence χ ≤ log 2− 1

2 log
8
3 = 1

2 log
3
2 . Also,

d

(
3

4
+ i

√
7

4
, μ+ i

√
1− μ2

)
= d

(
3

4
+ i

√
7

4
, i

)
− d

(
μ+ i

√
1− μ2, i

)
= log

√
7− 1

2
log 3

√
5,

from which we get that

d

(
μ+ i

√
1− μ2,

1

2
(3 + i

√
3)

)
≤ log

2 +
√
7√

3
+ log

√
7− log 4

√
45 ≤ log

11

4
,

as may be directly verified. Thus we have χ ≥ log 2− 1
2 log

11
4 = 1

2 log
16
11 .

4. Solutions of H-reduced quadratic inequalities

We say that an element g ∈ G is H-reduced if the geodesic {gatK} (under
the identification as in § 3) is H-reduced. Now let g ∈ G be H-reduced and
such that g(∞) is an irrational number and let Q = Qg; such a quadratic
form may be called an H-reduced quadratic form. Let [a0, a1, . . . ] be the
minus continued fraction expansion of g(∞) with respect to the Hurwitz
algorithm. For all n ∈ N let

αn =

n−1∑
j=0

log |aj |.

Also for δ > 0 and n ∈ N let

e(δ, n) = #

{
0 ≤ j ≤ n− 1 | |aj | > 2δ−2 +

1

2
+ λ

}
and

f(δ, n) = #

{
0 ≤ j ≤ n− 1 | |aj | > 2δ−2 − 3

2
+ λ

}
,

where, as in § 3, λ = 1
2(3−

√
5). Also let c0 =

1
2 log 3

√
5 + 1

2 log
(
3
4 +

√
1
2

)
.
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Theorem 4.1. Let 0 < δ <
√

2
π and κ > 0 be given, and for ρ > 0 let

G(ρ) =

{
p ∈ p | 0 < |Q(p)| < 1

2
δ2, L−

g (p) > κ and ‖p‖ ≤ ρ

}
.

There exist constants θ ≥ 0 and ν ∈ N such that the following holds:
i) if log ρ ≥ αn + c0n+ θ then #G(ρ) ≥ e(δ, n)− ν, and
ii) if log ρ ≤ αn −∑n−1

j=0 χj − θ then #G(ρ) ≤ f(δ, n) + ν.

Proof. Let δ > 0 be given. By Corollary 2.5, for any ρ > 0 the cardinality of
G(ρ) differs from c+g (2 log ρ) by a bounded amount, where c+g (2 log ρ) stands
for the number of connected components of the set {t ∈ [0, 2 log ρ] | gatBδ ∩
Z2 �= ∅}. Hence it suffices to show that the estimates as in assertions (i)
and (ii) hold for c+g (2 log ρ) (for the given δ, not included in the notation)
in place of #G(ρ), with a ν ′ in place of ν.

We note that t ≥ 0, gatBδ ∩ Z2 �= ∅ if and only if a−1
t g−1γ ∈ Bδ which, as

seen in § 3, is equivalent to η(gat(i)) ∈Mδ. Note also that η(gat(i)) = ψt′+t

for all t ∈ R. Hence c+g (2 log ρ) is the number of connected components of
{t ∈ [0, 2 log ρ] | ϕt′+t ∈ Hδ}.

Now let (z, ζ) ∈ Φ be such that ϕ̃(z, ζ) is equivalent to the geodesic
joining g(0) and g(∞). Let ϕ = {ϕt} = ϕ̃(z, ζ). Let {tj}∞j=0 denote the cor-
responding sequence of return times (see § 3). Also let t′ ∈ R be such that
g(i) = ϕt′ ; such a t′ exists since g(i) is contained in the geodesic joining g(0)
and g(∞). We choose θ = |t′| and ν ′ to be the infimum of j such that tj ≥ t′.
We show that assertions (i) and (ii) hold for these choices.

Now let ρ be as in (i), with n ∈ N. Suppose first that t′ < 0. Then

2 log ρ ≥ 2αn + 2c0n− t′ ≥
n−1∑
j=0

(2 log |aj |+ 2c0)− t′ >
n−1∑
j=0

tj − t′

and hence c+g (2 log ρ) contains {t ∈ [tj , tj+1) | ϕt ∈ Hδ}, for j = 0, . . . , n− 1.
By Proposition 3.4 this implies c+g (2 log ρ) is at least as much as the number

of j ≤ n− 1 for which ϕ(j) intersects Hδ. By Proposition 3.2 this number is
at least e(δ, n), which proves the claim in the case at hand. Now suppose that
t′ ≥ 0. In this case (the number of connected components) c+g (2 log ρ) is seen

to be at least the number of those j’s for which tj > t′ and ϕ(j) intersects
Hδ. By Proposition 3.2 the number of j ≤ n− 1 for which ϕ(j) intersects Hδ

is at least e(δ, n). This shows that c+g (2 log ρ) is at least e(δ, n)− ν which,
as noted above, proves (i).
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Next let ρ be as in (ii) with n ∈ N. Then

2 log ρ ≤ 2αn −
n−1∑
j=0

χj − t′ ≤
n−1∑
j=0

(2 log |aj | − χj)− t′ <
n−1∑
j=0

tj − t′.

Since
√

2
π < (1− μ2)1/4, by Proposition 3.4 this implies that c+g (2 log ρ) is

at most the number of j ≤ n− 1 for which ϕ(j) intersects Hδ, and Proposi-
tion 3.2 it is at most f(δ, n). This proves (ii). �

5. Solutions of quadratic inequalities - the general case

Consider a binary quadratic form Q(x, y), which is nondegenerate and not
a scalar multiple of a form with rational coefficients. Then upto a scalar
multiple Q is given by Q(x, y) = (ay + bx)(cy + dx), for all x, y ∈ R, where
ad− bc = 1, b �= 0 and a

b is irrational. We shall therefore consider only forms
Q satisfying these conditions on the coefficients. Thus Q(x, y) = Qg(xe1 +

ye2), where g =
(

a −c

−b d

)
is an element in G. We note that g(∞) = −a

b ,

which by hypothesis is an irrational number. The element g may not be
H-reduced, namely {gatK} may not be a H-reduced geodesic. However it
is equivalent under the action of Γ to an H-reduced geodesic. Thus there
exists a γ ∈ Γ such that {γgatK} is H-reduced. Let g′ = γg and Q′ = Qg′ ;
then g′ is H-reduced, and we shall call Q′ a reduced version of Q and γ an
H-reducing element for Q.

We note that the factors L+
g and L−

g of Qg as introduced earlier are
now given by L+

g (xe1 + ye2) = ay + bx and L−
g (xe1 + ye2) = cy + dx, for all

x, y ∈ R. Let L+
g′ and L−

g′ be the corresponding linear forms for g′.
Let [a0, a1, . . . ] and [a′0, a′1, . . . ] be the minus continued fraction expan-

sions of a
b (which is irrational) and and g′(∞) respectively. Since g(∞) =

−a
b , it follows that [−a′0,−a′1, . . . ] is the continued fraction expansion of

g(∞). Since g′(∞) = γg(∞) we get also that there exists m ∈ Z such that
a′j = −aj+m for all large j. Now let

α+ = lim sup
1

n

n−1∑
j=0

log |aj | = lim sup
1

n

n−1∑
j=0

log |a′j |

and

α− = lim inf
1

n

n−1∑
j=0

log |aj | = lim inf
1

n

n−1∑
j=0

log |a′j |.
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Let {χj} be the sequence, as before (defined by χj =
1
2 log 3

√
5 if |aj | > 2

and χj = log 2− 1
2d

(
μ+ i

√
1− μ2, 12(3 + i

√
3)
)
if |aj | = 2) and let

ωn =

n−1∑
j=0

(log |aj | − χj) for all n ∈ N, and ω = lim inf
1

n
ωn.

It may be borne in mind that each of α+, α− and ω can be infinite. On the
other hand α+ ≥ α− ≥ log 2. Also, as

log 2− χ ≥ log 2− 1

2
log

3

2
> log 3− 1

2
log 3

√
5 =

1

4
log

9

5
,

we have log |aj | − χj ≥ 1
4 log

9
5 for all j, and hence ω ≥ 1

4 log
9
5 . We note also

that similarly ω ≥ ηα−, where η = (log 9
5)/(4 log 3) >

1
8 .

Also, for any δ > 0 let

e−(δ) = lim inf
n→∞

1

n
e(δ, n), e+(δ) = lim sup

n→∞
1

n
e(δ, n)

f−(δ) = lim inf
n→∞

1

n
f(δ, n), f+(δ) = lim sup

n→∞
1

n
f(δ, n).

We note that α+, α−, ω, e+(δ) and e−(δ) are determined by {aj}, and hence
by a

b .

Corollary 5.1. Let Q be a binary quadratic form, as above, given by Q(x, y)
= (ay + bx)(cy + dx), for all x, y ∈ R, where ad− bc = 1, b �= 0 and a

b is
irrational. Let the notation α+, ω, e+(δ) and e−(δ) be as above, and let

c0 =
1
2

(
log 3

√
5 + log(34 +

√
1
2)
)
, as before. Let 0 < δ <

√
2
π and κ > 0 be

given, and for any ρ let

G(ρ) =

{
p = xe1 + ye2 ∈ p | 0 < |Q(p)| < 1

2
δ2, cy + dx > κ and ‖p‖ ≤ ρ

}
.

Let ε > 0 be arbitrary. Then we have the following:
i) if α+ <∞ then there exists ρ0 such that for all ρ ≥ ρ0 we have

#G(ρ) ≥ (1− ε)
e−(δ)

(α+ + c0)
log ρ;

ii) given 0 < M ≤ ω there exists ρ0 such that for all ρ ≥ ρ0 we have

#G(ρ) ≤ (1 + ε)
f+(δ) + ε

M
log ρ.

In particular this holds for all 0 < M ≤ ηα−.
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Proof. Let γ ∈ Γ be an H-reducing element for Q, g′ = γg and Q′ = Qg′ .
For any ρ > 0 let G′(ρ) = {p ∈ p | 0 < |Q′(p)| < 1

2δ
2, L−

g′(p) > κ and ‖p‖ ≤
ρ}. Then we have Q(p) = Q′(γp) and L−

g (p) = L−
g′(γp) for all p ∈ Z2, and

hence #G′(‖γ‖−1ρ) ≤ #G(ρ) ≤ #G′(‖γ‖ρ) for all ρ > 0, where ‖γ‖ denotes
the operator norm of γ (as an element of G). This shows that it suffices to
prove the assertions in the corollary with G′(ρ) in place of G(ρ), namely in
the case when γ is the identity element. In other words we may assume, as
we shall, that g is H-reduced.

Let θ and ν be as in Theorem 4.1. Let υ =
√
1 + ε. There exists n0

such that for all n ≥ n0 we have e(δ, n)− ν ≥ υ−1e−(δ)n and αn+1 + c0(n+
1) + θ ≤ υ(α+ + c0)n. Let ρ0 > 0 be such that log ρ0 = αn0

+ c0n0 + θ. Con-
sider ρ ≥ ρ0. Then there exists n ≥ n0 such that αn + c0n+ θ ≤ log ρ ≤
αn+1 + c0(n+ 1) + θ. Then by Theorem 4.1 we have #G(ρ) ≥ e(δ, n)− ν ≥
υ−1e−(δ)n. Also by choice log ρ ≤ αn+1 + c0(n+ 1) + θ ≤ υ(α+ + c0)n, and
hence n ≥ log ρ/υ(α+ + c0). Thus we get that

#G(ρ) ≥ υ−2 e−(δ)
(α+ + c0)

log ρ ≥ (1− ε)
e−(δ)

(α+ + c0)
log ρ,

which proves (i).
Next we choose n0 such that for all n ≥ n0 we have f(δ, n) + ν ≤ υ(f+(δ)

+ ε)n and ωn−1 − θ ≥ υ−1Mn. Let ρ0 > 0 be such that log ρ0 = ωn0
− θ,

and consider ρ ≥ ρ0. Since ω > 0, ωn → ∞ and hence there exists n ≥ n0 +
1 such that log ρ ≤ ωn − θ; we pick the least integer n ≥ n0 + 1 with this
property, so log ρ ≥ ωn−1 − θ. By Theorem 4.1 we have #G(ρ) ≤ f(δ, n) +
ν ≤ υ(f+(δ) + ε)n. Also since log ρ ≥ ωn−1 − θ ≥ υ−1Mn, we get that n ≤
υ
M log ρ. This yields

#G(ρ) ≤ υ2
f+(δ) + ε

M
log ρ = (1 + ε)

f+(δ) + ε

M
log ρ,

which proves (ii). �
Proof of Theorem 1.1. The theorem follows from Corollary 5.1 when we
interchange the role of x and y and replace δ by

√
2δ; we note that e(δ)

and f(δ) as in Theorem 1.1 are respectively at most and at least as much
as the corresponding constants in Corollary 5.1, since λ < 1

2 . �
The following special case may be worth emphasizing, on account of its

comparability with the fact that if [a0, a1, . . . ] is bounded then for sufficiently
small δ > 0 the set of solutions G(ρ) as above is empty.
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Corollary 5.2. Let the notation be as above. If f+(δ) = 0 then

lim
ρ→∞

#G(ρ)

log ρ
= 0;

in particular, if S is a subset of N with zero upper density and {aj} is bounded
on the complement of S, then this conclusion holds, for all sufficiently small
δ > 0.

Proof. The proof is immediate from Corollary 5.1. �

Acknowledgements

The authors are thankful to the referee for suggestions leading to improve-
ment of the presentation of the paper. The authors are also thankful to
L. Singhal for his help in drawing the figures included in this paper.

References

[1] Manfred Einsiedler and Thomas Ward, Ergodic theory with a view
towards number theory. Graduate Texts in Mathematics, Vol. 259,
Springer-Verlag London, Ltd., London, 2011.

[2] Svetlana Katok, Fuchsian groups. Chicago Lectures in Mathematics,
University of Chicago Press, Chicago, IL, 1992.

[3] Svetlana Katok and Ilie Ugarcovici, Arithmetic coding of geodesics on
the modular surface via continued fractions. In: European women in
mathematics—Marseille 2003, CWI Tract, Vol. 135, pages 59–77, Cen-
trum Wisk. Inform., Amsterdam, 2005.

[4] Svetlana Katok and Ilie Ugarcovici, Symbolic dynamics for the modular
surface and beyond. Bull. Amer. Math. Soc. (N.S.), 44(1):87–132, 2007.

[5] G. A. Margulis, Oppenheim conjecture. In: Fields Medallists’ lectures,
World Sci. Ser. 20th Century Math., Vol. 5, pages 272–327, World Sci.
Publ., River Edge, NJ, 1997.



On values of binary quadratic forms at integer points 1045

Centre for Applicable Mathematics

Tata Institute of Fundamental Research

Yelahanka, Bangalore 560 065, INDIA

E-mail address: manoj@math.tifrbng.res.in

Department of Mathematics

Indian Institute of Technology Bombay

Powai, Mumbai 400076, INDIA

E-mail address: sdani@math.iitb.ac.in

Received March 6, 2014





<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.7
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (This is the built-in "Press Quality", but modified as follows: Compatibility changed from "Acrobat 5.0" to "Acrobat 8.0".)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


