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Scales on Π2
1 sets

Trevor M. Wilson

Assuming AD+ + θ0 < Θ we construct scales of optimal complex-
ity on Π2

1 sets of reals. Namely, the norms of the scale are all
ordinal-definable (although the scale itself may not be). This paper
extends work of Martin and Woodin from the 1980s as well as more
recent work of Jackson. The results of this paper were proved in the
author’s thesis [13] for more general pointclasses and are presented
here for the representative case of the pointclass Π2

1.

1. Introduction

A central question in descriptive set theory is: Which sets of reals admit
scales, and how complex are those scales? The notion of a scale was intro-
duced by Moschovakis as a general way of proving uniformization theorems;
that is, proving that if a set in the plane intersects every vertical line, then
it contains the graph of a function. Typically, such theorems impose con-
straints on the complexity of the set and of the function in order to avoid
the influence of the Axiom of Choice.

We let N denote the Baire space, which is the set ωω of infinite sequences
of natural numbers with the product of the discrete topologies on ω. It is
homeomorphic to R \Q with the subspace topology from R, and we will
abuse terminology in the usual way by referring to elements of N as “reals.”
For any positive integer m the product space Nm is homeomorphic to N
itself, so we will refer to elements of Nm as reals also.

We include some basic definitions relating to scales below. For a thorough
introduction to the subject see the paper of Kechris and Moschovakis [4] or
Moschovakis’s book [10].

Definition 1.1. Consider a set of reals A ⊂ Nm where m is a positive
integer. A function ϕ : A→ Ord, where Ord denotes the class of ordinal
numbers, is called a norm on A.

1991 Mathematics Subject Classification. Primary 03E60; Secondary 03E15.
Keywords and phrases. determinacy, Suslin set, ordinal-definable, scale

301



302 Trevor M. Wilson

A semiscale on A is a sequence (ϕi : i < ω) of norms on A with the
property that if (xk : k < ω) is a sequence of reals from A converging to
some real x, and for all i < ω the sequence of ordinals (ϕi(xk) : k < ω) is
eventually constant, then x is in A.

A scale on A is a semiscale on A with the additional property of lower
semicontinuity, which says that if xk → x as in the definition of a semiscale,
then ϕi(x) ≤ limk→ω ϕi(xk) for all i < ω.

There is a fundamental connection between scales, semiscales, and trees.
For a positive integer m, an ordinal κ, and a tree T on ωm × κ, we let
[T ] ⊂ Nm × κω denote the set of branches of T . This set [T ] is a closed
subset of Nm × κω (where κω has the product of the discrete topologies)
and conversely every closed subset of Nm × κω has the form [T ] for some
tree T . We let p[T ] ⊂ Nm denote the projection of this set [T ] onto Nm

along the last coordinate.
A set of reals is called κ-Suslin if it has the form p[T ] for some tree T on

ωm × κ for some positive integer m, and it is called Suslin if it is κ-Suslin
for some ordinal κ. For example, the ω-Suslin subsets of Nm are just the
projections of closed subsets of Nm+1. These are the Σ˜ 1

1 (analytic) subsets of
Nm.1 If the Axiom of Choice holds then every set of reals is 2ℵ0-Suslin, so it
is more interesting to consider Suslin sets under the Axiom of Determinacy
(AD), which contradicts AC.

A set of reals is Suslin if and only if it admits a semiscale, which holds in
turn if and only if it admits a scale. However, in some cases the construction
of a scale from a semiscale can increase the complexity of the norms because
the entire sequence of norms of the semiscale is needed to define a single
norm of the scale. Because we wish to get scales of optimal complexity, we
will construct them more directly.

For the same reason, instead of working with boldface pointclasses we
will work with lightface pointclasses. For example, whereas the Σ˜ 1

1 subsets of
Nm are defined as the projections of closed subsets of Nm+1, the Σ1

1 subsets
of Nm are defined as the projections of effectively closed subsets of Nm+1,
which have the form [T ] for T a computable tree on ωm+1.

The following theorem is an important source of scales on sets far beyond
the Σ1

1 sets. Namely, on Σ2
1 sets, which are sets of the form

{x ∈ Nm : ∃A ⊂ N (Vω+1;∈, A) |= ϕ[x]},
1Projecting closed subsets of Rm+1 (rather than Nm+1) does not give all analytic

subsets of Rm, which is one reason that the Baire space is a more natural setting
for descriptive set theory.
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where ϕ is a formula in the language of set theory with a unary predicate
symbol for the set A. Such sets are best studied under the axiom AD+, which
is a natural strengthening of AD that holds in all known models of AD.

Theorem 1.2 (Woodin, ZF + AD+). Every Σ2
1 set of reals A ⊂ Nm has

a Σ2
1-scale, and therefore is the projection of a definable tree on ωm × δ˜2

1.

Here δ˜2
1 denotes the supremum of the lengths of Δ˜ 2

1 pre-wellorderings of
the reals. We will not need to use the precise definition of “Σ2

1-scale” but we
remark that it yields a uniformization by a Σ2

1 function.
The special case of the theorem for L(R) was proved by Martin and

Steel [7] and this was later generalized to K(R) by Steel [11]. The general
case remains unpublished, although Steel [12] presents a proof in the case
of derived models and remarks that this can be shown to imply the general
case.

The next natural targets for scales after the Σ2
1 sets are their comple-

ments, the Π2
1 sets. In this paper, we give a method for constructing scales on

Π2
1 sets whose norms have the optimal complexity, namely they are ordinal-

definable. We will need an extra hypothesis because there are some models
of AD+, such as L(R), where some Π2

1 sets admit no scales at all. (This
observation is due to Kechris and Solovay, according to Martin and Steel
[7].)

To state our main theorem we must first recall some standard terminol-
ogy from the study of AD. We let Θ denote the least ordinal that is not a
surjective image of the reals and we let θ0 denote the least ordinal that is
not a surjective image of the reals by an ordinal-definable function. Under
AD, the ordinal Θ is the height of the Wadge pre-wellordering of ℘(R) and
θ0 is the supremum of the Wadge ranks of ordinal-definable sets of reals,
and the inequality θ0 < Θ is equivalent to the existence of a set of reals that
is not ordinal-definable from any real parameter.

Main theorem (ZF + AD+). If θ0 < Θ then every Π2
1 set of reals A has a

scale �ϕ whose norms ϕi are ordinal-definable.

Remark 1.3. The method that we will use to prove the main theorem can
also be applied in a more general “partial determinacy” setting that can be
useful in a core model induction. In that setting, the AD does not hold in V .
Instead we have a model M of ZF + AD+ + θ0 = Θ containing all the reals,
and we assume some strong hypothesis in V which takes the place of the
hypothesis θ0 < Θ.



304 Trevor M. Wilson

The optimal-complexity scales on (Π2
1)
M sets will then have norm rela-

tions cofinal in the Wadge hierarchy of M, and their construction will be
the first step in building a larger determinacy model containing M and sat-
isfying the stronger determinacy theory ZF + AD+ + θ0 < Θ. For such an
application of the method, see the author’s thesis [13, Ch. 4].

From the main theorem we can derive a uniformization result in the
standard way (see Moschovakis [10].) Namely, let A be a Π2

1 subset of N 2

that is a total relation, meaning that for every real x the section Ax = {y ∈
N : (x, y) ∈ A} is non-empty. Then the sequence

(ϕ0(x, y), y(0), ϕ1(x, y), y(1), . . .)

attains a lexicographically least value on some y ∈ Ax.
This is because for every k < ω we can take a real yk ∈ Ax making the

finite sequence (ϕ0(x, yk), yk(0), . . . , ϕk−1(x, yk), yk(k − 1)) lexicographically
least, and let y = limk→ω yk. Then we have y ∈ Ax by the semiscale property,
and the desired lexicographic minimality property of y follows from the lower
semicontinuity property of scales.

If f(x) denotes the unique real y ∈ Ax attaining this least value, then
the function given by x �→ f(x) � i is definable from the norms ϕ0, . . . , ϕi−1,
giving the following result.

Corollary 1.4 (ZF + AD+). If θ0 < Θ then every Π2
1 total relation A ⊂

N 2 is uniformized by a function f : N → N such that for every i < ω the
function N → ωi given by x �→ f(x) � i is ordinal-definable.

Remark 1.5. Under AD every well-ordered set of reals is countable, so for
every real x there is a real y that is not ordinal-definable from x. In other
words, the relation A = {(x, y) ∈ N 2 : y /∈ ODx} is total. Under AD+ + V =
L(℘(R))2 this relation is Π2

1 by Woodin’s Σ1 reflection theorem (see Steel
[12]). Therefore by Corollary 1.4 there is a function f : N → N such that
f(x) is not in ODx for any x ∈ N , but for every i < ω the initial segments
f(x) � i are ODx uniformly in x.

This remark demonstrates the necessity of the hypothesis θ0 < Θ in the
main theorem and in Corollary 1.4: any uniformization of the set {(x, y) ∈

2Without the assumption V = L(℘(R)) we would have to replace “y ∈ ODx” with
“y is ordinal-definable from x in the model L(B, R) for some set of reals B” but
our argument would be otherwise unchanged.
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N 2 : y /∈ ODx} must have Wadge rank at least θ0 because no such uni-
formization can be ordinal-definable from a real. Indeed, if g(x) /∈ ODx for
every real x and the function g is ODx0 , then we get a contradiction from
g(x0) ∈ ODx0 .

There are several existing results approximating the main theorem, which
will be briefly discussed below. Our starting point is a method of construct-
ing weak homogeneity systems due to Martin and Woodin [9], which can
be used to show that Π2

1 sets are Suslin (and therefore admit scales) under
the additional hypothesis of ADR. Woodin [14] subsequently weakened the
hypothesis to that of the main theorem.

(The result of Martin and Steel [8] can also be used to show under the
hypothesis of the main theorem that Π2

1 sets are Suslin, but their method is
less relevant to the present paper.)

By the result of Woodin stated as Theorem 1.2 above, every Π2
1 set

A ⊂ Nm has the form Nm \ p[T ] for some definable tree T on ωm × δ˜2
1. A

weak homogeneity system �μ for T can be obtained by the methods [9, 14]
mentioned above. Then the method of Martin and Solovay [6] can be applied
to T and �μ to construct a semiscale on the set A = Nm \ p[T ] with the
property that each of its norms, given by (∗) below, is definable from a
measure in �μ.

Under AD+ (or just AD + DCR) every measure on an ordinal κ < Θ is
ordinal-definable by a theorem of Kunen (see Steel [12, Theorem 8.6] for a
proof) and this generalizes trivially to measures on κ<ω, so the norms of the
Martin–Solovay semiscale are ordinal-definable. However, obtaining a scale
with ordinal-definable norms is more difficult because it is not clear whether
this Martin–Solovay semiscale is a scale in general (see Jackson [1, Remark
3.16]).

By a theorem of Jackson [2], the tree T has a stability property that
gives a subtree T ′ ⊂ T on which each measure μi in the weak homogeneity
system still concentrates, and such that the Martin–Solovay semiscale from
T ′ and �μ is a scale.

Passing from T to the subtree T ′ introduces a real parameter to the
calculation of the norms, so Jackson’s stability result does not directly imply
the main theorem (or Corollary 1.4). To establish the main theorem, we
will need to combine Woodin’s semiscale construction [14] with ideas from
Jackson’s stability proof. Combining these methods also allows us to use a
more direct argument that bypasses the notion of weak homogeneity.

We remark that Woodin has already proved, by a entirely different
method, that the conclusion of the main theorem follows from the hypothesis
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AD+ + θ0 < Θ augmented by an additional “mouse capturing” hypothesis.
That work is unpublished.

2. Towers of measures

In this section we recall some basic concepts regarding towers of measures.
A good reference for this material is Larson [5]. The background theory
for these concepts is ZF + DC, where DC denotes the Axiom of Dependent
Choices. This suits our needs because of the following observation.3

Remark 2.1. In proving the main theorem, we may assume DC without
loss of generality. This is because both the hypothesis and the conclusion
of the main theorem are absolute to an inner model where DC holds. More
precisely, assume AD+ + θ0 < Θ, let B be a set of reals of Wadge rank β ≥ θ0,
and define the model M = L(B, R).

The model M satisfies AD+ because AD+ is downward absolute to inner
models with the same reals. Moreover, M satisfies DC because it satisfies
DCR, which is one of the clauses of AD+, as well as the statement “every
set is ordinal-definable from the parameter B and a real.” Also, M satisfies
θ0 < Θ: it is definable from β, so every set that is ordinal-definable in M is
ordinal-definable in V and we have θM0 ≤ θ0 ≤ β < ΘM. (In fact θM0 = θ0

but we will not need this.)
It remains to observe that every Π2

1 set of reals is Π2
1 in M. This is

because Σ2
1 statements about reals are absolute to M by Woodin’s Σ2

1 basis
theorem (see Steel [12, Lemma 8.2]): every true Σ2

1(x) statement has a Δ2
1(x)

witness, and every such witness is in M.

We let meas(κ<ω) denote the set of countably complete measures on the
set κ<ω. Each such measure concentrates on κn for some n < ω. Given a
measure μ ∈ meas(κ<ω), we define the corresponding ultrapower Ult(V, μ)
of V using all functions in V . The well-foundedness of this ultrapower follows
from DC.

We let jμ : V → Ult(V, μ) denote the corresponding ultrapower embed-
ding, and for a function F ∈ V with domain κ<ω we let [F ]μ denote the set
represented by F in Ult(V, μ). In particular, for every well-founded tree W

3Another approach to the proof of the main theorem, which was used in an
earlier draft of this paper, is to note that the fragment DC℘(κ<ω) of DC suffices
for the argument provided that we use only functions in the collection

⋃{L[S] :
S ⊂ κ<ω} when taking ultrapowers. Although that approach is more elementary, it
complicates the exposition.
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on κ we have a corresponding rank function rankW : κ<ω → Ord and we can
define the ordinal [rankW ]μ.

In the absence of the Axiom of Choice we cannot prove elementarity
for the embeddings jμ, but for any set S ⊂ κ<ω the model L[S] is well-
ordered, so the restriction jμ � L[S] is an elementary embedding from L[S]
to the ultrapower Ult(L[S], μ) where again we take the ultrapower using all
functions in V (not just in L[S].) It is not the map jμ itself that will be
useful, but only such restrictions of it.

We will use the standard definitions for projections of measures, towers
of measures, and countable completeness of towers as given by Larson [5,
Section 1.2]. If the measure μ′ projects to μ we let jμ,μ′ denote the natural
factor map, so we have jμ′ = jμ,μ′ ◦ jμ.

Recall that a tower of measures on κ<ω is a sequence (μi : i < ω) of
measures such that for each i < ω the measure μi concentrates on κi, and
whenever i < j < ω the measure μj projects to μi. Recall also that such a
tower (μi : i < ω) is called countably complete if, for every sequence (Xi :
i < ω) such that Xi ∈ μi for all i < ω, there is a sequence f ∈ κω with the
property that f � i ∈ Xi for all i < ω. We will use the following standard
fact, which can be found in Larson [5, Proposition 1.2.2 and Theorem 1.2.3]:

Lemma 2.2. For a tower of measures �μ = (μi : i < ω) from meas(κ<ω) the
following statements are equivalent:

(1) The direct limit of the ordinals under the system of ultrapower maps
(jμi,μj

: i ≤ j < ω) is ill-founded.

(2) The tower �μ is not countably complete.

(3) There is a sequence of ordinals (hi : i < ω) such that jμi,μi+1(hi) > hi+1

for all i < ω.

In light of the equivalence of these three statements, if the tower �μ is
not countably complete, we call �μ itself ill-founded and we call a sequence
of ordinals (hi : i < ω) as in statement (2.2) a witness to the ill-foundedness
of �μ. We also consider functions that witness the ill-foundedness of many
towers simultaneously:

Definition 2.3. Given a set σ of countably complete measures on κ<ω, a
continuous witness to the ill-foundedness of all towers of measures from σ
is a function H : σ → Ord such that for any two distinct measures μ and μ′

in σ with μ′ projecting to μ, we have jμ,μ′(H(μ)) > H(μ′).



308 Trevor M. Wilson

This terminology is justified by the observation that if σ and H are
as above then there can be no well-founded tower of measures from σ. In
the context of ZF + DC it is not known whether the non-existence of well-
founded towers of measures from σ implies the existence of such a continuous
witness H, although in two special cases it is known to be true: if AC holds
and |σ| is less than the completeness of the measures in σ (see Larson [5,
Lemma 1.3.8]) and if AD holds and σ is countable. The latter case is an
observation of Martin and possibly others; a similar but more complicated
argument appears in a proof of Martin and Woodin [9, Lemma 2.2].

Note that Definition 2.3 includes the possibility that σ is not large
enough to form any towers of measures at all (for example, if it is finite
or even empty), but we will not typically consider such trivial σ.

For any set of measures σ ⊂ meas(κ<ω), if W is a well-founded tree on κ
then the function H defined on the subset of measures {μ ∈ σ : W ∈ μ} by
H(μ) = [rankW ]μ is a continuous witness to the ill-foundedness of all towers
of measures from this subset. (We abbreviate this special case of Definition
2.3 by saying “the function H is a continuous witness to the ill-foundedness
of all towers of measures from σ concentrating on the tree W .”)

To verify this standard fact, note that whenever we have measures μ and
μ′ concentrating on levels n and n + 1 of W , respectively, and such that μ′

projects to μ, we can represent the ordinal jμ,μ′(H(μ)) in the μ′-ultrapower
by the function that maps a node in level n + 1 of W to the rank of its
predecessor. Because the rank of a node in a well-founded tree is less than
the rank of its predecessor, we have jμ,μ′(H(μ)) > H(μ′).

3. Scales from sets of measures

The new result that allows us to prove the main theorem is the following
lemma, whose proof we defer until the next section. The statement of the
lemma uses the following standard notation. Given a positive integer m, an
ordinal κ, a tree T on ωm × κ, and a real x ∈ Nm, we define the tree Tx on
κ by

Tx = {s ∈ κ<ω : (x � |s| , s) ∈ T},
so we have x ∈ p[T ] if and only if Tx is ill-founded. (In taking the restriction
x � |s| we are considering x as an infinite sequence of m-tuples rather than
as an m-tuple of infinite sequences.) If x /∈ p[T ] then the function given by
μ �→ [rankTx

]μ is a continuous witness to the ill-foundedness of all towers of
measures from meas(κ<ω) concentrating on Tx.
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Lemma 3.1 (ZF + DC). Let T be a tree on ωm × κ for some positive
integer m and ordinal κ. Let μ be a countably complete measure on κ<ω.
Assume that there is a countably complete fine measure on ℘ω1

(meas(κ<ω)).
Let μ0, . . . , μn denote the projections of μ in order, so that μ0 is the trivial
measure on κ0 and μn is μ itself.

Then there is a countable set of measures σ ⊂ meas(κ<ω) containing
μ0, . . . , μn and such that for any real x ∈ Nm with Tx ∈ μ, and any con-
tinuous witness H to the ill-foundedness of all towers of measures from σ
concentrating on Tx, we have [rankTx

]μ ≤ H(μ).

In the lemma we pretend that an ill-founded tree has a rank, denoted
by ∞, that is greater than every ordinal. So letting μ be the trivial measure
μ0 on κ0, the lemma says that if x ∈ p[T ] then no such continuous witness
H can exist. This implies that for any enumeration �μ of σ the Martin–
Solovay construction from the pair (T, �μ) yields a semiscale on the set of
reals Nm \ p[T ], although in general it is not known to imply that �μ is
actually a weak homogeneity system for T . With a bit more work we can
get a scale from the lemma, proving the main theorem.

Proof of the main theorem. Assume ZF + AD+ + θ0 < Θ. By Remark 2.1 we
may also assume DC, so that the lemma applies. Let A be a Π2

1 set of reals.
We want to construct a scale on A whose norms are ordinal-definable. By
Woodin’s theorem we have A = Nm \ p[T ] for some definable tree T on
ωm × κ where κ is the ordinal δ˜2

1.
The coding lemma of Moschovakis [10] gives us a definable surjection

from R onto ℘(κ<ω). We can code any measure on κ<ω by an ordinal-
definable set of reals, namely its pre-image under this surjection. We are
assuming that θ0 < Θ, so there are fewer than Θ many ordinal-definable
sets of reals, and this fact together with the coding of measures yields a
surjection from R onto meas(κ<ω).4

Now we consider Martin’s measure on the set ℘ω1
(R), which is defined

to consist of all subsets X ⊂ ℘ω1
(R) such that {x ∈ R : x ≤T d} ∈ X for a

cone of Turing degrees d. It is a countably complete fine measure on ℘ω1
(R),

and pushing it forward by a surjection R → meas(κ<ω) yields a countably
complete fine measure on ℘ω1

(meas(κ<ω)).
Therefore all the conditions of the lemma are met. Using DC, we build

an increasing sequence of countable sets of measures (σj : j < ω) as follows.

4If instead of θ0 < Θ we assume the hypothesis AD
1/2

R
, which postulates determ-

inacy for games where one player plays reals and the other player plays integers,
then we can use the coding of measures from Kechris [3] to achieve the same result.



310 Trevor M. Wilson

Let σ0 = {μ0} where μ0 is the trivial measure on κ0. Given σj , let σj+1 be
a countable set of measures having the property of the lemma with respect
to every measure μ ∈ σj , which is possible because adding more measures
preserves this property.

Now we let σ =
⋃{σj : j < ω}. This set has the property of the lemma

with respect to each of its elements. That is, for any real x ∈ Nm and any
continuous witness H to the ill-foundedness of all towers of measures from
σ concentrating on Tx, we have [rankTx

]μ ≤ H(μ) for all measures μ ∈ σ
concentrating on Tx. Enumerating σ as a sequence of measures (μi : i < ω),
we claim that the corresponding sequence of norms �ϕ = (ϕi : i < ω) given
by

(∗) ϕi(x) =

{
[rankTx

]μi
if Tx ∈ μi,

0 if Tx /∈ μi

is a scale on the set Nm \ p[T ] (which is A). The choice of enumeration is
not important because permuting the norms of a scale yields another scale.
We call this sequence of norms the Martin–Solovay semiscale from (T, �μ).
Recall that each of the norms ϕi is ordinal-definable by Kunen’s theorem.

We caution the reader that one normally speaks of the Martin–Solovay
semiscale from (T, �μ) only in the case that �μ is a weak homogeneity system
for T , meaning that whenever x ∈ p[T ] there is a well-founded tower of
measures from �μ concentrating on Tx. We have not verified this — and we
do not need to — but we remark that under AD it follows from the non-
existence of a continuous witness to the ill-foundedness of all such towers.
(See the remarks following Definition 2.3.)

To see that the sequence of norms �ϕ is a scale, let (xk : k < ω) be a
sequence of reals from A converging to a real x, and assume that for all
i < ω the sequence of ordinals (ϕi(xk) : k < ω) is eventually constant. Define
a function H on the set {μ ∈ σ : Tx ∈ μ} by H(μ) = limk→ω[rankTxk

]μ.
This function H is a continuous witness to the ill-foundedness of all

towers of measures from σ concentrating on the tree Tx: if μ concentrates on
Tx then it also concentrates on the well-founded tree Txk

for all sufficiently
large k, and the rank function rankTxk

is a strictly decreasing function on
Txk

.
Therefore for every i < ω, if the measure μi concentrates on Tx then

by our choice of σ we have [rankTx
]μi
≤ H(μi), or in other words, ϕi(x) ≤

H(μi). If μi does not concentrate on Tx then we simply have ϕi(x) = 0, so
in any case we have ϕi(x) ≤ H(μi) = limk→ω ϕi(xk), establishing the lower
semicontinuity property in the definition of scales.
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In particular, we have rank(Tx) = [rankTx
]μ0 ≤ H(μ0) <∞ for the trivial

measure μ0 on κ0. This implies that the tree Tx is well-founded, so x ∈ A. �

4. Proof of Lemma 3.1

Let m, κ, T , and μ be as in the lemma. We will assume m = 1 for simplicity
of notation; the argument for higher dimensions is similar. We let μ0, . . . , μn

denote the projections of μ in order. So μ0 denotes the trivial measure on
κ0 and μn denotes μ itself, and for each i ≤ n the measure μi concentrates
on κi. For a countable set of measures σ ⊂ meas(κ<ω) containing μ0, . . . , μn

we define the following game, where for convenience of notation the moves
are numbered starting with n.

I rn, sn, hn rn+1, sn+1, hn+1 . . .
II μn+1 μn+2 . . .

(Gσ,μ
T )

Rules for Player I:

• for every i ≥ n we have ri ∈ ωi+1 and si ∈ jμi
(κ)i+1,

• [id]μn
⊂ sn, and

• for every i ≥ n,

(ri, si) ∈ jμi
(T ), jμi,μi+1(ri, si) � (ri+1, si+1),

hi ∈ Ord, jμi,μi+1(hi) > hi+1.

Rules for Player II: for every i ≥ n,

• μi+1 ∈ σ,

• μi+1 projects to μi, and

• μi+1 concentrates on the set Tri
⊂ κi+1.

The first player to deviate from these rules loses, and if both players follow
the rules for all ω moves then Player I wins. An infinite run of the game
yields a real

x =
⋃
{ri : i ≥ n} ∈ N ,

a tower of measures �μ = (μi : i < ω) from σ extending the given sequence
μ0, . . . , μn, and a witness (hi : i ≥ n) to the ill-foundedness of this tower.
(Technically speaking, to get a witness to ill-foundedness we must fill in
the first n ordinals h0, . . . , hn−1, but it is always possible to do this and



312 Trevor M. Wilson

it doesn’t matter how we do it.) Note that every measure μi in the tower
concentrates on the tree Tx. For i ≤ n this is guaranteed by the rules for
Player I because [id]μn

� sn ∈ jμn
(Trn

), and for i > n this is guaranteed by
the rules for Player II.

To illustrate the role of the moves si we consider an example. Suppose the
Martin–Solovay construction from T and an enumeration of σ does not even
yield a semiscale on the set of realsN \ p[T ]. Then there is some real x ∈ p[T ]
and a continuous witness H to the ill-foundedness of all towers of measures
from σ concentrating on Tx. Let f ∈ κω witness x ∈ p[T ]; that is, (x, f) ∈ [T ].
Letting μ0 denote the trivial measure on κ0, Player I has a winning strategy
in the game Gσ,μ0

T given by playing ri = x � (i + 1), si = jμi
(f � (i + 1)), and

hi = H(μi).
The following claim shows more generally that we can get a winning

strategy for Player I from a failure of lower semicontinuity.

Claim. Let σ ⊂ meas(κ<ω) be a countable set of measures containing all the
projections μ0, . . . , μn of μ. Suppose that there is a real x ∈ N with Tx ∈ μ
and a continuous witness H to the ill-foundedness of all towers of measures
from σ concentrating on Tx, but [rankTx

]μ > H(μ). (The left hand side may
be ∞.) Then Player I has a winning strategy for the game Gσ,μ

T .

Proof. As before we let μ0, . . . , μn denote the projections of μ in order. On
the first turn (which is numbered n), Player I plays rn = x � (n + 1). We
have

rankjμn (Tx)([id]μn
) = [rankTx

]μn
> H(μn),

so Player I can play a successor sn of the node [id]μn
in the tree jμn

(Tx)
with rankjμn (Tx)(sn) ≥ H(μn). For the ordinal part of the move, Player I
plays hn = H(μn).

Now let i ≥ n and suppose that Player I has played the finite sequences
rn, . . . , ri and sn, . . . , si and ordinals hn, . . . , hi and that Player II has played
the measures μn+1, . . . , μi+1. Suppose that the rules of the game have been
followed and moreover suppose that we have maintained the inequality

(∗∗) rankjμi
(Tx)(si) ≥ H(μi).

Applying the embedding jμiμi+1 to both sides of this inequality, we get

rankjμi+1 (Tx)(jμi,μi+1(si)) ≥ jμi,μi+1(H(μi)),
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and then because the measure μi+1 projects to the measure μi and both
measures concentrate on the tree Tx, our hypothesis on H yields

rankjμi+1 (Tx)(jμi,μi+1(si)) > H(μi+1),

so we can take a successor si+1 of the node jμi,μi+1(si) in the tree jμi+1(Tx)
with

rankjμi+1 (Tx)(si+1) ≥ H(μi+1),

maintaining the inequality (∗∗) for one more step. To complete the move,
we play ri+1 = x � (i + 2) and hi+1 = H(μi+1). Player I can follow the rules
in this manner for ω moves, thereby winning the game. �

Now to prove the lemma we suppose toward a contradiction that we have
a countably complete fine measure U on ℘ω1

(meas(κ<ω)) and that Player I
has a winning strategy in the game Gσ,μ

T for every countable set of measures
σ ⊂ meas(κ<ω) containing μ0, . . . , μn. Because U is fine, this means that
Player I has a winning strategy in the game Gσ,μ

T for U-almost every set of
measures σ.

The game Gσ,μ
T is a closed game and Player I’s moves are finite sequences

of ordinals, so for such σ we can define a canonical winning strategy F σ,μ
T .

This strategy always makes the lexicographically least move that leads to a
subgame for which Player I still has a winning strategy.

We will use these winning strategies F σ,μ
T for U-almost every σ, together

with the measure U , to build a single sequence of measures (μi : i ≥ n) that
is a winning play for Player II against the strategy F σ,μ

T for U-almost every
set of measures σ. This will be a contradiction.

Let rσ
n and sσ

n denote the moves played as “rn” and “sn” respectively by
the strategy F σ,μ

T on the first turn. Define a measure μn+1 ∈ meas(κ<ω) by

X ∈ μn+1 ⇐⇒ ∀∗Uσ (sσ
n ∈ jμn

(X)).

This measure is countably complete because the measure U is countably
complete. More generally, for i ≥ n let rσ

i and sσ
i denote the moves played

as “ri” and “si” respectively by the strategy F σ,μ
T on turn i against the play

(μn+1, . . . , μi) by Player II, and define a measure μi+1 ∈ meas(κ<ω) by

X ∈ μi+1 ⇐⇒ ∀∗Uσ (sσ
i ∈ jμi

(X)).

By the countable completeness of the measure U there is a single real x
that is equal to

⋃{rσ
i : i ≥ n} for U-almost every set of measures σ. (Apply

countable completeness once for each i, and then once more at the end.)
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Note that each of the measures μi concentrates on the tree Tx: for μi with
i ≤ n this is guaranteed by the rules for Player I as remarked before, and for
μi+1 with i ≥ n this can easily be seen to follow from the definition of μi+1.
Moreover, the sequence of measures �μ = (μi : i < ω) is a tower: for i < n
the measure μi+1 projects to μi by definition, the measure μn+1 projects to
μn because sn � n = [id]μn

, and for i ≥ n the measure μi+2 projects to μi+1

because si+1 � (i + 1) = jμi,μi+1(si).
Because the measure U is fine and countably complete, U-almost every

set of measures σ has, in addition to the above properties, the property
that μi ∈ σ for every i < ω. For such a set of measures σ, the sequence of
measures (μi+1 : i ≥ n) is a legal play by Player II in the game Gσ,μ

T , so
the moves played as hn, hn+1, . . . by the strategy F σ,μ

T against this sequence
(μi+1 : i ≥ n) form a sequence of ordinals witnessing that the tower �μ is ill-
founded. The finitely many missing ordinals h0, . . . , hn−1 are not important;
we can always fill them in to get a witness (hi : i < ω).

Let (gi : i < ω) be a witness to the ill-foundedness of �μ such that the
ordinal gn takes the least possible value. By a standard argument similar to
that used to prove Lemma 2.2 we can construct a well-founded tree W on
κ such that each measure μi concentrates on W and [rankW ]μn

= gn.5

By the countable completeness of the measure U and the meaning of the
fact that W ∈ μi+1 for every i ≥ n, there is some set of measures σ with all
the properties mentioned above as well as the property that sσ

i ∈ jμi
(W ) for

every i ≥ n. Define a sequence of ordinals (g′i : i ≥ n) by

g′i = rankjμi
(W )(s

σ
i ).

Then by the rules for Player I concerning the finite sequences sσ
i we have

jμi,μi+1(g
′
i) = rankjμi+1 (W )(jμi,μi+1(s

σ
i ))

> rankjμi+1 (W )(s
σ
i+1) = g′i+1

for every i ≥ n, so the sequence of ordinals (g′i : i ≥ n) witnesses the ill-
foundedness of the tower �μ; on the other hand, we have

gn = rankjμn (W )([id]μn
) > rankjμn (W )(sn) = g′n,

contradicting the minimality of gn. This contradiction proves the lemma. �

5Here is the argument: choose a sequence of functions (Fi : i < ω) such that
Fi : κ<ω → Ord and [Fi]μi

= gi for all i < ω. We let the tree W consist of all nodes
s ∈ κ<ω such that Fi(s � i) > Fi+1(s � (i + 1)) for all i < |s|. Then [rankW ]μn

≤ gn

and we have equality by the minimality of gn.
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