Boundary regularity of the solution to the complex Monge-Ampère equation on pseudoconvex domains of infinite type

Ly Kim Ha and Tran Vu Khanh

Let Ω be a C^2 -smooth, bounded, pseudoconvex domain in \mathbb{C}^n satisfying the "f-property". The f-property is a consequence of the geometric "type" of the boundary. All pseudoconvex domains of finite type satisfy the f-property as well as many classes of domains of infinite type. In this paper, we prove the existence, uniqueness, and "weak" Hölder-regularity up to the boundary of the solution to the Dirichlet problem for the complex Monge-Ampère equation

$$\begin{cases} \det \left[\frac{\partial^2(u)}{\partial z_i \partial \bar{z}_j} \right] = h \ge 0 & \text{in } \Omega, \\ u = \phi & \text{on } b\Omega. \end{cases}$$

The idea of our proof goes back to Bedford and Taylor [1]. However, the basic geometrical ingredient is based on a recent result by Khanh [12].

1. Introduction

Let Ω be a bounded, weakly pseudoconvex domain in \mathbb{C}^n with C^2 -smooth boundary $b\Omega$. For given functions $h \geq 0$ defined in Ω and ϕ defined on $b\Omega$, the Dirichlet problem for the complex Monge-Ampère equation consists in finding a continuous, plurisubharmonic function u on Ω such that

(1.1)
$$\begin{cases} \det[u_{ij}] = h & \text{in } \Omega, \\ u = \phi & \text{on } b\Omega \end{cases}$$

where $u_{ij} = \frac{\partial^2 u}{\partial z_i \bar{z}_j}$ is the $(i, j)^{th}$ -entry of $n \times n$ -matrix $[u_{ij}]$. When u is not $C^2(\Omega)$, the first Equation in (1.1) means that $(dd^c u)^n = hdV$ in the sense of Bedford-Taylor [1] (where dV is the Lebesgue measure on \mathbb{C}^n).

When Ω is a smooth, bounded, strongly pseudoconvex domain in \mathbb{C}^n , a great deal of work has been done about the existence, uniqueness, and regularity of the solution to the complex Monge-Ampère problem. The most general related results are those obtained in [1] and [3].

- In [1], Bedford and Taylor establish the classical solvability of the Dirichlet problem (1.1). Via pluripotential theory [15], the right hand side is developed in the sense of positive currents when u is continuous and plurisubharmonic. The authors prove that if Ω is a strongly pseudoconvex, bounded domain in \mathbb{C}^n with C^2 boundary, and if $\phi \in Lip^{2\alpha}(b\Omega), 0 \leq h^{\frac{1}{n}} \in Lip^{\alpha}(\overline{\Omega})$, where $0 < \alpha \leq 1$, then there is a unique solution $u \in Lip^{\alpha}(\overline{\Omega})$ of (1.1). This result is sharp.
- In [3], the smoothness of the solution of (1.1) is also established. In particular, on a bounded strongly pseudoconvex domain with smooth boundary, if φ ∈ C[∞](bΩ), then there exists a unique solution u ∈ C[∞](Ω) when h is smooth and strictly positive on Ω. The approach of [3] follows the continuity method applied to the real Monge-Ampère equations [9].

When Ω is not strongly pseudoconvex, there are some known results for the existence and regularity for this problem due to Blocki [2], Coman [7], and Li [18].

- In [2], Blocki also considers the Dirichlet problem (1.1) on a hyperconvex domain. He proves that when the datum $\phi \in C(b\Omega)$ can be continously extended to a plurisubharmonic function on Ω and the right hand is nonnegative and continuous, then the plurisubharmonic solution exists uniquely and is continuous. However, the Hölder continuity for the solution on these domains is still unknown.
- In [7], Coman shows how to connect some geometrical conditions on a domain in \mathbb{C}^2 to the existence of a plurisubharmonic upper envelope in Hölder spaces. In particular, the weak pseudoconvexity of finite type m in \mathbb{C}^2 and the fact that the Perron-Bremermann function belongs to $Lip^{\frac{\alpha}{m}}$ with corresponding data in Lip^{α} are equivalent. Again, this means that the finite type condition plays a critical role in the Hölder regularity of the solution to the complex Monge-Ampère equation.
- Li [18] studies the problem on a domain admitting a non-smooth, uniformly and strictly plurisubharmonic defining function. In particular, if Ω admits a uniformly and strictly plurisubharmonic defining function in $Lip^{\frac{2}{m}}(\bar{\Omega})$ when $0 < \alpha \leq \frac{2}{m}$, and $\phi \in Lip^{m\alpha}(b\Omega)$ and if $h^{\frac{1}{n}} \in Lip^{\alpha}(\bar{\Omega})$,

then the solution $u \in Lip^{\alpha}(\overline{\Omega})$ of (1.1) exists uniquely. Based on results by Catlin [6] and by Fornaess-Sibony [8], there exists a plurisubharmonic defining function in $Lip^{\frac{2}{m}}(\overline{\Omega})$ on pseudoconvex domains of finite type m in \mathbb{C}^2 or convex domains of finite type m in \mathbb{C}^n .

The main purpose in this paper is to generalize the above results to a pseudoconvex domain, not necessarily of finite type, but admitting an *f*-property. The *f*-property assumes the existence of a bounded family of weights in the spirit of [5] and it is sufficient for an *f*-estimate for the $\bar{\partial}$ -Neumann problem [5, 13]. We also notice that when $\lim_{t\to\infty} \frac{f(t)}{\log t} = \infty$ the solution of the $\bar{\partial}$ -Neumann problem is regular [14, 16].

Definition 1.1. For a smooth, monotonic, increasing function $f:[1, +\infty) \rightarrow [1, +\infty)$ with $\frac{f(t)}{t^{1/2}}$ decreasing, we say that Ω has an *f*-property if there exist a neigborhood *U* of $b\Omega$ and a family of functions $\{\phi_{\delta}\}$ such that

- (i) the functions ϕ_{δ} are plurisubharmonic, C^2 on U, and satisfy $-1 \le \phi_{\delta} \le 0$, and
- (ii) $i\partial \bar{\partial} \phi_{\delta} \gtrsim f(\delta^{-1})^2 Id$ and $|D\phi_{\delta}| \lesssim \delta^{-1}$ for any $z \in U \cap \{z \in \Omega : -\delta < r(z) < 0\}$, where r is a C^2 -defining function of Ω .

Here and in what follows, \lesssim and \gtrsim denote inequalities up to a positive constant. Morever, we will use \approx for the combination of \lesssim and \gtrsim .

Remark 1.2. For a pseudoconvex domain, the *f*-property is a consequence of the geometric finite type. In [4, 5], Catlin proves that every smooth, pseudoconvex domain Ω of finite type *m* in \mathbb{C}^n has the *f*-property for $f(t) = t^{\epsilon}$ with $\epsilon = m^{-n^2m^{n^2}}$. Additionally, there are several cases when Ω is known to have the *f*-property with $f(t) = t^{1/m}$ where *m* is the type: strongly pseudoconvex, pseudoconvex of finite type in \mathbb{C}^2 , decoupled or convex in \mathbb{C}^n (cf. [6, 10, 19, 20]).

Remark 1.3. Khanh and Zampieri study the relationship of the general type (both finite and infinite type) and the *f*-property [10, 14]. They prove that if $P_1, ..., P_n : \mathbb{C} \to \mathbb{R}^+$ are functions such that $\Delta P_j(z_j) \gtrsim \frac{F(|x_j|)}{x_j^2}$ or $\frac{F(|y_j|)}{y_j^2}$ for any j = 1, ..., n, then the pseudoconvex ellipsoid

$$C = \left\{ (z_1, \dots, z_n) \in \mathbb{C}^n : \sum_{j=1}^n P_j(z_j) \le 1 \right\}$$

has the *f*-property for $f(t) = (F^*(t^{-1}))^{-1}$. Here we denote F^* is the inverse function to F.

In this paper, using the f-property we prove the "weak" Hölder regularity for the solution of the Dirichlet problem of complex Monge-Ampère equation. For this purpose we recall the definition of the f-Hölder spaces in [11].

Definition 1.4. Let f be an increasing function such that $\lim_{t\to+\infty} f(t) = +\infty$, $f(t) \leq t$. For a subset A of \mathbb{C}^n , define the f-Hölder space on A by

$$\Lambda^{f}(A) = \{ u : \|u\|_{L^{\infty}(A)} + \sup_{z, w \in A, z \neq w} f(|z - w|^{-1}) \cdot |u(z) - u(w)| < \infty \}$$

and set

$$||u||_{\Lambda^{f}(A)} = ||u||_{L^{\infty}(A)} + \sup_{z,w \in A, z \neq w} f(|z-w|^{-1}) \cdot |u(z) - u(w)|.$$

Note that the notion of the *f*-Hölder space includes the standard Hölder space Λ_{α} by taking $f(t) = t^{\alpha}$ (so that $f(|h|^{-1}) = |h|^{-\alpha}$) with $0 < \alpha \leq 1$. When $1 < \alpha \leq 2$, we also define $\Lambda^{t^{\alpha}}(A) := \Lambda_{\alpha}(A)$ where

$$\Lambda_{\alpha}(A) = \left\{ u : \|u\|_{\Lambda^{t^{\alpha}}(A)} := \|Du\|_{\Lambda^{t^{\alpha-1}}(A)} < \infty \right\}.$$

The main result in this paper consists in the following:

Theorem 1.5. Let $\Omega \subset \mathbb{C}^n$ be a bounded, pseudoconvex domain admitting the *f*-property. Suppose that the function $g: [1, \infty) \to [1, \infty)$ defined by

$$g(t)^{-1} := \int_t^\infty \frac{da}{af(a)} < \infty$$

If $0 < \alpha \leq 2$, $\phi \in \Lambda^{t^{\alpha}}(b\Omega)$, and $h \geq 0$ on Ω with $h^{\frac{1}{n}} \in \Lambda^{g^{\alpha}}(\Omega)$, then the Dirichlet problem for the complex Monge-Ampère equation

(1.2)
$$\begin{cases} \det(u_{ij}) = h & in \ \Omega, \\ u = \phi & on \ b\Omega \end{cases}$$

has a unique plurisubharmonic solution $u \in \Lambda^{g^{\alpha}}(\overline{\Omega})$.

By Remarks 1.2 and 1.3, we immediately have the following.

Corollary 1.6. 1) Let Ω be a bounded, C^2 -boundary, pseudoconvex domain of finite type m in \mathbb{C}^n satisfying at least one of the following conditions: strongly pseudoconvex, convex, in \mathbb{C}^2 , or decoupled. If $0 < \alpha \leq 2$, $\phi \in$ $Lip^{\alpha}(b\Omega)$, and $h \geq 0$ on Ω with $h^{\frac{1}{n}} \in Lip^{\frac{\alpha}{m}}(\Omega)$, then (1.2) has a unique plurisubharmonic solution $u \in Lip^{\frac{\alpha}{m}}(\overline{\Omega})$. If Ω has finite type m, but does not satisfy any one of the above additional conditions, then it is still true that $u \in Lip^{\alpha\epsilon}(\overline{\Omega})$ for $\epsilon = m^{-n^2m^{n^2}}$.

2) Let Ω be a complex ellipsoid defined by

$$\Omega = \left\{ z = (z_1, ..., z_n) \in \mathbb{C}^n : \sum_{j=1}^n \exp\left(-\frac{1}{|z_j|^{s_j}}\right) < e^{-1} \right\}.$$

If $s := \max_{j=1,\dots,n} \{s_j\} < 1$, then under the assumption of ϕ , h and u in Theorem 1.5, we have $u \in \Lambda^{g^{\alpha}}(\overline{\Omega})$ where $0 < \alpha \leq 2$ and $g(t) = \log^{\frac{1}{s}-1} t$.

We organize the paper as follows. In Section 2, we construct a weak Hölder, uniformly and strictly plurisubharmonic defining function via the work of the second author on peak functions [12]. This particular defining function is the crucial point in the establishing the existence of the solution to the complex Monge-Ampère equation. Following the work by Bedford-Taylor [1], we prove Theorem 1.5 in Section 3.

2. The *f*-property

In this section, under the f-property assumption we construct a uniformly and strictly plurisubharmonic defining function with g^2 -Hölder, where gdefined in the following theorem.

Theorem 2.1. Let f be as in Definition 1.1 with $g(t)^{-1} := \int_t^\infty \frac{da}{af(a)} < \infty$. Assume that Ω is a bounded, pseudoconvex domain admitting the f-property. Then there exists a strictly plurisubharmonic defining function of Ω which belongs to g^2 -Hölder space of $\overline{\Omega}$, that means, there is a plurisubharmonic function ρ such that

- (1) $z \in \Omega$ if and only if $\rho(z) < 0$, $b\Omega = \{z \in \mathbb{C}^n : \rho(z) = 0\}$;
- (2) $i\partial\bar{\partial}\rho(X,\bar{X}) \ge |X|^2$ on Ω in the distribution sense, for any $X \in T^{1,0}\mathbb{C}^n$; and
- (3) ρ is in the g^2 -Hölder space of $\overline{\Omega}$, that is, $|\rho(z) \rho(z')| \leq g(|z z'|^{-1})^{-2}$ for any $z, z' \in \overline{\Omega}$.

Remark 2.2. We note that if Ω is strongly pseudoconvex then $f(t) \approx t^{1/2}$ and hence $g(t) \approx t^{1/2}$. In this case, it is easy to choose a defining function satisfying this theorem. So in the following we only consider that Ω is not strongly pseudoconvex, in this case, we can assume that there exists an $\epsilon > 0$ so that $\frac{f(t)}{t^{1/2-\epsilon}}$ is decreasing on $(1, +\infty)$.

The proof of Theorem 2.1 is based on the following result about the existence of a family of plurisubhamonic peak functions which was recently proven by Khanh [12].

Theorem 2.3. Under the assumptions of Theorem 2.1, for any $\zeta \in b\Omega$, there exists a C^2 plurisubharmonic function ψ_{ζ} on Ω which is continuous on $\overline{\Omega}$ and peaks at ζ (that means, $\psi_{\zeta}(z) < 0$ for all $z \in \overline{\Omega} \setminus \{\zeta\}$ and $\psi_{\zeta}(\zeta) =$ 0). Moreover, there are some positive constants c_1, c_2 and c_3 such that the following hold for any constant $0 < \eta < 1$:

- (1) $|\psi_{\zeta}(z) \psi_{\zeta}(z')| \leq c_1 |z z'|^{\eta}$ for any $z, z' \in \overline{\Omega}$; and
- (2) $g((-\psi_{\zeta}(z))^{-1/\eta}) \leq c_2|z-\zeta|^{-1}$ for any $z \in \overline{\Omega} \setminus \{\zeta\}$.

Before giving the proof of Theorem 2.1, we need the following technical lemma

Lemma 2.4. Let g and η be in Theorem 2.3. For $\delta \in (0,1)$, let $\omega(\delta) := g(\delta^{-\frac{1}{\eta}})^{-2}$. Then we have

- (i) ω is increasing function on (0,1) and $\lim_{\delta \to 0^+} \omega(\delta) = 0$;
- (ii) for a suitable choice of $\eta > 0$, ω is concave downward on (0,1), i.e., $\ddot{\omega}(\delta) \leq 0$ for $\delta \in (0,1)$;
- (iii) the inequality

$$|\omega(\delta) - \omega(\delta')| \le \omega(|\delta - \delta'|)$$

holds for any $\delta, \delta' \in (0, 1)$; and

(iv) for a constant c > 0, there is c' > 0 such that $\omega(c\delta) \le c'\omega(\delta)$ for $\delta \in (0,1)$.

Proof. We first investigate the function g. By the definition of g, i.e., $\frac{1}{g(t)} := \int_t^\infty \frac{da}{af(a)} < \infty$, we have

(2.1)
$$\frac{\dot{g}(t)}{g(t)} = \frac{g(t)}{tf(t)}$$

and

(2.2)
$$\frac{\ddot{g}(t)}{\dot{g}(t)} = \frac{2\dot{g}(t)}{g(t)} - \frac{1}{t} - \frac{f(t)}{f(t)}.$$

By Remark 2.2, there exists an $\epsilon > 0$ so that $\frac{f(t)}{t^{\frac{1}{2}-\epsilon}}$ is decreasing on $(1,\infty)$, we obtain $\frac{t\dot{f}(t)}{f(t)} \leq \frac{1}{2} - \epsilon$ for any $t \in (0,\infty)$. We also have

$$\frac{f(t)}{g(t)} = f(t) \int_t^\infty \frac{da}{af(a)} = f(t) \int_t^\infty \frac{a^{1/2}}{f(a)} \cdot \frac{da}{a^{3/2}} \ge f(t) \frac{t^{1/2}}{f(t)} \int_t^\infty \frac{da}{a^{3/2}} = 2,$$

for any $t \in (1, \infty)$. Then

(2.3)
$$\frac{g(t)}{f(t)} + \frac{t\dot{f}(t)}{f(t)} \le 1 - \epsilon, \quad \text{for any } t \in (1,\infty).$$

Now we prove this lemma. The proof of (i) immediately follows by the the first derivative of ω

$$\dot{\omega}(\delta) = \frac{2}{\eta} \delta^{-\frac{1}{\eta} - 1} \dot{g}(\delta^{-\frac{1}{\eta}}) g^{-3}(\delta^{-\frac{1}{\eta}}) \ge 0.$$

For (ii), we have

(2.4)

$$\begin{split} \ddot{\omega}(\delta) &= -\left(\frac{2}{\eta^2} \delta^{-\frac{1}{\eta}-2} \dot{g}(\delta^{-\frac{1}{\eta}}) g^{-3}(\delta^{-\frac{1}{\eta}})\right) \left[\eta + 1 + \frac{\delta^{-\frac{1}{\eta}} \ddot{g}(\delta^{-\frac{1}{\eta}})}{\dot{g}(\delta^{-\frac{1}{\eta}})} - 3\frac{\delta^{-\frac{1}{\eta}} \dot{g}(\delta^{-\frac{1}{\eta}})}{g(\delta^{-\frac{1}{\eta}})}\right] \\ &= -\left(\frac{2}{\eta^2} \delta^{-\frac{1}{\eta}-2} \dot{g}(\delta^{-\frac{1}{\eta}}) g^{-3}(\delta^{-\frac{1}{\eta}})\right) \left[\eta - \frac{g(\delta^{-\frac{1}{\eta}})}{f(\delta^{-\frac{1}{\eta}})} - \frac{\delta^{-\frac{1}{\eta}} \dot{f}(\delta^{-\frac{1}{\eta}})}{f(\delta^{-\frac{1}{\eta}})}\right] \end{split}$$

where the second equality follows from (2.2). From (2.3) there is a constant $\eta < 1$ such that the bracket term [...] in the last line of (2.4) is positive, particularly we choose $\eta = \frac{1}{2} \left(1 + \sup_{t \in (1,\infty)} \left(\frac{g(t)}{f(t)} + \frac{tf(t)}{f(t)} \right) \right) \leq 1 - \frac{\epsilon}{2} < 1$. Therefore, $\ddot{\omega} \leq 0$, i.e., ω is concave downward.

Now we prove that $|\omega(t) - \omega(s)| \leq \omega(|t-s|)$ for any $t, s \in (0, \delta)$. Assume $t \geq s$ for some fixed $s \in [0, \delta)$ and set $k(t) := \omega(t) - \omega(s) - \omega(t-s)$. Since ω is concave downward, $\dot{k}(t) = \dot{\omega}(t) - \dot{\omega}(t-s) \leq 0$. That means k is decreasing, so we obtain $k(t) \leq k(s) = 0$. This completes the proof of (iii).

For the inequality (iv), we notice that if $c \leq 1$ then $\omega(c\delta) \leq \omega(\delta)$ since ω is increasing. Otherwise, if c > 1 we use the fact that $\frac{g(t)}{t^{1/2}}$ is decreasing for

large t (this is obtained from $\frac{t\dot{g}(t)}{g(t)} = \frac{g(t)}{f(t)} \leq \frac{1}{2}$). This implies $\left(\delta^{\frac{1}{2\eta}}g(\delta^{-\frac{1}{\eta}})\right)^{-1}$ is decreasing for small δ , and hence

$$\omega(c\delta) = \left(g((c\delta)^{-\frac{1}{\eta}})\right)^{-2} = (c\delta)^{\frac{1}{\eta}} \left((c\delta)^{\frac{1}{2\eta}}g((c\delta)^{-\frac{1}{\eta}})\right)^{-2} \\ \leq (c\delta)^{\frac{1}{\eta}} \left(\delta^{\frac{1}{2\eta}}g(\delta^{-\frac{1}{\eta}})\right)^{-2} = c^{\frac{1}{\eta}}\omega(\delta).$$

This completes the proof of Lemma 2.4.

Now, we will prove the aim of this section. Proof of Theorem 2.1. Fix $\zeta \in b\Omega$, we define

$$\rho_{\zeta}(z) := -2c_2^2\omega\left(-\psi_{\zeta}(z)\right) + |z-\zeta|^2,$$

where $\psi_{\zeta}(.)$ and c_2 are as in Theorem 2.3. We will show that the function $\rho_{\zeta}(z)$ satisfies the following properties:

- (1) $\rho_{\zeta}(z) < 0$, for $z \in \Omega$, $\rho_{\zeta}(\zeta) = 0$;
- (2) $\rho_{\zeta} \in C^2(\Omega), i\partial \bar{\partial} \rho_{\zeta}(X, \bar{X}) \geq |X|^2$ on Ω , and $X \in T^{1,0}\mathbb{C}^n$; and
- (3) ρ_{ζ} is in the g^2 -Hölder space of $\overline{\Omega}$.

Proof of (1). From the definition of ω and (2) in Theorem 2.3, we have

(2.5)
$$\omega(-\psi_{\zeta}(z)) = g\left((-\psi_{\zeta}(z))^{-\frac{1}{\eta}}\right)^{-2} \ge \frac{1}{c_2^2}|z-\zeta|^2.$$

Hence,

$$\rho_{\zeta}(z) = -2c_2^2\omega \left(-\psi_{\zeta}(z)\right) + |z-\zeta|^2 \le -2|z-\zeta|^2 + |z-\zeta|^2 < 0,$$

where $\zeta \in b\Omega$, and $z \in \Omega$. Moreover, since $\psi_{\zeta}(\zeta) = 0$ and $\omega(0) = 0$, it follows that $\rho_{\zeta}(\zeta) = 0$ for any $\zeta \in b\Omega$.

Proof of (2). Fix $\zeta \in b\Omega$, the Levi form of $\omega(-\psi_{\zeta})$ on Ω is

(2.6)
$$i\partial\bar{\partial}\omega(-\psi_{\zeta})(X,\bar{X}) = \dot{\omega}i\partial\bar{\partial}\psi_{\zeta}(X,\bar{X}) - \ddot{\omega}|X\psi_{\zeta}|^2 \ge 0,$$

where the inequality follows from Lemma 2.4(i) and (ii).

Proof of (3). From Lemma 2.4(iii), we have

(2.7)
$$\begin{aligned} \left| \omega(-\psi_{\zeta}(z)) - \omega(-\psi_{\zeta}(z')) \right| &\leq \omega \left(\left| \psi_{\zeta}(z) - \psi_{\zeta}(z') \right| \right) \\ &\leq \omega (c|z - z'|^{\eta}) \\ &\leq c' \omega (|z - z'|^{\eta}) = c' g (|z - z'|^{-1})^{-2}. \end{aligned}$$

Here the inequalities are obtained from Theorem 2.3(1) and Lemma 2.4(iii)–(iv).

On the other hand, since Ω is bounded and $g(t) \lesssim t^{\frac{1}{2}}$, we can show that

(2.8)
$$||z-\zeta|^2 - |z'-\zeta|^2| \lesssim |z-z'| \lesssim g(|z-z'|^{-1})^{-2}.$$

The inequalities (2.7) and (2.8) verify that $\rho_{\zeta}(z) \in \Lambda^{g^2}(\overline{\Omega})$ for uniformly in $\zeta \in b\Omega$.

Now, we are ready to prove Theorem 2.1. We define

$$\rho(z) = \sup_{\zeta \in b\Omega} \rho_{\zeta}(z).$$

The properties of ρ_z imply that the function ρ satisfies (1) of the conclusion and is plurisubharmonic in Ω as a consequence of well-known result by Lelong [17]. Moreover, since g(0) = 0 and $g : [0, \infty] \to [0, \infty]$, ρ is also g^2 -Hölder continuous in $\overline{\Omega}$ – this follows from the theory of modulus of continuity, the superior envelope of g^2 -Hölder continuous is g^2 -Hölder continuous. Finally, the second property of each ρ_w shows that , in the distribution sense, we have

(2.9)
$$i\partial\bar{\partial}\rho(X,\bar{X}) \ge |X|^2$$
, for any $X \in T^{1,0}\mathbb{C}^n$.

This completes the proof of Theorem 2.1.

3. Proof of Theorem 1.5

The proof of Theorem 1.5 follows immediately from Theorems 2.1 and 3.1.

Theorem 3.1. Let Ω be a bounded, pseudoconvex domain. Assume that there is a uniformly and strictly plurisubharmonic defining function ρ of Ω such that $\rho \in \Lambda^{g^2}(\overline{\Omega})$. If $0 < \alpha \leq 2$, $\phi \in \Lambda^{t^{\alpha}}(b\Omega)$, and $h \geq 0$ on Ω with $h^{\frac{1}{n}} \in \Lambda^{g^{\alpha}}(\Omega)$, then the Dirichlet problem for the complex Monge-Ampère equation (1.2) has a unique plurisubharmonic solution $u \in \Lambda^{g^{\alpha}}(\overline{\Omega})$.

Let Ω be a bounded open set in \mathbb{C}^n and $\mathcal{P}(\Omega)$ denote the space of plurisubharmonic functions on Ω . The proof of Theorem 3.1 is adapted from the argument given by Bedford and Taylor [1, Theorem 6.2] for weakly pseudoconvex domains. Based on the approach in [1], we need the following proposition.

Proposition 3.2. Let Ω be a bounded, pseudoconvex domain. Assume that there is a strictly plurisubharmonic defining function ρ of Ω such that $\rho \in \Lambda^{g^2}(\overline{\Omega})$. Let $0 < \alpha \leq 2$, and $\phi \in \Lambda^{t^{\alpha}}(b\Omega)$, and let $h \geq 0$ with $h^{1/n} \in \Lambda^{g^{\alpha}}(\Omega)$. Then, for each $\zeta \in b\Omega$, there exists $v_{\zeta} \in \Lambda^{g^{\alpha}}(\overline{\Omega}) \cap \mathcal{P}(\Omega)$ such that

- (i) $v_{\zeta}(z) \leq \phi(z)$ for all $z \in b\Omega$, and $v_{\zeta}(\zeta) = \phi(\zeta)$,
- (ii) $\|v_{\zeta}\|_{\Lambda^{g^{\alpha}}(\overline{\Omega})} \leq C_0,$
- (iii) det $(H(v_{\zeta})(z)) \ge h(z)$,

where C_0 is a positive constant depending only on Ω and $\|\phi\|_{\Lambda^{t^{\alpha}}(b\Omega)}$.

Proof. For each $\zeta \in b\Omega$, we may choose the family $\{v_{\zeta}\}$ by two different ways regarding the value of α :

<u>Case 1:</u> if $0 < \alpha \leq 1$ then we choose

$$v_{\zeta}(z) = \phi(\zeta) - K[-2\rho(z) + |z - \zeta|^2]^{\frac{\alpha}{2}}, \quad z \in \overline{\Omega};$$

<u>Case 2:</u> if $1 < \alpha \leq 2$ then we choose

$$v_{\zeta}(z) = \phi(\zeta) - \sum_{j=1}^{n} 2\operatorname{Re} \frac{\partial \phi(\zeta)}{\partial \zeta_j} (z_j - \zeta_j) - K[-2\rho(z) + |z - \zeta|^2]^{\frac{\alpha}{2}}, \quad z \in \overline{\Omega};$$

where ρ is defined by Theorem 2.1, and K will be chosen step by step later.

It is easy to see that $v_{\zeta}(\zeta) = \phi(\zeta)$ for any $\zeta \in b\Omega$ in both cases. Moreover, choosing K such that $K \geq \|\phi\|_{\Lambda^{t^{\alpha}}}$, for all $z \in b\Omega$ we have in Case 1:

$$v_{\zeta}(z) \le \phi(\zeta) - \|\phi\|_{\Lambda^{t^{\alpha}}} |z - \zeta|^{\alpha} \le \phi(z);$$

and in Case 2:

$$\begin{aligned} v_{\zeta}(z) &\leq \phi(\zeta) - \sum_{j=1}^{n} 2 \operatorname{Re} \frac{\partial \phi(\zeta)}{\partial \zeta_{j}} (z_{j} - \zeta_{j}) - \|\phi\|_{\Lambda^{t^{\alpha}}} |z - \zeta|^{\alpha} \\ &\leq \phi(z) + \sum_{j=1}^{n} 2 \operatorname{Re} \frac{\partial \phi(\tau\zeta + (1 - \tau)z)}{\partial \zeta_{j}} (z_{j} - \zeta_{j}) \\ &- \sum_{j=1}^{n} 2 \operatorname{Re} \frac{\partial \phi(\zeta)}{\partial \zeta_{j}} (z_{j} - \zeta_{j}) - \|\phi\|_{\Lambda^{t^{\alpha}}} |z - \zeta|^{\alpha} \\ &\leq \phi(z) + \|D\phi\|_{\Lambda^{t^{\alpha-1}}} |z - \zeta|^{\alpha-1} \cdot |z - \zeta| - \|\phi\|_{\Lambda^{t^{\alpha}}} |z - \zeta|^{\alpha} \\ &\leq \phi(z). \end{aligned}$$

This proves (i).

For the proof of (ii), in both cases we have the following estimates

$$(3.1) \qquad |v_{\zeta}(z) - v_{\zeta}(z')| \\ \leq K \left| [-2\rho(z) + |z - \zeta|^2]^{\frac{\alpha}{2}} - [-2\rho(z') + |z' - \zeta|^2]^{\frac{\alpha}{2}} \right| + K|z - z'| \\ \leq K \left| -2\rho(z) + |z - \zeta|^2 + 2\rho(z') - |z' - \zeta|^2 \right|^{\frac{\alpha}{2}} + K|z - z'| \\ \leq K \left[2|\rho(z) - \rho(z')| + ||z - \zeta|^2 - |z' - \zeta|^2| \right]^{\frac{\alpha}{2}} + |z - z'| \\ \lesssim g^{-\alpha}(|z - z'|^{-1})$$

Here, the first inequality follows by the fact that $|\delta^{\frac{\alpha}{2}} - \eta^{\frac{\alpha}{2}}| \leq |\delta - \eta|^{\frac{\alpha}{2}}$ for all δ, η small and $0 < \alpha \leq 2$; the last inequality follows by Theorem 2.1,(2.8) and $g(t) \leq t^{1/2} \leq t^{1/\alpha}$ for large t. This implies $v_{\zeta} \in \Lambda^{g^{\alpha}}(\overline{\Omega})$ for all $\zeta \in b\Omega$. Moreover $||v_{\zeta}||_{\Lambda^{g^{\alpha}}(\overline{\Omega})}$ is independent on ζ . To establish (iii), we compute $(v_{\zeta})_{ij}$ on Ω . In both cases,

(3.2)
$$(v_{\zeta}(z))_{ij} = K \frac{\alpha}{2} (-2\rho(z) + |z - \zeta|^2)^{\frac{\alpha}{2} - 2} \cdot \left[(-2\rho(z) + |z - \zeta|^2) (2\rho(z)_{ij} - \delta_{ij}) + \left(1 - \frac{\alpha}{2} \right) (-2\rho_i + \bar{z}_i - \bar{\zeta}_i) \overline{(-2\rho_j + \bar{z}_j - \bar{\zeta}_j)} \right].$$

Hence

$$i\partial\bar{\partial}v_{\zeta}(X,X) \ge K\frac{\alpha}{2}(-2\rho(z) + |z-\zeta|^2)^{\frac{\alpha}{2}-1}(2i\partial\bar{\partial}\rho(X,X) - |X|^2)$$
$$\ge K\frac{\alpha}{2}(-2\rho(z) + |z-\zeta|^2)^{\frac{\alpha}{2}-1}|X|^2,$$

for any $X \in T^{1,0}\mathbb{C}^n$. Here the last inequality follows from Theorem 2.1(2). Thus v_{ζ} is plurisubharmonic and furthermore we obtain

(3.3)
$$\det[(v_{\zeta})_{ij}](z) \ge \left[K\frac{\alpha}{2}(-2\rho(z)+|z-\zeta|^2)^{\left(\frac{\alpha}{2}-1\right)}\right]^n$$

Now, since $0 < \alpha \leq 2$ we choose

$$K \ge \max\left\{\frac{2}{\alpha} \max_{z \in \overline{\Omega}, \zeta \in b\Omega} (-2\rho(z) + |z - \zeta|^2)^{1 - \frac{\alpha}{2}} \|h^{1/n}\|_{L^{\infty}(\Omega)}, \|\phi\|_{\Lambda^{t^{\alpha}}}\right\}.$$

Then

(3.4)
$$\det[(v_{\zeta})_{ij}](z) \ge \|h^{1/n}\|_{L^{\infty}(\Omega)}^{n} \ge (h^{1/n}(z))^{n} = h(z),$$

for all $z \in \Omega$, and $\zeta \in b\Omega$. This completes the proof of Proposition 3.2.

Before to give a proof of Theorem 3.1, we recall the existence theorem for the problem (1.1) by Bedford and Taylor [1, Theorem 8.3, page 42].

Theorem 3.3 (Bedford-Taylor [1]). Let Ω be a bounded open set in \mathbb{C}^n . Let $\phi \in C(b\Omega)$ and $0 \leq h \in C(\Omega)$. If the Perron-Bremerman family denoted by

$$\mathcal{B}(\phi,h) = \Big\{ v \in \mathcal{P}(\Omega) \cap C(\Omega) : \det[(v)_{ij}] \ge h, \\ \limsup_{z \to z_0} v(z) \le \phi(z_0), \text{ for all } z_0 \in b\Omega \Big\},$$

is non-empty, and its upper envelope

(3.5)
$$u = \sup\{v : v \in \mathcal{B}(\phi, h)\}$$

is continuous on $\overline{\Omega}$ with $u = \phi$ on $b\Omega$, then u is a solution to the Dirichlet problem (1.1).

Proof of Theorem 3.1. First, we see that the set $\mathcal{B}(\phi, h)$ is non-empty, in particular, it contains the family of $\{v_{\zeta}\}_{\zeta \in b\Omega}$ in Proposition 3.2. The proof

of this theorem will be completed if the upper envelope defined in (3.5) has the properties

(1)
$$u(\zeta) = \phi(\zeta)$$
 for all $\zeta \in b\Omega$;

(2)
$$u \in \Lambda^{g^{\alpha}}(\overline{\Omega}).$$

We note that the uniqueness of solution follows from the Minimum Principle (cf. [1, Theorem A]).

Next, we define another upper envelope, for each $z \in \overline{\Omega}$,

$$v(z) := \sup_{\zeta \in b\Omega} \{ v_{\zeta}(z) \}.$$

By the first property of $\{v_{\zeta}\}$ in Proposition 3.2, we have

(3.6)
$$v(\zeta) \ge v_{\zeta}(\zeta) = \phi(\zeta), \quad \text{for all } \zeta \in b\Omega, \\ v(z) \le \phi(z), \quad \text{for all } z \in b\Omega ,$$

and so $v = \phi$ on $b\Omega$.

From the second property in Proposition 3.2, we have

$$|v_{\zeta}(z) - v_{\zeta}(z')| \le C_0(g^{\alpha}(|z - z'|^{-1}))^{-1}, \text{ for all } z, z' \in \overline{\Omega}.$$

Notice that C_0 is independent on ζ so taking the supremum in ζ , the theory of the modulus of continuity again implies that

$$|v(z) - v(z')| \le C_0(g^{\alpha}(|z - z'|^{-1}))^{-1}, \text{ for all } z, z' \in \overline{\Omega}.$$

By Proposition 2.8 in [1], the following inequality holds

$$\det[(v)_{ij}](z) \ge \inf_{\zeta \in b\Omega} \{\det[(v_{\zeta})_{ij}](z)\} \ge h(z), \quad \text{for all } z \in \Omega.$$

Thus, we conclude that $v \in \mathcal{B}(\phi, h) \cap \Lambda^{g^{\alpha}}(\overline{\Omega})$ and $v(\zeta) = \phi(\zeta)$ for any $\zeta \in b\Omega$.

By a similar construction there exists a plurisuperharmonic function $w \in \Lambda^{g^{\alpha}}(\bar{\Omega})$ such that $w(\zeta) = \phi(\zeta)$ for any $\zeta \in b\Omega$. Thus, $v(z) \leq u(z) \leq w(z)$ for any $z \in \bar{\Omega}$, and hence $u(\zeta) = \phi(\zeta)$ for any $\zeta \in b\Omega$. We also obtain

(3.7)
$$|u(z) - u(\zeta)| \le \max\{\|v\|_{\Lambda^{g^{\alpha}}(\bar{\Omega})}, \|v\|_{\Lambda^{g^{\alpha}}(\bar{\Omega})}\}(g^{\alpha}(|z-\zeta|^{-1})^{-1},$$

for any $z \in \overline{\Omega}, \zeta \in b\Omega$. Here, the inequality follows by the facts that $w, v \in \Lambda^{g^{\alpha}}(\overline{\Omega})$ and $v(\zeta) = u(\zeta) = w(\zeta) = \phi(\zeta)$ for any $\zeta \in \partial\Omega$.

Finally, using the method by Walsh in [23], we will show that (3.7) also holds for all $\zeta \in \Omega$. For any small vector $\tau \in \mathbb{C}^n$, we define

$$V(z,\tau) = \begin{cases} u(z), & \text{if } z + \tau \notin \Omega, \ z \in \overline{\Omega}, \\ \max\{u(z), V_{\tau}(z)\}, & \text{if } z, z + \tau \in \Omega, \end{cases}$$

where

$$V_{\tau}(z) = u(z+\tau) + \left(K_1|z|^2 - K_2 - K_3\right)g^{-\alpha}(|\tau|^{-1})$$

and here

$$K_1 \ge \max_{k \in \{1,...,n\}} {\binom{n}{k}}^{1/k} \|h^{\frac{1}{n}}\|_{\Lambda^{g^{\alpha}}(\overline{\Omega})}, \quad K_2 \ge K_1 |z|^2,$$

and

$$K_3 \ge \max\{\|v\|_{\Lambda^{g^{\alpha}}(\bar{\Omega})}, \|w\|_{\Lambda^{g^{\alpha}}(\bar{\Omega})}\}.$$

We will show that $V(z,\tau) \in \mathcal{B}(\phi,h)$. Observe that $V(z,\tau) \in \mathcal{P}(\Omega)$ for all z,τ . Moreover, for $z \in \partial\Omega$ and $z + \tau \in \Omega$, we have

$$(3.8) \quad V_{\tau}(z) - u(z) = u(z+\tau) - u(z) + (K_1|z|^2 - K_2 - K_3) g^{-\alpha}(|\tau|^{-1}) \\ \leq \max\{\|v\|_{\Lambda^{g^{\alpha}}(\bar{\Omega})}, \|v\|_{\Lambda^{g^{\alpha}}(\bar{\Omega})}\}g^{-\alpha}(|\tau|^{-1}) \\ + (K_1|z|^2 - K_2 - K_3) g^{-\alpha}(|\tau|^{-1}) \\ \leq 0.$$

Here the first inequality follows by (3.7) and the second follows by the choices of K_2 and K_3 . This implies that $\limsup_{z\to\zeta} V(z,\tau) \leq \phi(\zeta)$ for all $\zeta \in b\Omega$. For the proof of $\det[V(z,\tau)_{ij}] \geq h(z)$, we need the following lemma.

Lemma 3.4. Let $(\alpha_{ij}) \geq 0$ and $\beta \in (0, +\infty)$. Then

$$det[\alpha_{ij} + \beta I] \ge \sum_{k=0}^{n} \beta^k \det(\alpha_{ij})^{(n-k)/n}.$$

Proof of Lemma 3.4. Let $0 \leq \lambda_1 \leq \cdots \leq \lambda_n$ be the eigenvalues of (α_{ij}) . We have

•

(3.9)
$$\det[\alpha_{ij} + \beta] = \prod_{j=1}^{n} (\lambda_j + \beta) \ge \sum_{k=0}^{n} \left(\beta^k \prod_{j=k+1}^{n} \lambda_j \right)$$
$$\ge \sum_{k=0}^{n} \left(\beta^k \det[\alpha_{ij}]^{(n-k)/n} \right)$$

Here the last inequality follows by

$$\det[\alpha_{ij}] = \prod_{j=1}^{n} \lambda_j \le \left(\prod_{j=k+1}^{n} \lambda_j\right)^{n/(n-k)}.$$

Continuing the proof of Theorem 1.5, for any $z, z + \tau \in \Omega$ we have

(3.10)
$$\det[(V_{\tau}(z))_{ij}] = \det[u_{ij}(z+\tau) + K_1 g^{-\alpha}(|\tau|^{-1})I] \\ \ge \det[u_{ij}(z+\tau)] + \sum_{k=1}^n K_1^k [g^{\alpha}(|\tau|^{-1})]^{-k} \cdot \det[u_{ij}(z+\tau)]^{\frac{n-k}{n}} \\ \ge h(z+\tau) + \sum_{k=1}^n K_1^k [g^{\alpha}(|\tau|^{-1})]^{-k} \cdot (h(z+\tau))^{\frac{n-k}{n}},$$

where the first inequality is derived by Lemma 3.4. Since $h^{\frac{1}{n}} \in \Lambda^{g^{\alpha}}(\Omega)$, we obtain

$$h^{\frac{1}{n}}(z) - h^{\frac{1}{n}}(z+\tau) \le g^{-\alpha}(|\tau|^{-1}) \|h^{\frac{1}{n}}\|_{\Lambda^{g^{\alpha}}}, \text{ for any } z, z+\tau \in \Omega,$$

and hence

$$(3.11) \quad h(z) \le h(z+\tau) + \sum_{k=1}^{n} \binom{n}{k} h(z+\tau)^{(n-k)/n} \left(g^{-\alpha}(|\tau|^{-1}) \|h^{\frac{1}{n}}\|_{\Lambda^{g^{\alpha}}} \right)^{k}.$$

Combining (3.10), (3.11) with the choice of K_1 , we get

$$\det[(V_{\tau})_{ij}](z) \ge h(z), \quad \text{for any} \quad z, z + \tau \in \Omega.$$

We conclude that $V(z,\tau) \in \mathcal{B}(\phi,h)$. It follows that for all $z \in \Omega$, $V(z,\tau) \leq u(z)$. If $z, z + \tau \in \Omega$, this yields

$$(3.12) \quad u(z+\tau) - u(z) \le V(\tau, z) - (K_1|z|^2 - K_2 - K_3) g^{-\alpha}(|\tau|^{-1}) - u(z) \le (-K_1|z|^2 + K_2 + K_3) g^{-\alpha}(|\tau|^{-1}) \le (K_2 + K_3) g^{-\alpha}(|\tau|^{-1}).$$

By reversing the role of z and $z + \tau$, we assert that $u \in \Lambda^{g^{\alpha}}(\overline{\Omega})$. This completes the proof.

481

Acknowledgments

The authors are grateful to the referees for helpful comments that led to improvements of the expository quality of the paper.

References

- E. Bedford and B. A. Taylor, The Dirichlet Problem for a complex Monge-Ampère Equation. Inventiones Math., 37 (1976), 1–44.
- [2] Z. Blocki, The complex Monge-Ampère operator in hyperconvex domains. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 23 (1996), 721–747.
- [3] L. Caffarelli, J. J. Kohn, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations II. Complex Monge-Ampère equations and uniformly elliptic equations. Comm. Pure Appl. Math., 38 (1985), 209–252.
- [4] D. Catlin, Necessary conditions for subellipticity of the ∂-Neumann problem. Ann. of Math. (2), 117(1) (1983), 147–171.
- [5] D. Catlin, Subelliptic estimates for the ∂-Neumann problem on pseudoconvex domains. Ann. of Math. (2), 126(1) (1987), 131–191.
- [6] D. Catlin, Estimates of invariant metrics on pseudoconvex domains of dimension two. Math. Z., 200(3) (1989), 429–466.
- [7] D. Coman, Domains of finite type and Hölder continuity of the Perron-Bremermann function. Proc. Amer. Math. Soc., 125(12) (1997), 3569– 3574.
- [8] J. E. Fornaess and N. Sibony, Construction of P.S.H. functions on weakly pseudoconvex domains. Duke Math. J., 58(3) (1989), 633–655.
- [9] D. Gilbarg and N. S. Trudinger, *Elliptic partial differential equations* of second order. Second edition, Springer-Verlag, Berlin, 1983.
- [10] T. V. Khanh, A general method of weights in the $\bar{\partial}$ -Neumann problem. arxiv:1001.5093v1, 2010, Ph.D. Thesis.
- [11] T. V. Khanh, Supnorm and f-Hölder estimates for ∂ on convex domains of general type in C². J. Math. Anal. Appl., 403 (2013), 522–531.
- [12] T. V. Khanh, Lower bounds on the Kobayashi metric near a point of infinite type. J. Geom. Anal., in press, DOI:10.1007/s12220-015-9565-y.

- [13] T. V. Khanh and G. Zampieri, Regularity of the ∂-Neumann problem at point of infinite type. J. Funct. Anal., 259(11) (2010), 2760–2775.
- [14] T. V. Khanh and G. Zampieri, Necessary geometric and analytic conditions for general estimates in the \(\overline{\pi}\)-Neumann problem. Invent. Math., 188(3) (2012), 729–750.
- [15] M. Klimek, *Pluripotential theory*. London. Math. Soc. Monos., New series 6, 1991.
- [16] J. J. Kohn, Superlogarithmic estimates on pseudoconvex domains and CR manifolds. Ann. of Math. (2), 156(1) (2002), 213–248.
- [17] P. Lelong, Plurisubharmonic functions and positive differential forms. New York: Gordon and Breach, 1969.
- [18] S. Y. Li, On the existence and regularity of Dirichlet problem for complex Monge-Ampere equations on weakly pseudoconvex domains. Calc. Var., 20 (2004), 119-132.
- [19] J. D. McNeal, Local geometry of decoupled pseudoconvex domains. In "Complex analysis" (Wuppertal, 1991), Aspects Math., E17, pages 223– 230, Vieweg, Braunschweig (1991).
- [20] J. D. McNeal, Convex domains of finite type. J. Funct. Anal., 108(2) (1992), 361–373.
- [21] D. H. Phong and J. Sturm, The Dirichlet problem for degenerate complex Monge-Ampère equations. Comm. Anal. Geom., 18(1) (2010), 145– 170.
- [22] D. H. Phong, J. Song and J. Sturm, Complex Monge-Ampère equations. Surv. Differ. Geom., 17 (2012), 327–410.
- [23] J. B. Walsh, Continuity of envelopes of plurisubharmonic functions.
 J. Math. Mech., 18 (1968), 143–148.

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE, UNIVERSITY OF SCIENCE VIETNAM NATIONAL UNIVERSITY – HO CHI MINH CITY 227 NGUYEN VAN CU STREET, DISTRICT 5, HO CHI MINH CITY, VIETNAM *E-mail address*: lkha@hcmus.edu.vn

SCHOOL OF MATHEMATICS AND APPLIED STATISTICS UNIVERSITY OF WOLLONGONG, WOLLONGONG, NSW 2522, AUSTRALIA *E-mail address*: tkhanh@uow.edu.au

RECEIVED MARCH 23, 2014