
Math. Res. Lett.
Volume 22, Number 2, 579–604, 2015

On the character varieties of finitely

generated groups

Igor A. Rapinchuk

We establish three results dealing with the character varieties of
finitely generated groups. The first two are concerned with the
behavior of κ(Γ, n) = dimXn(Γ) as a function of n, and the third
addresses the problem of realizing a Q-defined complex affine alge-
braic variety as a character variety.

1. Introduction

Let Γ be a finitely generated group. It is well-known (cf., for example, [11])
that for each integer n ≥ 1, there exists a Q-defined affine algebraic variety
Rn(Γ), called the n-th representation variety of Γ, such that for any field
F of characteristic 0, there is a natural bijection between the representa-
tions ρ : Γ→ GLn(F ) and the set Rn(Γ, F ) of F -rational points of Rn(Γ).
(In this paper, we will fix an algebraically closed field K of characteris-
tic 0 and identify Rn(Γ) with Rn(Γ,K)). Furthermore, there is a natural
(adjoint) action of GLn on Rn(Γ). The corresponding categorical quotient
Xn(Γ) is a Q-defined affine algebraic variety called the n-th character variety
of Γ; its points parametrize the isomorphism classes of completely reducible
representations of Γ.

The goal of this paper is to establish three results about the character
varieties of finitely generated groups. The first two deal with the dimension
κ(Γ, n) := dimXn(Γ) as a function of n. It is easy to see that κ(Γ, n) ≤
κ(Γ,m) for n ≤ m (cf. Lemma 2.4), so the function κ(Γ, n) is increasing,
and one would like to understand its rate of growth. In the case where
Γ = Fd, the free group on d generators, we have

κ(Fd, n) =

{
n, d = 1
(d− 1)n2 + 1, d > 1

It follows that the growth of κ(Γ, n) is at most quadratic in n for any Γ. At
the other end of the spectrum are the groups for which κ(Γ, n) = 0 for all
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n — such groups are called SS-rigid. For example, according to Margulis’s
Superrigidity Theorem [12, Ch. VII], irreducible lattices in higher rank Lie
groups are SS-rigid. The question is what rate of growth of κ(Γ, n) as a
function of n can actually occur for a finitely generated group Γ? Our first
result shows that if Γ is not SS-rigid, then the growth of κ(Γ, n) is at least
linear.

Theorem 1. Let Γ be a finitely generated group. If Γ is not SS-rigid, then
there exists a linear function f(t) = at+ b with a > 0 such that

κ(Γ, n) := dimXn(Γ) ≥ f(n)

for all n ≥ 1.

The proof will be given in §4.
Our second result provides a large family of groups for which the rate

of growth of κ(Γ, n) is indeed linear. The set-up is as follows. Let Φ be a
reduced irreducible root system of rank ≥ 2, G the corresponding universal
Chevalley-Demazure group scheme, and R a finitely generated commutative
ring. Then, it is known that the elementary subgroup G(R)+ ⊂ G(R) (i.e.
the subgroup generated by the R-points of the 1-parameter root subgroups)
has Kazhdan’s property (T) (see [5]), and hence is finitely generated. We note
that in [21], the finite presentation of Steinberg groups (which clearly implies
the finite generation of G(R)+) is proved directly in the case where rank Φ ≥
3 (see also [20] for a discussion of the finite generation of Chevalley groups of
rank ≥ 2 over the polynomial ring k[t], with k a field). Assume furthermore
that (Φ, R) is a nice pair, that is 2 ∈ R× if Φ contains a subsystem of type
B2 and 2, 3 ∈ R× if Φ is of type G2. In this paper, we give an alternative
proof of the following result that we first established in [19, Theorem 2].

Theorem 2. Let Φ be a reduced irreducible root system of rank ≥ 2, R a
finitely generated commutative ring such that (Φ, R) is a nice pair, and G
the universal Chevalley-Demazure group scheme of type Φ. Let Γ = G(R)+

denote the elementary subgroup of G(R) and consider the n-th character
variety Xn(Γ) of Γ over an algebraically closed field K of characteristic
0. Then there exists a constant c = c(R) (depending only on R) such that
κ(Γ, n) := dimXn(Γ) satisfies

(1) κ(Γ, n) ≤ c · n

for all n ≥ 1.
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We should add that since the elementary subgroups of Chevalley groups
over finitely generated rings constitute essentially all known examples of
discrete linear groups having Kazhdan’s property (T), we were led in [19] to
formulate the following.

Conjecture. Let Γ be a discrete linear group having Kazhdan’s property
(T). Then there exists a constant c = c(Γ) such that

κ(Γ, n) ≤ c · n

for all n ≥ 1.

A question that remains is whether there exist groups Γ for which the
growth of κ(Γ, n) is strictly between linear and quadratic, i.e. we have

lim sup
n→∞

κ(Γ, n)

n
=∞ and lim inf

n→∞
κ(Γ, n)

n2
= 0.

Remark (added in proof) M. Kassabov has recently produced examples of
finitely generated groups for which the growth of κ(Γ, n) is strictly between
linear and quadratic. The construction relies on the analysis of certain proal-
gebraic completions. We refer the reader to [10] for the details.

The proof of Theorem 2 that we gave in [19] was based on the idea, going
back to A. Weil, of bounding the dimension of the tangent space to Xn(Γ)
at a point [ρ] corresponding to a representation ρ : Γ→ GLn(K) by the
dimension of the cohomology group H1(Γ,Ad ◦ ρ). Then, using our rigidity
results from [18], we were able to relate the latter space to a certain space of
derivations of R. In §5, we give a new argument which is more geometric in
nature and depends on a refined version of our previous rigidity statements
(see Theorem 3.1).

Finally, we would like to address the question of whichQ-defined complex
algebraic varieties can actually occur as Xn(Γ), for some finitely generated
group Γ and integer n. This question was initially studied by M. Kapovich
and J. Millson [9] in connection with their work on Serre’s problem of
determining which finitely presented groups occur as fundamental groups
of smooth complex algebraic varieties. They proved the following result,
which basically provides an answer up to birational isomorphism, and was a
crucial ingredient in their construction of Artin and Shephard groups that
are not fundamental groups of smooth complex algebraic varieties.
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Theorem. ([9], Theorem 1.2) For any affine variety S defined over Q, there
is an Artin group Γ such that a Zariski-open subset U of S is biregular
isomorphic to a Zariski-open subset of X(Γ, PO(3)).

We have been able to realize an arbitrary affine algebraic variety as a
character variety “almost” up to biregular isomorphism.

Theorem 3. Let S be an affine algebraic variety defined over Q. There
exist a finitely generated group Γ having Kazhdan’s property (T ) and an
integer n ≥ 1 such that there is a biregular Q-defined isomorphism of complex
algebraic varieties

S(C)→ Xn(Γ) \ {[ρ0]},

where ρ0 is the trivial representation and [ρ0] is the corresponding point of
Xn(Γ).

(We note that for a Kazhdan group, [ρ0] is always an isolated point (cf. [16,
Proposition 1]).)

We would like to point out that the proofs of Theorems 2 and 3 rely
extensively on our rigidity results contained in [18] and [19].
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2. Preliminaries on character varieties

In this section, we summarize some results on character varieties that will be
needed later. Throughout this section, we will work over a fixed algebraically
closed field K of characteristic 0.

We begin by recalling a couple of statements from [15] concerning the
relationship between the character varieties of a finitely generated group and
those of its finite-index subgroups. First, suppose f : Y → Z is a morphism
of affine algebraic varieties. We will say that f is quasi-finite if it has finite
fibers and integral if the induced map on coordinate rings f∗ : K[Z]→ K[Y ]



Character varieties of finitely generated groups 583

is integral1 (clearly, an integral morphism is quasi-finite). Now let Γ be
any finitely generated group and Δ ⊂ Γ be a finite-index subgroup. For any
n ≥ 1, restricting representations yields a regular map

(2) ResΓΔ : Rn(Γ)→ Rn(Δ).

Since ResΓΔ clearly commutes with the adjoint action of GLn, it induces a
regular map

(3) ν : Xn(Γ)→ Xn(Δ).

Lemma 2.1. ([15], Lemma 1) For any finite-index subgroup Δ ⊂ Γ, the
restriction morphism

ν : Xn(Γ)→ Xn(Δ)

is integral (and hence quasi-finite).

Suppose now that Δ ⊂ Γ has index d. If we fix a system of representatives
γ1, . . . , γd for Γ/Δ, then we recall that for any representation ρ ∈ Rm(Δ), the
induced representation ρ̃ ∈ Rmd(Γ) has the following description: for γ ∈ Γ,
the matrix ρ̃(γ) consists of d× d blocks of size m×m, the ij-th block being
nonzero only if γγj = γiδ with δ ∈ Δ, in which case it equals ρ(δ). It follows
that the correspondence ρ 	→ ρ̃ defines a regular map

α = IndΓΔ : Rm(Δ)→ Rmd(Γ)

(which depends on the choice of a system of representatives Γ/Δ). Since α
is obviously compatible with the adjoint actions of GLm and GLmd on the
respective representation varieties, it descends to a morphism ᾱ : Xm(Δ)→
Xmd(Γ) of the corresponding character varieties (which is independent of
the choice of coset representatives).

Lemma 2.2. ([15], Lemma 3) If Δ ⊂ Γ is a subgroup of index d, then the
induction morphism

ᾱ : Xm(Δ)→ Xmd(Γ)

is quasi-finite.

From the lemma, we obtain the following corollary, which will be needed
in the proof of Theorem 2.

1Recall that a ring homomorphism f : A→ B is said to be integral if B is integral
over f(A).
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Corollary 2.3. Let Δ ⊂ Γ be a subgroup of finite index d. Then for any
m ≥ 1, we have

dimXmd(Γ) ≥ dimXm(Δ).

Proof. Since the map ᾱ : Xm(Δ)→ Xmd(Γ) has finite fibers, the statement
follows directly from the theorem on the dimension of fibers [22, §6.3, The-
orem 7]. �

Next, for any finitely generated group Γ, let K[Rn(Γ)] and K[Xn(Γ)]
denote the coordinate rings of Rn(Γ) and Xn(Γ), respectively. It is well-
known that K[Xn(Γ)] is the subalgebra of K[Rn(Γ)] generated by the Fricke
functions τγ(ρ) = tr(ρ(γ)) and the inverse of the determinant functions
δγ(ρ) = det(ρ(γ))−1 for all γ ∈ Γ (see [11, 1.31]). In fact, since K[Xn(Γ)]
is a finitely generated algebra, we only need to take the Fricke functions
τγ1
, . . . , τγ�

for some finite set {γ1, . . . , γ�} ⊂ Γ (and then, by a theorem of
Procesi [14], it follows that the functions δγ are polynomials in τγ1

, . . . , τγ�
).

Suppose now that the Fricke functions τγ1
, . . . , τγ�

are algebraically inde-
pendent on some Rn(Γ). Then, the Fricke functions corresponding to the
same elements γ1, . . . , γ� remain algebraically independent on Rm(Γ) for
any m > n (this follows by considering representations of the form ρ′ =
ρ⊕ 1m−n, where ρ ∈ Rn(Γ) and 1m−n is the trivial representation of Γ of
dimensionm− n). This leads to the following (elementary) statement, which
we record for future use.

Lemma 2.4. For any m > n, we have dimXm(Γ) ≥ dimXn(Γ).

(In fact, it is easy to see that the embedding Rn(Γ)→ Rm(Γ) that sends ρ
to ρ′ in the above notations induces an injection Xn(Γ)→ Xm(Γ).)

Finally, let us recall the following condition on a group Γ:

(FAb) for any finite-index subgroup Δ ⊂ Γ, the abelianization Δab =
Δ/[Δ,Δ] is finite

For groups with this property, we have the following.

Proposition 2.5. ([16], Proposition 2) Let Γ be a group satisfying (FAb).
For any n ≥ 1, there exists a finite collection G1, . . . , Gd of algebraic sub-
groups of GLn(K), such that for any completely reducible representation
ρ : Γ→ GLn(K), the Zariski closure ρ(Γ) is conjugate to one of the Gi.
Moreover, for each i, the connected component G◦i is a semisimple group.
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3. A refined form of rigidity for Chevalley groups

This section is devoted to establishing some refinements of our rigidity
results from [18] that will be needed in the proofs of Theorems 2 and 3. Our
set-up is as follows. Let Φ be a reduced irreducible root system of rank ≥ 2
and G be the corresponding universal Chevalley-Demazure group scheme.
For a commutative ring R, we let Γ = G(R)+ ⊂ G(R) be the elementary
subgroup, i.e. the subgroup generated by the R-points of the 1-parameter
root subgroups. Throughout this section, we will always assume that (Φ, R)
is a nice pair, i.e. 2 ∈ R× if Φ contains a subsystem of type B2 and 2, 3 ∈ R×
if Φ is of type G2.

Theorem 3.1. Let Φ be a reduced irreducible root system of rank ≥ 2 and G
be the corresponding universal Chevalley-Demazure group scheme. Suppose
R is a finitely generated commutative ring such that (Φ, R) is a nice pair,
set Γ = G(R)+, and let K be an algebraically closed field of characteristic 0.
Fix an integer n ≥ 1.

(i) There exists a finite index subgroup Δ ⊂ Γ = G(R)+ such that for any
(nontrivial) completely reducible representation ρ : Γ→ GLn(K), we
have

ρ|Δ = (σ ◦ F )|Δ,
where

F : G(R)→ G(K)× · · · ×G(K)︸ ︷︷ ︸
k copies

is a group homomorphism arising from a ring homomorphism

f : R→ K × · · · ×K︸ ︷︷ ︸
k copies

with Zariski-dense image, k ≤ n, and σ : G(K)× · · · ×G(K)→
GLn(K) is a morphism of algebraic groups.

(ii) There exists an integerM (depending only on n) such that ifM ∈ R×,
then one can take Δ = Γ.

Remark 3.2. We would like to point out the difference between [18, Main
Theorem] and Theorem 3.1: given a representation ρ : Γ→ GLn(K), the
former guarantees the existence of a finite index subgroup Δ̃ ⊂ Γ such that
ρ|Δ̃ has a standard description. On the other hand, under the additional
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assumption that R is a finitely generated ring, Theorem 3.1 gives us a finite
index subgroup Δ ⊂ Γ that works uniformly for all completely reducible
representations of Γ of a given dimension.

The theorem will follow from [18, Main Theorem] and Lemma 3.3 below.
Before giving the statement of the lemma, let us recall that to any repre-
sentation ρ : Γ→ GLn(K), one can associate a commutative algebraic ring
A(ρ), together with a homomorphism of abstract rings f : R→ A(ρ) hav-
ing Zariski-dense image such that for every root α ∈ Φ, there is an injective
regular map ψα : A(ρ)→ H into H := ρ(G(R)+) (Zariski closure) satisfying

(4) ρ(eα(t)) = ψα(f(t)).

for all t ∈ R (see [18, Theorem 3.1]).

Lemma 3.3. Let Φ be a reduced irreducible root system of rank ≥ 2 and G
be the corresponding universal Chevalley-Demazure group scheme. Suppose
R is a finitely generated commutative ring such that (Φ, R) is a nice pair,
set Γ = G(R)+, and let K be an algebraically closed field of characteristic
0. Fix n ≥ 1. Given a representation ρ : Γ→ GLn(K), we let A = A(ρ) be
the associated algebraic ring and denote by A(ρ)◦ the connected component
of A(ρ). Then there exists an integer N = N(n) ≥ 1 (depending only on
n) such that [A(ρ) : A(ρ)◦] ≤ N for any completely reducible representation
ρ : Γ→ GLn(K).

Proof. First, as we remarked earlier, Γ has Kazhdan’s property (T ) [5], and
consequently satisfies condition (FAb) (cf. [7]). So, it follows from Propo-
sition 2.5 that there exists an integer m1 ≥ 1 (depending only on n) such
that [H : H◦] ≤ m1 for any completely reducible representation ρ, where
H = ρ(Γ).

Now fix some completely reducible representation ρ : Γ→ GLn(K) and
let A and f : R→ A be the associated algebraic ring and ring homomor-
phism. Since K has characteristic 0, we have A = A◦ ⊕ C, where C is a
finite ring (cf. [18, Proposition 2.14]). By [18, Proposition 5.3], the con-
nected component H◦ coincides with the subgroup of H generated by all of
the ψα(A

◦), for α ∈ Φ. Let us fix a root α0. We claim that ψα0
(C) central-

izes H◦. Indeed, since for any α, β ∈ Φ, α �= −β, we have the commutator
formula

[ψα(a), ψβ(b)] =
∏

ψiα+jβ(N
i,j
α,βa

ibj)
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(see [18, Proposition 4.2]), it follows that

[ψα(a), ψα0
(b)] = 1

for any α �= −α0 and a ∈ A◦, b ∈ C. On the other hand, it is easy to show
using the fact that the Weyl group is generated by the standard reflections
wα for α �= ±α0 (see, for example, the proof of [17, Lemma 4.1]) that

H◦ = 〈ψα(A
◦) | α ∈ Φ, α �= −α0〉,

which yields our claim.
Next, let Θ = ZH(H

◦) denote the centralizer of H◦ in H. Clearly, we
have Θ ∩H◦ ⊂ Z(H◦), where Z(H◦) is the center of H◦. Since there are
obviously only finitely many possibilities for H◦ and H◦ is semisimple, there
exists an integer m2 (depending only on n) such that |Θ ∩H◦| ≤ |Z(H◦)| ≤
m2. Thus,

|Θ| = [Θ : Θ ∩H◦]|Θ ∩H◦| ≤ m1 ·m2.

Set N = m1 ·m2. Since ψα0
(C) ⊂ Θ and ψα0

is injective, the lemma follows.
�

Proof of Theorem 3.1. (i) Let ρ : Γ→ GLn(K) be any completely reducible
representation. Then, combining [18, Main Theorem, Proposition 2.20, and
Lemma 5.7] and [19, Lemma 4.2], we obtain a finite-dimensional commuta-
tive K-algebra

B = K × · · · ×K︸ ︷︷ ︸
k copies

with k ≤ n, together with a ring homomorphism f : R→ B with Zariski-
dense image, and a morphism of algebraic groups σ : G(B)→ H = ρ(Γ),
such that on a suitable finite-index subgroup Δ̃ ⊂ Γ, we have

(5) ρ|Δ̃ = (σ ◦ F )|Δ̃,

where F : Γ→ G(B) is the group homomorphism induced by f. By con-
struction, B is the connected component A◦(ρ) of the algebraic ring A(ρ)
associated to ρ. Since char K = 0, we can write

A(ρ) = A(ρ)◦ ⊕ C

where C is a finite ring [18, Proposition 2.14], and by Lemma 3.3, there is a
uniform bound on the size of C. Hence, we have a uniform bound on the size
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of G(C), or equivalently, on the index of G(A(ρ)◦) in G(A(ρ)): let N ′ ≥ 1
such that

[G(A(ρ)) : G(A(ρ)◦)] ≤ N ′

for any completely reducible representation ρ : Γ→ GLn(K). Next, it follows
from the discussion at the beginning of [18, §5] that the group Δ̃ appearing
in (5) coincides with F−1(G(A◦)), where, as before, F : Γ→ G(A(ρ)) is the
group homomorphism induced by the ring homomorphism f : R→ A(ρ).
Now, it is well-known that a finitely generated group has only finitely many
subgroups of a given index, and obviously the intersection of finitely many
subgroups of finite index is again a finite index subgroup. Thus, taking Δ
to be the the intersection of all subgroups of Γ of index ≤ N ′ completes the
proof.

(ii) As we already saw in the proof of (i), the need to pass to a finite index
subgroup arises from the presence of a finite ring C in the decomposition
A(ρ) = A(ρ)◦ ⊕ C. Let M = N !, where N is the integer appearing in the
statement of Lemma 3.3, so that |C| ≤ N , and let f : R→ A(ρ) be the ring
homomorphism with Zariski-dense image associated to ρ. Then, if M ∈ R×,
it follows thatM ∈ A(ρ)×. On the other hand, by constructionM annihilates
C, so C = 0. �

Remark 3.4. The fact that R is finitely generated was used in the proof of
Theorem 3.1(ii) in order to conclude that Γ satisfies (FAb) and then invoke
Proposition 2.5. While this is the only case we will need to consider in the
present paper, we would like to point that the result actually holds without
this assumption. However, the argument becomes more involved and we
will only sketch it for the sake of completeness. One of the ingredients is
the following well-known result of Jordan: Let K be an algebraically closed
field of characteristic 0. There exists a function j : N→ N such that if G ⊂
GLm(K) is a finite group, then G contains an abelian normal subgroup N
whose index [G : N ] divides j(m) (we refer the reader to [4] for a discussion
of Jordan’s original proof).

As before, we consider a completely reducible representation ρ : Γ→
GLn(K). Let A(ρ) and f : R→ A(ρ) be the algebraic ring and ring homo-
morphism associated to ρ. Since char K = 0, we have a decomposition

A(ρ) = A(ρ)◦ ⊕ C,

and we need to show that C = 0 provided that a sufficiently large integer
M , to be specified below, is invertible in R. Now, by [18, Proposition 4.2],
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there exists a group homomorphism

(6) τ̃ : St(Φ, A)→ H, x̃α(a) 	→ ψα(a) for all a ∈ A, α ∈ Φ,

where for any commutative ring S and root system Φ, we let St(Φ, S) denote
the corresponding Steinberg group. So, in view of the injectivity of the maps
ψα, for all α ∈ Φ, it suffices to show that there are no nontrivial group
homomorphisms ρ̃ : St(Φ, C)→ GLm(K).

First, since C is finite, hence artinian, we can write it as a product of
local rings

C = C1 × · · · × Cr.

Then St(Φ, R) = St(Φ, C1)× · · · × St(Φ, Cr), and it suffices to show that
there are no nontrivial homomorphisms ρ̃i : St(Φ, Ci)→ GLm(K) for all i.
Thus, we may assume without loss of generality that C is a local ring with
maximal ideal m and residue field C/m = Fq. Recall that we have G(S)

+ =
G(S) for any semilocal ring S (cf. [13]).

Next, let

G(C,m) = ker(G(C)
χ−→ G(C/m))

(where χ is the group homomorphism induced by the canonical map C →
C/m) be the congruence subgroup of G(C) = G(C)+ of level m. Since m is
a nilpotent ideal, it follows that G(C,m) is nilpotent (see the proof of [18,
Lemma 5.7]). Moreover, the fact that G(Fq) coincides with G(Fq)

+ implies
that σ is surjective and

G(C)/G(C,m) � G(Fq).

Now, let Z be the center of G(Fq). It is well-known that G(Fq)/Z is a simple
group provided |Fq| ≥ 5 (see [26, Theorem 5, pg 47]), and it follows from the
above remarks that Z̃ := χ−1(Z) is a solvable subgroup of G(C).

Let πC : St(Φ, C)→ G(C) be the canonical map, and set P = π−1C (Z̃).
Since

K2(Φ, C) := ker(St(Φ, C)
πC−→ G(C)+)

is central in St(Φ, C) by [25, Theorem 2.13] , we see that P is a solvable
subgroup of St(Φ, C), and by construction, we have

St(Φ, C)/P � G(Fq)/Z,

which is simple if q ≥ 5.
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Suppose now that we have a homomorphism ρ̃ : St(Φ, C)→ GLm(K)
and let N = ker ρ̃. If N �⊂ P, then since St(Φ, C)/P is simple, it follows that
St(Φ, C) = NP. Hence ρ̃(St(Φ, C)) = ρ̃(P ) is solvable. On the other hand,
St(Φ, C) is a perfect group (i.e. coincides with its commutator subgroup —
see [24, Corollary 4.4]), so ρ̃(St(Φ, C)) is also perfect, and hence trivial.

It remains to consider the case where N ⊂ P. Let G = ρ̃(St(Φ, C)) and
P = ρ̃(P ) and note that G/P � St(Φ, C)/P is a simple group. By Jordan’s
Theorem, there exists a normal abelian subgroup N ⊂ G of index divid-
ing j(m). If N �⊂ P, then G = NP , and consequently the quotient G/P is
abelian, a contradiction. On the other hand, if N ⊂ P, then there exists a
sufficiently large integerM , such that ifM ∈ R×, then |G/P| = |G(Fq)/Z| >
j(m), which contradicts the fact that |G/P| divides j(m). Since each of the
root subgroups eα(Fq) has cardinality q, it suffices to have q > j(m); thus, we
can takeM = max(5, (j(m))!). Then, ifM ∈ R×, we conclude that G = {e},
and hence ρ̃ is trivial, as needed.

4. Proof of Theorem 1

We now turn to the proof of Theorem 1. Throughout this section, we let Γ
be a finitely generated group and K an algebraically closed field of charac-
teristic 0.

Recall that our goal is to prove that if Γ is not SS-rigid, then κ(Γ, n) =
dimXn(Γ) is bounded below by a linear function f(n) = an+ b, with a > 0,
for all n ≥ 1. First observe that it suffices to show that for some subgroup
Δ ⊂ Γ of finite index d, there exists a constants aΔ and bΔ, with aΔ > 0,
such that

(7) dimXm(Δ) ≥ aΔ ·m+ bΔ

for all m ≥ 1. Indeed, by Corollary 2.3, for m ≥ 1, we have

dimXmd(Γ) ≥ dimXm(Δ) ≥ aΔ ·m+ bΔ = aΓ(md) + bΔ,

where aΓ =
aΔ

d . So, setting

f(n) = aΓ · n+ bΓ,

with bΓ = bΔ − aΓ(d− 1), we see from Lemma 2.4 that

(8) dimXn(Γ) ≥ f(n)
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for all n ≥ m. If necessary, one can then further adjust bΓ such that (8) holds
for all n ≥ 1.

Now, if Γ does not satisfy condition (FAb) (see §2), there exists a finite-
index subgroup Δ ⊂ Γ that admits an epimorphism Δ� Z. Clearly,
dimXn(Δ) ≥ n, so (7) holds with aΔ = 1 and bΔ = 0. Thus, we may, and
we will, assume for the remainder of this section that Γ satisfies (FAb).

Our first step will be to establish Lemma 4.1 below. For the state-
ment, we will need the following notations. Given an algebraic subgroup
G ⊂ GLn(K) and any finite-index subgroup Δ ⊂ Γ, we let R(Δ,G) be the
variety of representations ρ : Δ→ G; furthermore, we set

R′(Δ,G) = {ρ : Δ→ G | ρ(Δ) = G},

where, as usual, the bar denotes the Zariski closure. If the connected compo-
nent G◦ is semisimple, then one can show that R′(Δ,G) is an open subvariety
of R(Δ,G) (see [19, §4]).

Lemma 4.1. There exists a finite-index subgroup Δ ⊂ Γ and a simple alge-
braic group G such that if θG : R(Δ, G)→ R(Δ, G)/G is the quotient mor-
phism (by the adjoint action), then θG(R′(Δ, G)) has positive dimension.

Proof. Let Rn(Γ)ss be the set of completely reducible representations

ρ : Γ→ GLn(K).

Then by Proposition 2.5, there exists a finite collection G1, . . . , Gd of alge-
braic subgroups of GLn(K) such that

Rn(Γ)ss =
⋃

i∈{1,...,d},
g∈GLn(K)

gR′(Γ, Gi)g
−1.

Therefore, letting π : Rn(Γ)→ Xn(Γ) be the canonical map, we obtain

(9) Xn(Γ) =

d⋃
i=1

π(R′(Γ, Gi)).

Now, our assumption that Γ is not SS-rigid means that dimXn0
(Γ) > 0

for some n0 ≥ 1. So, it follows from (9) that there exists an algebraic sub-
group H ⊂ GLn0

(K) with semisimple connected component H◦ such that
dimπn0

(R′(Γ, H)) > 0. Suppose [H : H◦] = d and let Δ be the intersection
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of all subgroups of Γ of index ≤ d. Since Γ is finitely generated, it is clear
that [Γ : Δ] <∞, and for any representation ρ : Γ→ H, we have ρ(Δ) ⊂ H◦.
Next, using the commutative diagram

Rn0
(Γ)

πΓ
n0

��

ResΓΔ �� Rn0
(Δ)

πΔ
n0

��

Xn0
(Γ)

ν �� Xn0
(Δ)

(where the horizontal maps are induced by restriction — see (2) and (3)),

together with Lemma 2.1, we conclude that πΔn0
(ResΓΔ(R

′(Γ, H))) has posi-
tive dimension, and hence so does πΔn0

(R′(Δ, H◦)).
Now consider the quotient morphism θ : R(Δ, H◦)→ R(Δ, H◦)/H◦,

where H◦ acts via the adjoint action. Then it follows from the above remarks
that

dim θ(R′(Δ, H◦)) > 0.

Set H = H◦/Z(H◦), where Z(H◦) is the center of H◦. Since Z(H◦) is finite
and Δ has a finite abelianization, we see that the natural map R(Δ, H◦)→
R(Δ, H) has finite fibers. Consequently, letting θ : R(Δ, H)→ R(Δ, H)/H
be the map induced by θ, we obtain that dim θ(R′(Δ, H)) > 0. But, by [2,
Proposition 14.10], H is isomorphic to a product H1 × · · · ×Ht, where each
Hi is a simple algebraic group, and hence

R(Δ, H)/H = R(Δ, H1)/H1 × · · · ×R(Δ, Ht)/Ht.

Consequently, for some i ≤ t, the simple group G = Hi satisfies the required
condition. �

Next, let U be an irreducible component of R′(Δ, G) such that dim θG(U)
> 0. For any k ≥ 1, define

V = {(ρ1, . . . , ρk) ∈ Uk |� ∃ i, j such that ρj = σ ◦ ρi for some σ ∈ Aut G}.

Let θGk : R(Δ, Gk)→ R(Δ, Gk)/Gk be the quotient morphism. Viewing

ρ = (ρ1, . . . , ρk) ∈ Uk

as a representation ρ : Δ→ Gk, we can consider the restriction

θGk : Uk → (U/G)k.
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Since the group Aut G/Int G of outer automorphisms of G is finite (see, e.g.
[27, 1.5.6]), we see that θGk(V ) is a nonempty (hence dense) open subset of
(U/G)k, and therefore

(10) dim θGk(V ) ≥ k · dim(U/G) ≥ k,

To complete the argument we will need the following lemma.

Lemma 4.2. ([15], Lemma 6) Suppose for some ρ1, . . . , ρk ∈ R′(Δ, G), the
image of the diagonal representation

ρ = (ρ1, . . . , ρk) : Δ→ Gk

is not dense. Then there exist i �= j and an automorphism σ ∈ Aut G such
that σ ◦ ρi = ρj .

Let us now fix a matrix realization G ⊂ GLn1
(K). For k ≥ 1 and m =

kn1, let

πm : Rm(Δ)→ Xm(Δ)

denote the canonical map. Given ρ ∈ V , we will view it as a representation

ρ : Δ→ GLm(K)

via the diagonal embedding G× · · · ×G ⊂ GLm(K). Suppose now that
ρ, ρ′ ∈ V are such that πm(ρ) = πm(ρ

′). Clearly, ρ and ρ′ are completely
reducible, so there exists g ∈ GLm(K) such that ρ = gρ′g−1. Since ρ(Δ) =
ρ′(Δ) = Gk by Lemma 4.2, it follows that g normalizes Gk, and therefore
Ad g induces an automorphism σ ofGk. Again, since the group AutGk/IntGk

of outer automorphisms of Gk is finite, for any ρ ∈ V , the set

T (ρ) = {ρ′ ∈ V | πm(ρ′) = πm(ρ)}

consists of finitely many orbits under Ad Gk. Consequently, the natural map

μ : R(Δ, Gk)/Gk → Xm(Δ)

has finite fibers on the open subset θGk(V ). So, from (10), we obtain

dimXm(Δ) ≥ k =
1

n1
·m.
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Now Lemma 2.4 implies that

dimXm′(Δ) ≥ aΔ ·m′ + bΔ,

with aΔ = 1
n1

and bΔ = −n1−1
n1

, for all m′ ≥ n1. Furthermore, if necessary,
we can adjust bΔ so that the inequality actually holds for all m′ ≥ 1. In
view of the remarks made at the beginning of the section, this completes
the proof of Theorem 1.

5. A “nonlinear” proof to Theorem 2

In this section, we give a proof of Theorem 2 that is based on Theorem 3.1.
As we already mentioned in the introduction, our original approach, which
appeared in [19], was based on estimating the dimension of the tangent
space to Xn(Γ) at a point corresponding to a sufficiently generic representa-
tion ρ ∈ Rn(Γ), and then exploiting the connection, going back to A. Weil
[28], between this tangent space and the cohomology group H1(Γ,Ad ◦ ρ).
A useful feature of this “linearized” approach is that it easily allows one
to replace Γ by a finite-index subgroup Δ by using the injectivity of the
restriction map H1(Γ,Ad ◦ ρ)→ H1(Δ,Ad ◦ (ρ|Δ)). In order to implement
this strategy, we relied on our rigidity result from [18], which tells us that
ρ (as well as some related representations) has a standard description on a
suitable finite index subgroup Δ ⊂ Γ (see [18, Main Theorem] for the pre-
cise statement). In general, this Δ depends on the representation ρ. Now,
the refined form of rigidity that we established in Theorem 3.1 allows us
to choose such a subgroup Δ ⊂ Γ that works uniformly for all completely
reducible representations of a fixed dimension. Using this, we will give an
alternative proof of Theorem 2 that is global in nature and does not require
the “linearization” of the problem.

We begin by fixing notations. Let Φ be a reduced irreducible root sys-
tem of rank ≥ 2, G the corresponding universal Chevalley-Demazure group
scheme, and K an algebraically closed field of characteristic 0. Suppose R
is a finitely generated commutative ring such that (Φ, R) is a nice pair, and
let Γ = G(R)+ be the elementary subgroup of G(R). Recall that our goal is
to show that there exists a constant c = c(R), depending only on R, such
that

dimXn(Γ) = κ(Γ, n) ≤ c · n
for all n ≥ 1.

The first ingredient in the proof is the following (elementary) lemma.



Character varieties of finitely generated groups 595

Lemma 5.1. Let R be a finitely generated commutative ring, and fix a finite
system of generators t1, . . . , ts (as a Z-algebra). Denote by Hom(R,K) the
set of ring homomorphisms R→ K. Then the map

ϕ : Hom(R,K)→ As
K , f 	→ (f(t1), . . . , f(ts))

sets up a bijection between Hom(R,K) and the set of K-point U(K) of a
Q-defined closed subvariety U ⊂ As

K .

Proof. Since all of the assertions are essentially well-known statements, we
only give a brief argument for the sake of completeness. Let RK = R⊗Z K.
First notice that we have a natural identification of Hom(R,K) with the
set of K-algebra homomorphisms HomK−alg(RK ,K), which is obtained by
sending f ∈ Hom(R,K) to f ⊗ idK , where idK : K → K is the identity map.
Now, RK is generated by t1 ⊗ 1, . . . , ts ⊗ 1 as a K-algebra, so we have a
surjective K-algebra homomorphism

ψ : K[x1, . . . , xs]→ RK , xi 	→ ti ⊗ 1, i = 1, . . . , s,

where x1, . . . , xs are independent variables. Let I = kerψ and set U = V (I)
⊂ As

K to be the algebraic set determined by I. Clearly, a K-algebra homo-
morphism f : K[x1, . . . , xs]→ K with f(xi) = ai factors through ψ if and
only if (a1, . . . , as) ∈ U(K). This gives a bijection between HomK−alg(RK ,K)
and U(K), and leads to the required bijection ϕ. �

Remark 5.2. It is clear from our construction that the affine varieties U
arising from different generating systems of R are in fact biregularly iso-
morphic, and in particular, dimU depends only on R. Furthermore, if R is
an integral domain of characteristic zero and L is its field of fractions then
dimU = tr.deg.QL.

Next, recall that the points of Xn(Γ) correspond to the isomorphism
classes of completely reducible representations ρ : Γ→ GLn(K) (cf. [11, The-
orem 1.28]). On the other hand, according to Theorem 3.1, for a fixed n,
there exists a finite index subgroup Δ ⊂ Γ such that for any (nontrivial)
completely reducible representation ρ : Γ→ GLn(K), we have

(11) ρ|Δ = (σ ◦ F )|Δ
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where F : Γ→ G(K)× · · · ×G(K) is a group homomorphism arising from
a ring a homomorphism

f : R→ K × · · · ×K︸ ︷︷ ︸
r copies

(with r ≤ n) and σ : G(K)× · · · ×G(K)→ GLn(K) is a morphism of alge-
braic groups (in fact, an isogeny — see [19, Remark 4.3]).

Using this description, we will now parametrizeXn(Γ) using the products

U (r) = U × · · · × U︸ ︷︷ ︸
r copies

,

with 1 ≤ r ≤ n. For u = (u1, . . . , ur) ∈ U (r)(K), we let f
(r)
u denote the ring

homomorphism

(ϕ−1(u1), . . . , ϕ−1(ur)) : R −→ K × · · · ×K︸ ︷︷ ︸
r copies

where ϕ : Hom(R,K)→ U(K) is the bijection from Lemma 5.1. Further-
more, let

F (r)
u : Γ −→ G(r)(K) := G(K)× · · · ×G(K)︸ ︷︷ ︸

r copies

denote the group homomorphism induced by f
(r)
u .

Now, let us fix some r ≥ 1 and a morphism of algebraic groups σ :
G(r)(K)→ GLn(K), and consider the map

θr,σ : U
(r) → Xn(Γ), u 	→ πΓn ◦ σ ◦ Fu,

where πΓn : Rn(Γ)→ Xn(Γ) is the canonical projection.

Lemma 5.3. θr,σ is a regular map.

Proof. Since πΓn and σ are regular maps, it is enough to show that the map

λ(r) : U (r) → R(Γ, G(r)), u 	→ F (r)
u ,

is regular. This immediately reduces to the case r = 1: namely, what we need
to show is that the map

λ : U → R(Γ, G), u 	→ Fu,
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where, for simplicity, we set fu = f
(1)
u and Fu = F

(1)
u , is regular. Fix a finite

system of generators γ1, . . . , γ� of Γ. As R(Γ, G) is given the structure of an
affine variety via the embedding

R(Γ, G) ↪→ G(�), {ρ : Γ→ G} 	→ (ρ(γ1), . . . , ρ(γ�)),

it is enough to show that for any γ ∈ Γ, the map

εγ : U → G, u 	→ Fu(γ),

is regular. To see this, we write γ in the form

γ =

d∏
i=1

eαi
(ri)

for some αi ∈ Φ and ri ∈ R, where for α ∈ Φ, we let eα : Ga → G denote the
corresponding 1-parameter root subgroup. Then

Fu(γ) =

d∏
i=1

eαi
(fu(ri)).

Writing ri as a polynomial in terms of the chosen finite system of generators
of R (cf. Lemma 5.1), we see that the map u 	→ fu(ri) is regular on U , and
the fact that εγ is regular follows. �

We can now complete the proof of Theorem 2. First, notice that in (11),
there are only finitely many possibilities for the morphism σ up to conjugacy.
Indeed, since char K = 0 and for any k ≥ 1

G(k)(K) = G(K)× · · · ×G(K)︸ ︷︷ ︸
k copies

is a semisimple algebraic group, any finite-dimensional rational representa-
tion of G(k)(K) is completely reducible (cf. [8, §14.3]); furthermore, it is
well-known that any irreducible representation of G(k)(K) is a tensor prod-
uct of irreducible representations of G(K) (see, e.g. [23, §2.5]). Now, it fol-
lows from the Weyl Dimension Formula (see [6, Corollary 24.6]) that G(K)
has only finitely many isomorphism classes of irreducible representations of
a given dimension. So, we obtain the required finiteness from these remarks,
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combined with the fact that r ≤ n in (11). Let us fix one representative for
σ from each conjugacy class, and denote these by σ1, . . . , σk, where

σi : G
(ri)(K)→ GLn(K)

and 1 ≤ ri ≤ n. For each i = 1, . . . , k, let θi = θri,σi
: U (ri) → Xn(Γ) be the

regular map constructed above (notice that θi does not depend on the
choice of the representative σi). Also, let Δ ⊂ Γ be the finite index subgroup
appearing in (11), and denote by ν : Xn(Γ)→ Xn(Δ) the map induced by
the restriction morphism (see (3)). Then it follows from (11) that

ν(Xn(Γ)) ⊂
k⋃

i=1

ν(θi(U
(ri))).

Hence, since ν is an integral morphism by Lemma 2.1, we obtain

dimXn(Γ) ≤ max
i
{dimU (ri)} ≤ (dimU) · n,

as needed.

6. Proof of Theorem 3

We now turn to the proof of Theorem 3. While we stated the result only for
complex affine algebraic varieties in the introduction, the argument in fact
works over any algebraically closed field of characteristic 0. More precisely,
we will prove the following.

Theorem 6.1. Let K be an algebraically closed field of characteristic 0 and
S an affine algebraic K-variety which is defined over Q. There exist a finitely
generated group Γ having Kazhdan’s property (T ) and an integer n ≥ 1 such
that there is a biregular Q-defined isomorphism of algebraic K-varieties

S → Xn(Γ) \ {[ρ0]},

where ρ0 is the trivial representation and [ρ0] is the corresponding point
of Xn(Γ).

Let S ⊂ At
K be a closed Q-defined affine algebraic variety. Denote by

K[S] the ring of regular functions on S, and let Q[S] ⊂ K[S] be the Q-
subalgebra of Q-defined regular functions (this is a Q-structure on K[S] —
cf. [2, AG 11.2]). Let r1, . . . , rt denote the images in Q[S] of the coordinate
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functions x1, . . . , xt on At
Q, and define R0 ⊂ Q[S] to be the Z-subalgebra

generated by the r1, . . . , rt. Notice that since S is Q-defined, we have

(12) R0 ⊗Z K = K[S].

Throughout this section, we take Φ = C2 and let G = Sp4 be the corre-
sponding universal Chevalley-Demazure group scheme (see, however, Remark
6.3 below, where we observe that in fact our arguments work for Φ = Cn

for any n ≥ 2). Furthermore, we let R = R0
[
1
2M

]
, where M is the integer

appearing in Theorem 3.1(ii), and set Γ = G(R)+. In view of (12), we have

(13) R⊗Z K = K[S].

Now, given a (nontrivial) completely reducible representation ρ : Γ→GL4(K),
by Theorem 3.1(ii), there exists a ring homomorphism

f : R→ K × · · · ×K︸ ︷︷ ︸
k copies

with Zariski-dense image and a morphism of algebraic groups

(14) σ : G(K)× · · · ×G(K)︸ ︷︷ ︸
k copies

→ GL4(K)

with k ≤ 4 (in fact, σ is an isogeny — see [19, Remark 4.3]) such that

(15) ρ = σ ◦ F,

where F : Γ→ G(k)(K) := G(K)× · · · ×G(K) is the group homomorphism
induced by f.

Lemma 6.2. Any nontrivial rational representation σ : G(K)→ GL4(K)
is equivalent to the standard representation.

Proof. Since char K = 0 and G(K) is an almost simple (in particular, semi-
simple) algebraic group, any rational representation of G(K) is completely
reducible. Now, recall that the equivalence class of an irreducible repre-
sentation of G(K) is determined by a unique highest weight (cf. [8, Theo-
rem 31.3]); denote by V (λ) the irreducible representation with highest weight
λ. It follows from the Weyl Dimension Formula that the nontrivial repre-
sentations of G(K) of smallest dimension are among the representations of
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the form V (ω), where ω is a fundamental dominant weight (see [6, Corol-
lary 24.6 and Exercise 24.9]). In the notations of [3], the fundamental domi-
nant weights for the root system of type C2 are ω1 = e1, ω2 = e1 + e2, where
{e1, e2} is the standard basis of R2. Using the Weyl Dimension Formula, one
checks directly that

dimV (ω1) = 4 and dimV (ω2) = 5.

Moreover, V (ω1) is equivalent to the standard representation of Sp4(K).
The lemma now follows. �

Now, since for k ≥ 1, any rational representation of G(k)(K) is com-
pletely reducible ([8, S 14.3]), and, furthermore, an irreducible representa-
tion of G(k)(K) is a tensor product of irreducible representations of G(K)
(see [23, §2.5]), it follows immediately from the lemma that k = 1 in (14)
and σ is conjugate to the standard representation of Sp4(K).

Next, the same argument as in Lemma 5.1, in conjunction with (13),
gives a bijection

(16) ϕ : Hom(R,K)→ S(K), f 	→ (f(r1), . . . , f(rt)),

where, as above, r1, . . . , rt are the images in Q[S] of the coordinate functions
on At

Q. For a point s ∈ S(K), let fs = ϕ−1(s) be the corresponding ring
homomorphism and Fs : Γ→ Sp4(K) be the group homomorphism induced
by fs. Set σ : Sp4(K)→ GL4(K) to be the standard representation. Then
by Lemma 5.3, we obtain a regular map

θ : S(K)→ X4(Γ), s 	→ π4 ◦ σ ◦ Fs,

where π4 : R4(Γ)→ X4(Γ) is the canonical projection. Notice that it fol-
lows from (15) and Lemma 6.2 that θ(S(K)) = X4(Γ) \ {ρ0}, where ρ0 : Γ→
GL4(C) is the trivial representation. We claim that, furthermore, θ is injec-
tive. Indeed, we have

Sp4(R) = {C ∈M4(R) | CTCt = T},

where

T =

⎛
⎜⎜⎝

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎞
⎟⎟⎠ .
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For any r ∈ R, consider the following element γr ∈ Γ

γr =

⎛
⎜⎜⎝
−r 1 0 0
−1 0 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ .

Suppose now that f1, f2 : R→ K are two distinct ring homomorphisms, and
let r ∈ R be such that f1(r) �= f2(r). Let F1, F2 : Γ→ Sp4(K) be the corre-
sponding group homomorphisms. Then we have

(σ ◦ F1)(γr) =

⎛
⎜⎜⎝
−f1(r) 1 0 0
−1 0 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

and

(σ ◦ F2)(γr) =

⎛
⎜⎜⎝
−f2(r) 1 0 0
−1 0 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ .

Let τγr
be the Fricke function corresponding to γr (see §2). Then, by our

choice of r, we have

τγr
(σ ◦ F1) = tr((σ ◦ F1)(γr)) �= tr((σ ◦ F2)(γr)) = τγr

(σ ◦ F2).

Since the Fricke functions generate the ring of regular functions on X4(Γ), it
follows that π4 ◦ σ ◦ F1 and π4 ◦ σ ◦ F2 are distinct points of X4(Γ). Hence,
θ is injective.

To complete the proof, we construct an inverse to θ, as follows. As above,
let r1, . . . , rt ∈ R be the images in Q[S] of the coordinate functions x1, . . . , xt
on At

Q, and let τγr1
, . . . , τγrt

be the Fricke functions corresponding to the
elements γr1 , . . . , γrt ∈ Γ. Consider the regular map

ψ : X4(K)→ At
K , [ρ] 	→ (−τγr1

(ρ) + 4, . . . ,−τγrt
(ρ) + 4),

where [ρ] denotes the equivalence class of a representation ρ : Γ→ GL4(K)
(notice that ψ is defined over Q). As we have just seen, any completely
reducible representation ρ : Γ→ GL4(K) is equivalent to a representation
of the form σ ◦ F for a unique ring homomorphism f : R→ K. So, it fol-
lows from (16) and the explicit description of (σ ◦ F )(γr) given above that
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ψ(X4(K)\{[ρ0]})⊂S(K). Clearly, we have ψ◦θ = idS , θ◦ψ = idX4(K)\{[ρ0]}.
Thus, θ is a Q-defined isomorphism of algebraic varieties, which finishes the
proof of Theorem 6.1.

Remark 6.3. We would like to point out that, even though we worked with
Sp4 in the proof given above, essentially the same argument goes through
for any Sp2n with n ≥ 2. Indeed, the crucial ingredient was Lemma 6.2,
which also holds in the general case. This can be seen as follows. For a root
system of type Cn, the unique element that takes a fixed Borel subgroup of
G(K) = Sp2n(K) to its opposite is−1, and hence any rational representation
V of G(K) is isomorphic to its dual V ∗; the latter condition guarantees the
existence of a G(K)-invariant bilinear form on V (see [8, §31.6]). Suppose
now that for m ≤ 2n, we have an irreducible m-dimensional representation

ρ : Sp2n(K)→ GLm(K),

and let V = Km be the underlying vector space. Then there exists a G(K)-
invariant bilinear form b on V , which is either symmetric or alternating, so
that the image of ρ is contained in an appropriate orthogonal or symplectic
group. Now, since dimSOm(K) =

m(m−1)
2 and dimSp2n(K) = 2n2 + n, it

follows from dimension considerations and the fact that Sp2n(K) is an almost
simple group that m = 2n and Imρ = Sp2n(K). Consequently, we see that
ρ is in fact an automorphism of Sp2n(K); since all automorphisms of the
latter are inner, ρ is equivalent to the standard representation of Sp2n(K),
as claimed.
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