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Average size of 2-Selmer groups of elliptic curves

over function fields

Q.P. H `̂
O, V.B. Lê Hùng and B.C. Ngô

Employing a geometric setting inspired by the proof of the Funda-
mental Lemma, we study some counting problems related to the
average size of 2-Selmer groups and hence obtain an estimate for it.

1. Introduction

By the Mordell–Weil theorem, for every elliptic curve E over a global field
K, the group E(K) of K-rational points of E is a finitely generated abelian
group. The rank of E(K), called the Mordell–Weil rank, is a fascinating
invariant as revealed by the Birch and Swinnerton–Dyer conjecture. It
remains nevertheless very mysterious. For instance, it is not known if the
Mordell–Weil rank of elliptic curves defined over a given number field is
bounded. Over function fields, according to Ulmer [10], the Mordel–Weil
rank is known to be unbounded.

In the ground breaking papers [1, 2], Bhargava and Shankar were able
to prove an upper bound for the average rank of E(Q), when E ranges over
the set of elliptic curves defined over Q.

An attractive feature of their work is its rather elementary nature. Bhar-
gava and Shankar bound the average rank by estimating the average size of
the 2-Selmer groups Sel2(E) of E. This computation is then carried out as
the solution of a problem in geometry of numbers which involves counting
integral points in a certain fundamental domain built out of the action of
PGL2 on the space of binary quartic polynomials.

The aim of this work is to introduce certain moduli spaces, also built
out of the action of PGL2 on binary quartics, which should be viewed
as the geometric analog of this problem in geometry of numbers in the
case of global fields of rational functions on a curve defined over a finite
field. Counting points on these moduli spaces, which is roughly counting
torsors for suitable quasi-finite group schemes over the curve, will then
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help to estimate the average size of 2-Selmer groups, and hence the aver-
age rank of elliptic curves. This gives a (weakened) function field ana-
log of the main result of [1], valid for all functions fields with very mild
restrictions.

Theorem. Let K be a global function field over a finite field Fq with q > 32
and charFq > 3. Then the average size of 2-Selmer groups of elliptic curves
over K when ordered by height, is bounded above and below by explicit func-
tions 3 + F (q) and 3−G(q). Furthermore F (q), G(q) tend to 0 as q →∞.

More precise statements of our result are given in Section 2.2. We also
remark that the results of [3] give upper bounds for the size of 3-Selmer
groups of a similar nature for the case K = k(P1) = Fq(t). After the com-
pletion of this paper, we learned from J. Ellenberg that Y. Zhao in [12] has
also obtained results in the case of cubic polynomials using an argument
which is in part similar to ours. It seems that our methods may be applica-
ble to more general coregular representations, for example the ones studied
in [4], and we hope to return to this in future work.
Notations: k = Fq with char k �= 2, 3, k its algebraic closure, C is a smooth,
complete, geometrically connected curve over k such that C(k) �= ∅, K =
k(C), the field of rational functions on C, and G = PGL2.

2. Elliptic curves over K

We will need to specify an ordering on the infinite set of isomorphism classes
of elliptic curves over K = k(C) in order to make sense of the notion of
average. This can be done via the notion of height, which in turn relies on
the theory of minimal Weierstrass models of elliptic curves.

2.1. Height and minimal Weierstrass model

We will recall the statements of the necessary results of the theory of Weier-
strass model, and refer the readers to the literature for the proofs.

Definition 2.1.1. A family of Weierstrass curves over a scheme S is a flat
family of arithmetic genus one curves π : E → S with integral geometric
fibers, equipped with a section e : S → E not passing through the cusps or
nodes of any fiber.

A family of Weierstrass curves admits a simple presentation, which jus-
tifies its name.
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Proposition 2.1.2. Let (E, e) be a family of Weierstrass curves over a
scheme S. Then, there exists a triple (L, a, b) with L a line bundle over S,
a ∈ H0(S,L⊗4) and b ∈ H0(S,L⊗6) such that the pair (E, e) is isomorphic
to the closed subscheme of P(L⊗−2 ⊕ L⊗−3 ⊕OS) defined by the equation

yz2 = x3 + axz2 + bz3,

and the section e : S → E is given by (0, 1, 0).
Moreover, (L, a, b) is unique up to the following identification: (L, a, b) ∼

(L′, a′, b′) when L ∼= L′ and (a, b) = (c4a, c6b) for some c ∈ k×. In particular,
(E, e) completely determines L, and in fact, L = π∗(OE(e)/OE)−1.

Proof. See [7, Theorem 2.1] and [9]. �

Remark 2.1.3. Proposition 2.1.2 allows us to construct the moduli stack
of Weierstrass curves as the stack quotient [A2/Gm], with Gm acting on
A2 by the formula c · (a, b) = (c4a, c6b). The universal family is the closed
subscheme of P(L⊗−2

uni ⊕ L⊗−3
uni ⊕OC) cut out by the equation yz2 = x3 +

axz2 + bz3, with Luni being the pullback of the universal line bundle on
BGm, and the section e : S → E given by (0, 1, 0).

Theorem 2.1.4. Let (EK , eK) be an elliptic curve over K. Then, we can
extend (EK , eK) to a family of Weierstrass curves (E, e) over C. Moreover,
the extension is unique up to isomorphism if we demand that the line bundle
L = π∗(OE(e)/OE)−1 (see Proposition 2.1.2) is of minimal degree.

Proof. See [5, Section 9.4]. �

Definition 2.1.5. The height of an elliptic curve EK defined over K is
defined to be the minimal degL in the theorem above.

Using Proposition 2.1.2 and Remark 2.1.3, Theorem 2.1.4 can now be
reformulated in a slightly different way. Every elliptic (EK , eK) over the
generic point Spec (K) of C can be extended as a family of Weierstrass
curves (E, e) over C, and hence gives rise to a morphism hE : C → [A2/Gm].
The extension is unique if deg h∗ELuni is minimal.

Let (E, e) be a family of Weierstrass curves over C. Then the fiber Ev

over a point v ∈ C is singular if and only if v lies in the zero divisor of the
discriminant

Δ(a, b) = −(4a3 + 27b2) ∈ Γ(C,L⊗12).

We will sometimes use the notation Δ(EK) to denote the discriminant of
the minimal Weierstrass model.
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Definition 2.1.6. A morphism α : C → [A2/Gm] is said to be transversal
to the discriminant locus if the zero divisor of α∗Δ = 4a3 + 27b2 ∈ Γ(C,L⊗12)
is multiplicity free.

2.2. Statements of the main theorems

We recall that for each elliptic curve E defined over K, the 2-Selmer group
of E is defined as the kernel of the homomorphism:

Sel2(E) = ker

⎛
⎝H1(K, E[2])→

∏
v∈|C|

H1(Kv, E)

⎞
⎠ .

We will now state the main results of the paper. First, we introduce the
following notation:
(2.2.1)

AS(d) =

∑
h(EK)≤d

|Sel2(EK)|
|Aut (EK)|∑

h(EK)≤d
1

|Aut (EK)|
and AR(d) =

∑
h(EK)≤d

|Rank(EK)|
|Aut (EK)|∑

h(EK)≤d
1

|Aut (EK)|
.

Similarly, we denote AS(L) and AR(L) to be similar to AS(d) and AR(d)
except that we restrict ourselves to those elliptic curves whose minimal mod-
els are given by a fixed line bundle L (see Theorem 2.1.4). Note that it makes
sense to talk about AS and AR since the number of isomorphism classes of
elliptic curves over K with bounded height is finite.

In all the results below, we make the assumption that the base field k
has more than 32 elements. The source of this restriction will be explained
in subsection 6.2.

Theorem 2.2.2. We have the following bounds for AS(L):

lim sup
degL→∞

AS(L) ≤ 3 +
T

(q − 1)2
,

and

lim inf
degL→∞

AS(L) ≥ 3ζC(10)−1,

where T is a constant depending only on C, and ζC is the zeta function
associated with C.
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From this theorem, we derive the following corollaries.

Corollary 2.2.3. If we order elliptic curves over K by height, then we have

lim sup
d→∞

AS(d) ≤ 3 +
T

(q − 1)2
,

and

lim inf
d→∞

AS(d) ≥ 3ζC(10)−1.

In particular,

lim
q→∞ lim sup

d→∞
AS(d) ≤ 3,

and

lim
q→∞ lim inf

d→∞
AS(d) ≥ 3.

Proof. This is clear from Theorem 2.2.2, noticing that

lim
n→∞ ζC⊗Fqn (10) = 1. �

Corollary 2.2.4. We have the following bounds for the average rank:

lim sup
d→∞

AR(d) ≤ 3
2
+

T

2(q − 1)2
.

In particular,

lim
q→∞ lim sup

d→∞
AR(d) ≤ 3

2
,

Proof. This is a direct consequence of corollary 2.2.3. �

If we restrict ourselves to the case where Δ(EK) square-free, then we
get a better estimate for the average size of the 2-Selmer groups, and hence,
also for the average rank. For the sake of brevity, we add the superscript
sf to ASsf(d), ARsf(d), ASsf(L) and ARsf(L) to mean that we restrict the
range to the cases where Δ(EK) is square-free.
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Theorem 2.2.5. When we restrict ourselves to the square-free range, then

lim
degL→∞

ASsf(L) = 3,

and hence

lim
d→∞

ASsf(d) = 3,

and

lim
d→∞

ARsf(d) ≤ 3
2
.

The rest of the paper will be devoted to the proofs of Theorems 2.2.2
and 2.2.5. The main strategy to our counting problem is the introduction of
a morphism of stacksML → AL parametrized by line bundles L on C, and
calculate the limit of the ratio of masses

|ML(k)|/|AL(k)|

as deg(L)→∞. This geometric situation will be set up in Section 4.4 after
some necessary preparations.

3. Invariant theory of binary quartic forms

3.1. Invariants

Let V = Spec k[c0, c1, c2, c3, c4] be the space of binary quartic forms with
coefficients c0, c1, c2, c3, c4, i.e., a point f ∈ V (k) can be written as

f(x, y) = c0x
4 + c1x

3y + c2x
2y2 + c3xy3 + c4y

4.

We can view V as a representation of GL2 by identifying V with Sym4std⊗
det−2, where std stands for the standard representation of GL2. The center of
GL2 acts trivially on V , which makes this into a representation ofG = PGL2.
From the classical theory of invariants, we know that the GIT quotient V//G
of V is isomorphic to S = Spec k[a, b], where

a = −1
3
(12c0c4 − 3c1c3 + c2

2),

b = − 1
27
(72c0c2c4 + 9c2c3c4 − 27c0c

2
3 − 27c4c

2
1 − 2c3

2),
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and we denote π : V → S the quotient map. The discriminant

Δ(f) = −(4a3 + 27b2)

defines regular functions on V and S.
We also have a linear action of Gm on V and S compatible with π and

with the G-action defined as follows:

(3.1.1) c · f = c2f and c · (a, b) = (c4a, c6b).

These relations induce a natural morphism of quotient stacks π : [V/G×
Gm]→ [S/Gm]. We also have the relation:

c ·Δ = c12Δ

which implies that Δ defines a divisor on [S/Gm].
The quotient map π admits a section s given by

(3.1.2) s(a, b) = y(x3 + axy2 + by3),

which we will call the Weierstrass section. In fact, this section can be extended
to a map S ×Gm → V ×G×Gm compatible with all the actions involved

s((a, b), c) =
(

y(x3 + axy2 + by3),
(
1 0
0 c2

)
, c

)
.

This section induces a section on the level of quotient stacks:

[S/Gm]→ [V/G×Gm]

also to be called the Weierstrass section.

3.2. Stable orbits

We will now investigate the orbits and stabilizers of the action of G on the
space of binary quartic forms. A non-zero binary quartic form f ∈ V (k) can
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be written in the following form:

f(x, y) =
4∏

i=1

(aix+ biy), ai, bi ∈ k.

Based on multiplicity of its zeros, a non-zero binary quartic form f can be
assigned one of the following types:

(1, 1, 1, 1), (1, 1, 2), (1, 3), (2, 2), (4).

For instance, type (1, 1, 1, 1) includes those binary quartic forms with no
multiple root, while type (1, 1, 2) includes those with exactly one double
root, and so on. It is clear that if two geometric points f, g ∈ V (k)− {0} are
conjugate, then they have the same type and also have the same invariants
a and b. The converse is also true.

Proposition 3.2.1. In each geometric fiber of π : V → S, G acts tran-
sitively on the set of geometric points of a given type. In other words, if
f, g ∈ V (k)− {0} have the same invariants a and b, and are of the same
type, then there exists an element of h ∈ G(k) such that hf = g.

Let (a, b) ∈ k̄2 be a geometric point of S. Then the geometric fiber V(a,b) =
π−1(a, b) has the following descriptions:

(i) If Δ(a, b) �= 0, V(a,b) has precisely one orbit, and it is of type (1, 1, 1, 1).

(ii) If Δ(a, b) = 0 but (a, b) �= (0, 0), V(a,b) has two orbits, which are of
types (1, 1, 2) and (2, 2).

(iii) Finally, V(0,0) has three orbits, which are of types (1, 3), (4) and f = 0.

A non-zero binary quartic form f ∈ V (k̄) is said to be stable if it has at
least one single zero, or in other words if it is of one of the types (1, 1, 1, 1),
(1, 1, 2) or (1, 3). We will first treat the stable case.

Proposition 3.2.2. Let f ∈ V (k̄) be a stable binary quartic form. Then
there exists h ∈ G(k̄) such that

hf = y(x3 + axy2 + by3),

where a = a(f) and b = b(f).

Proof. Let P1 be the projective line with projective coordinate [x : y], where
∞ is defined by the equation y = 0. By conjugation, we can assume that f
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has a single zero at ∞. In other words, it has the form

f = y(c0x
3 + c1x

2y + c2xy2 + c3y
3)

with c0 ∈ k̄× and c1, c2, c3 ∈ k̄. The subgroup of upper triangular matrix
in G stabilizes ∞ ∈ P1. Its action allows us to bring the cubic factor into
the form x3 + axy2 + by3 provided that char k �= 3. We can then check that
a = a(f) and b = b(f) on the form y(x3 + axy2 + by3). �

Proof. (of Proposition 3.2.1) The case of stable orbits is already settled by
Proposition 3.2.2. Indeed, since any stable binary quartic form f of invariant
(a, b) is conjugate to the polynomial y(x3 + axy2 + by3), two stable binary
quartic forms of the same invariant (a, b) are conjugate. Also Δ(a, b) �= 0 if
and only if the cubic polynomial x3 + ax2 + b have three distinct zeros. If
Δ(a, b) = 0, it has at least a double zero, and furthermore, it has a triple
zero if and only if (a, b) = (0, 0).

We next consider the case of a quartic form f type (2, 2). Using the
action of G we can assume that f has double zeros at 0 and ∞. In other
words, f is of the form f = cx2y2 with c �= 0. We observe that in this case,
the invariants a(f) = −c2/3 and b(f) = 2c3/27 completely determine c, and
hence f , assuming that the characteristic of k is not 2 nor 3.

We finally consider the case of a quartic form f of type (4). Using the
action of G we can assume that f has quadruple zero at ∞. In other words,
f is of the form f = cy4 with c �= 0. It is then easy to exhibit a diagonal two
by two matrix h such that hf = y4. �

Let I be the universal stabilizer of the action of G on V , that is

(3.2.3) I = (G×S V )×V×SV V,

where G×S V → V ×S V is defined by (g, v) �→ (v, gv) and V → V ×S V is
the diagonal map. This is a group scheme over V whose Lie algebra can be
described as follows.

Proposition 3.2.4. The infinitesimal stabilizers of the action of g = Lie(G)
on V are as follows:

(i) Trivial for points of stable types (1, 1, 1, 1), (1, 1, 2) and (1, 3);

(ii) One-dimensional for points of types (2, 2) and (4);

(iii) All of g for the point f = 0.
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Proof. The action of g = Lie(G) on V can be identified with the represen-
tation Sym4std of sl2. Let us consider a pair (X, f) ∈ sl2 × V with X �= 0,
f �= 0 but Xf = 0. Since X �= 0, it is either regular semi-simple or regular
nilpotent.

If X is regular semi-simple, after conjugation by an element h ∈ G, it
has the form

X =
(

a 0
0 −a

)
.

In this case, f has to be a multiple of x2y2. In other words, f is of type (2, 2).
Conversely, if f is of type (2, 2), it is conjugate to a quartic polynomial of the
type cx2y2 with c �= 0 whose infinitesimal centralizer is the space of diagonal
matrices in sl2.

If X is regular nilpotent, after conjugation by an element h ∈ G, it has
the form

(3.2.5) X =
(
0 1
0 0

)
.

The space of f annihilated by X is generated by y4. In other words, f is of
type (4). Conversely, if f is of type (4), it is conjugate to y4. Its infinitesimal
centralizer is a one-dimensional space of matrices generated by a non-zero
nilpotent matrix (3.2.5). �

We can compute explicitly the geometric stabilizers in stable orbits.
Since there is no infinitesimal stabilizer by Proposition 3.2.4, it suffices to
determine the k-points of If for a given stable binary quartic form.

Proposition 3.2.6. If f ∈ V (k) is of type (1, 1, 1, 1), (1, 1, 2) and (1, 3),
then If is isomorphic to Z/2Z× Z/2Z, Z/2Z and 0, respectively.

Proof. The case where f is of type (1, 1, 1, 1) is postponed to
Proposition 4.2.1.

If f is of type (1, 1, 2), by the action of G, then we can assume that
f = cxy(x− y)2. Thus, each element in the stabilizer of f must stabilize
the multiset {0,∞, 1(2)}. If h ∈ If , then either it stabilizes all three points
{0, 1,∞}, or it exchanges 0,∞ and stabilizes 1. Since an element of G is
completely determined by its action on three distinct points on P1, the
stabilizer in this case is at most Z/2. A direct calculation shows that it
is equal to Z/2Z.

For type (1, 3), as above, we can assume that f = cx3y. Each element
in the stabilizer of f must stabilize the multiset {0(3),∞}, which means it
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stabilizes both 0 and ∞. An element of G fixing both points 0 and ∞ has
to lie in the diagonal torus. Now the diagonal torus acts on x3y by scalar
multiplication, and only scalar matrices stabilizes x3y. �

Proposition 3.2.7. The union of orbits of stable types (1, 1, 1, 1), (1, 1, 2)
and (1, 3) is a dense open subset V reg of V , which contains the image of
the Weierstrass section s : S → V . The restriction of π : V → S to V reg is
smooth. Moreover, the restriction of the stabilizer group scheme I to V reg is
étale.

Proof. The first two assertions follow directly from Propositions 3.2.4 and
3.2.2 above. We derive from 3.2.4, that the morphismm : G× S → V , defined
by restricting the action morphism to the Weierstrass section, is étale. By
Proposition 3.2.1, the image of this map is V reg. We infer that the restriction
of π to V reg is smooth. Moreover, the morphism GS ×S V reg → V reg ×S V reg

defined by (g, v) �→ (v, gv) is étale, and in particular, the restriction of I to
V reg is an étale group scheme. �

Corollary 3.2.8. There exists a unique group scheme IS over S equipped
with a G-equivariant isomorphism π∗IS → I over V reg. There is a Gm-
equivariant isomorphism [BIS ] = [V reg/G] where BIS is the relative clas-
sifying stack of IS over S.

Proof. The group scheme IS is obtained by descending I along π|V reg . The
descent datum is obtained using the conjugating action of G on I and the
fact that I is abelian. The rest of the corollary is a formal consequence of
what we have established so far. �

4. Elliptic curves

The relation between elliptic curves and invariant geometry of binary quartic
forms has been discovered since 19th century by Cayley and Hermite, and
later stated with precision by Weil [11].

4.1. Jacobian of genus one curves

Let DV be the family of arithmetic genus one curves defined over V by
the equation z2 = f(x, y) where f varies over all binary quartic forms. It is
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constructed by the following cartesian diagram:

(4.1.1) DV

��

�� OP1
V
(2)

(−)2

��

P1
V

f
��

��

OP1
V
(4)��

V

where f is the universal binary quartic form, and (−)2 : OP1
V
(2)→ OP1

V
(4)

is the squaring map.

Lemma 4.1.2. If f ∈ V (k̄)− {0}, Df is reduced. If f ∈ V reg(k̄), Df is
integral.

Proof. For every f ∈ V , the curve Df is defined on the ruled surface OP1
V
(2)

by one single equation. For f �= 0, it is generically reduced and thus reduced.
If moreover f ∈ V reg(k̄), the restriction of Df over the formal completion of
P1 at a simple zero of f is an irreducible covering of this formal disc. We
deduce that Df is irreducible for every f ∈ V reg(k̄). Since Df is reduced and
irreducible, it is integral. �

Let Dreg be the restriction of D to V reg. We can now apply the repre-
sentability of the relative Picard functor and obtain the scheme PicDreg/V reg

locally of finite type over V reg. The Jacobian EV reg = Pic0Dreg/V reg over V reg

is defined to be the component classifying line bundles of degree 0. The
smooth locus Dsm of Dreg → V reg can be identified with Pic1Dreg/V reg , which
is the component classifying line bundles of degree 1. In particular, Dsm is
an E-torsor over V reg.

One can easily check that if f ∈ V reg(k̄) is a binary quartic form of one
of the types (1, 1, 1, 1), (1, 1, 2) and (1, 3), then Ef is an elliptic curve, Gm

and Ga respectively. In the first case, Df is a smooth genus one curve acted
on simply transitively by the elliptic curve Ef . In the two latter cases, Df

is a rational curve, with nodal or cuspidal singularity respectively, acted on
by Ef .

Over S, the universal Weierstrass curve ES is defined to be the closed
subscheme of P2

S given by the equation:

z2y = x3 + axy2 + by3.
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Following Cayley and Hermite, Weil proved in [11] that for every binary
quartic form f ∈ V reg(k̄) of type (1, 1, 1, 1) of invariant (a, b) ∈ S(k̄), there
is a canonical isomorphism Ef = Ea,b. His proof can be extended to the
regular locus so that we have a canonical isomorphism

(4.1.3) EV reg → ES ×S V reg.

We remark that this isomorphism can be made naturallyG×Gm-equivariant
compatible with the action of G×Gm on V given by the formula (3.1.1).

4.2. Centralizer and 2-torsion of elliptic curves

In this subsection, we will present what we see as an important link between
the arithmetic of elliptic curves and invariant geometry of binary quartic
forms. Recall that over S, formula (3.2.3) defines the stabilizer group scheme
I, which is quasi-finite and étale over V reg.

Proposition 4.2.1. Over V reg, there is a canonical isomorphism

I|V reg ∼= E[2]|V reg .

Proof. By construction (4.1.1), G acts on the family of arithmetic genus one
curve D over V reg. This induces an action of G on the Jacobian E of D.
For every f ∈ V reg, the stabilizer If acts on the genus one curve Df and its
Jacobian Ev. It follows from the Cayley–Hermite–Weil theorem (4.1.3) that
If acts trivially on Ef .

As our construction is functorial, if h ∈ If , d ∈ Dsm
f and e ∈ Ef , we have

h(ed) = h(e)h(d)

where ed denotes the action of Ef on Dsm
f . Since If acts trivially on Ef , the

above equality implies that the action of If and Ef on Dsm
f commute. As

Dsm
f is a torsor under the action of Ef , this gives rise to a homomorphism

(4.2.2) If → Ef

through which the action of If on Dsm
f factors.

We will first prove that the homomorphism (4.2.2) factors through the
subgroup Ef [2] of 2-torsions of Ef . It suffices to prove this for f of type
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(1, 1, 1, 1), since the general case follows by flatness. Let Rf denote the ram-
ification locus of Df over P1. One can check that Ef [2] acts simply transi-
tively on Rf and this action commutes with the action of If . This gives rise
to a homomorphism If → Ef [2] through which (4.2.2) factors.

For both I and E[2] are étale group schemes over V reg, in order to prove
that I → E[2] is an isomorphism, it is enough to check that it induces a
bijection on geometric points over each f ∈ V reg(k̄).

Let f ∈ V reg(k̄) be of type (1, 1, 1, 1). Let h ∈ If be an element with
trivial image in Ef [2]. In this case, f fixes all the four ramifications points
of Df . In other words, it fixes the four zeros of f , which implies that h = 1
since PGL2 acts sharply 3-transitive on the projective line. It follows that
the homomorphism If → Ef [2] is injective. It must also be surjective, for
both groups If and Ef [2] have 4 elements.

For type (1, 1, 2), this is an explicit calculation for nodal rational curve
as in Proposition 3.2.6. Finally, for type (1, 3), there is nothing to be proved,
since both groups If and Ef [2] are trivial. �

The isomorphism I → E[2] over V reg is by construction G-equivariant. It
descends to an isomorphism of group schemes IS → ES [2] over S, where IS

is defined in Proposition 3.2.8 and ES in (4.1.3). It follows from proposition
(3.2.8) that there exists a Gm-equivariant isomorphism

(4.2.3) BES [2] = [V reg/G].

4.3. Link to 2-Selmer groups

Recall that C is a smooth, projective and geometrically connected curve
over k. We will denote K = k(C) the field of rational functions of C and Kv

its completion at a closed point v ∈ |C|.
For each morphism α : C → [S/Gm] we have a family of Weierstrass

curve Eα = α∗ES . The groupoid of maps β : C → [BIS/Gm] over α is by
definition the groupoid of Iα-torsors over C where Iα = α∗IS . We will show
in this section that there is a closed connection between this groupoid and
the 2-Selmer group of the generic fiber Eα,K of Eα. We recall that for each
elliptic curve E defined over K, the 2-Selmer group of E is defined as the
kernel of the homomorphism:

Sel2(E) = ker

⎛
⎝H1(K, E[2])→

∏
v∈|C|

H1(Kv, E)

⎞
⎠ .
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We will write Sel2(Eα) instead of Sel2(Eα,K) as this shorthand does not
cause any confusion.

The étale cohomology group H1(C, Iα) is naturally identified with the
group of isomorphism classes of Iα-torsors over E. By restriction to the
generic fiber of C, we obtain a homomorphism

(4.3.1) H1(C, Iα)→ H1(K, Iα) = H1(K, Eα[2]).

Proposition 4.3.2. The homomorphism defined at (4.3.1) factors through
the 2-Selmer group Sel2(Eα).

Proof. We have the following commutative diagram for each v ∈ |C|:

H1(C, Iα)

��

�� H1(K, Iα)

��

H1(SpecOv, Iα)

��

�� H1(Kv, Iα)

��

H1(SpecOv, Eα) �� H1(Kv, Eα).

But by Lang’s theorem, we know that H1(SpecOv, Eα) = 0 since ES has
connected fibers. It follows that the composition map

H1(C, Iα)→ H1(Kv, Eα)

is trivial for all v ∈ |C|. The lemma follows. �

As a corollary, we obtain a natural map

(4.3.3) ρα : H1(C, Iα) = H1(C, Eα[2])→ Sel2(Eα)

for all maps α : C → [S/Gm] whose image is not contained in the discrimi-
nant locus.

Proposition 4.3.4. If α : C → [S/Gm] is transversal to the discriminant
locus in the sense of 2.1.6, then the homomorphism

ρα : H1(C, H1(C, Eα[2]))→ Sel2(Eα)

is an isomorphism.
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Proof. The assumption that α : C → [S/Gm] is transversal to the discrim-
inant locus implies that Eα/C is a smooth group scheme with elliptic or
multiplicative fibers, which is the global Néron model of its generic fiber.

Let v be a geometric point of C such that c(v) lies in the discriminant
locus. We denote Cv the completion of C ⊗k k̄ at v, Spec (Kv) the generic
point of Cv, and Iv = Gal(Kv). The transversality implies that Δ vanishes
at v to order 1. Using the description of the Tate curve, we know that

(Eα(Kv)[2])Iv = Z/2Z.

Geometrically, this means that over Cv, the étale group scheme Eα[2] is
exactly the étale locus in its normalization over Cv. We deduce that globally,
Eα[2] is exactly the étale locus in its normalization over C.

This observation will allow us to prove the injectivity of the map

H1(C, Eα[2])→ H1(K, Eα[2]).

Indeed, let T be an Eα[2]-torsor over C. We will prove that T is uniquely
determined by its generic fiber. We observe that for every geometric point v
of C, the restriction of T to the formal disc Cv is isomorphic to the restric-
tion of Eα[2]. As Eα[2], T restricted to Cv is exactly the étale locus of its
normalization over Cv. Hence, globally, T can also be identified with the
étale locus of its normalization over C. This means that we can reconstruct
T by removing the ramification locus from the normalization of its generic
fiber. This proves the injectivity of ρα.

We will now prove that ρα is surjective. Let TK be an Eα[2]-torsor over
K whose isomorphism class lies in Sel2(Eα). We will show that the Selmer
condition implies that T can be extended as an I-torsor over C. We first
spread T to a Eα[2]-torsor defined over some nonempty open subset U of
C. After that, we only need to prove that T can be extended to a Eα[2]-
torsor over the formal discs Cv around the remaining points, and thus we
are reduced to a local problem.

The Selmer condition at v implies that the class of T in H1(Kv, Eα[2])
lies in the image of Eα(Kv)/2Eα(Kv). There exists a point x ∈ Eα(Kv) such
that the torsor TKv

fits in a cartesian diagram:

TKv

��

�� Eα,Kv

·2
��

SpecKv
x �� Eα,Kv
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Since Eα,Cv
is the Néron model of Eα,Kv

, the Kv-point x of Eα can be
extended as a Cv-point x̃. We can now extend the EKv

-torsor TKv
to a

ECv
-torsor by forming the cartesian diagram

TCv

��

�� Eα,Cv

·2
��

Cv
x �� Eα,Cv

This completes the proof of surjectivity of ρα. �

In the case where α is not transversal to the discriminant locus, it can
happen that the homomorphism ρα is neither surjective nor injective. Nev-
ertheless, we can compare sizes of Sel2(Eα) and H1(C, Iα).

Proposition 4.3.5. Let α : C → [S/Gm] and suppose that the generic fiber
of Eα is an elliptic curve. Then

{|Sel2(Eα)| ≤ |H1(C, Iα)|, when Eα[2](K) = 0,

|Sel2(Eα)| ≤ 4|H1(C, Iα)|, otherwise.

Proof. From the proof of Proposition 4.3.4, we always have

|Sel2(Eα)| ≤ |H1(C, E [2])|,

where E is the Néron model of the generic fiber of Eα over C, since we
can always lift a Selmer class to a torsor of E [2] over C. Note that in the
proof of Proposition 4.3.4, we lift the Selmer class to an E[2]-torsor over C,
exploiting the isomorphism E ∼= E in the transversal situation.

From the short exact sequence of group schemes over C

0 �� Eα[2] �� E [2] �� Q �� 0,

where Q is a skyscraper sheaf, we have the following long exact sequence

0 �� H0(Eα[2]) �� H0(E [2]) �� H0(Q) �� H1(Eα[2]) �� H1(E [2]) �� H1(Q) �� L �� 0.

where L is the kernel of the map H2(Eα[2])→ H2(E [2]).
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O, V.B. Lê Hùng and B.C. Ngô

Since Q is a skyscraper sheaf, its cohomology groups are direct sums of
Galois cohomology groups of finite fields. It follows that

|H0(Q)| = |H1(Q)|.

Using multiplicative Euler characteristic, combined with the fact that

|H0(Eα[2])| = |H0(E [2])| = 1

under the assumption Eα[2](K) = 0, or

|H0(E [2])|/|H0(Eα[2])| ≤ 4,

without this assumption, we get the desired inequality. �

4.4. The geometric setup

We can now define the moduli spaces ML and AL promised at the end of
section 2. First, we denote

M = Hom(C, [BIS/Gm])
A = Hom(C, [S/Gm]).

We clearly have a mapM→A, which is compatible with the natural map
to BunGm

= Hom(C, BGm).
For a given line bundle L ∈ BunGm

(k) over C, we denote ML and AL
the fiber of M and A over L. The space AL classifies family of Weier-
strass curves of Hodge bundle L. For a given α : C → [S/Gm], we denote
Eα = α∗E the induced family of Weierstrass elliptic curves and Eα[2] its 2-
torsion subgroup. The fiber ofM→A over α, classifying Eα[2]-torsor over
C is our replacement for the Selmer group Sel2(Eα), for as shown in Propo-
sition 4.3.4, there is a canonical isomorphism H1(C, Eα[2])→ Sel2(Eα) in
case α is transversal to the discriminant locus, and otherwise we have the
inequality in Proposition 4.3.5.

Even though it is not easy to count points on Hom(C, [BIS/Gm]) directly,
the invariant theory of binary quartic forms allows us to representM by yet
another way. Namely, (4.2.3) induces an isomorphism:

M = Hom(C, [V reg/G×Gm]).
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By definition, a k-point ofM consists of a triple (E ,L, α), where E is a G-
torsor, L a line bundle, and α a section of V (E ,L)reg = (V reg ×G E)⊗ L⊗2.
This new presentation is thus very convenient for counting points, since we
are essentially counting sections of the vector bundle V (E ,L) = (V ×G E)⊗
L⊗2 satisfying some condition.

This suggests that instead of counting points on M, we should count
points on

M′ = Hom(C, [V/G×Gm]).

and study the ratio between the two numbers. The k-points on M′ are of
course those triples (E ,L, α) where E ,L are as above, and α is a section of
V (E ,L).

However, one needs to pay attention to the fact that for any line bundle
L, the number of k-points onM′

L is infinite. In order to make sense of the
ratio, one fix a G-bundle E , and calculate the ratio

|ME,L(k)|
|M′

E,L(k)|

as deg(L)→∞ while E being fixed. This ratio calculation will be performed
in the next section following some ideas of Poonen.

5. On density

5.1. Poonen’s results

In this section, we will prove a density result that allows us to compute
the difference between the number of sections to the regular part and the
number of all sections. As the main ideas are already presented in [8], we
will only indicate necessary modifications in the proof.

Proposition 5.1.1. Let C be a smooth projective curve over Fq, E a vector
bundle over C of rank n. Let X ⊂ E be a locally closed Gm-stable subscheme
of codimension at least 2 whose fiber at every point v ∈ C, Xv ⊂ Ev is also
of codimension at least 2. Then the ratio

μ(X,L) = |{s ∈ Γ(C, E ⊗ L) : s avoids X ⊗ L}|
|Γ(C, E ⊗ L)|
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as deg(L)→∞ tends to the limit

μ(X) := lim
degL→∞

μ(X,L) =
∏

v∈|C|

(
1− cv

|k(v)|n
)

,

where cv = |Xv(k(v))|, with k(v) denoting the residue field at v.

The main point of this result is that the density can be computed as
the product of local densities, which are the factors in the product on the
right-hand side (RHS) of the formula above. Before starting the proof, we
first prove the following lemma.

Lemma 5.1.2. Let C be a smooth projective curve over k. There exists
a finite set S ⊂ |C| and a number n such that for all line bundles L with
degL > n, there exists an effective divisor D supported on S such that L ∼=
OC(D). Moreover, we can choose DL =

∑
v∈S av(L)v for each L such that

as degL goes to ∞, so does av(L) for each v ∈ S.

Proof. We start with m distinct points Q1, . . . , Qm ∈ |C| with m being a big
enough integer such that L(∑m

j=1 Qj) has non-zero global sections for all line
bundles L ∈ Pic0C/Fq

(Fq). It follows that every line bundle L ∈ Pic0C/Fq
(Fq)

can be written as

(5.1.3) L = OC

⎛
⎝∑

i

Pi −
m∑

j=1

Qj

⎞
⎠ .

Since Pic0C/Fq
(Fq) is a finite set, there are finitely many points Pi that may

appear in (5.1.3). We let S be the union of all the Qj and Pi appearing
above.

We also suppose that the points Q1, . . . , Qm have been chosen such that
their degrees are relatively prime. It that case the monoid generated by
deg(Q1), . . . ,deg(Qm) will contain all integers d big enough. That is, there
exists N such that for all d > N , we can write d =

∑m
j=1 di deg(Qi) with di

being positive integers. We can also choose the integers dj in such a way
that each dj →∞ as d →∞.

Let L ∈ PicdC/Fq
(Fq). If d > N , then we can write

L ∼= O
⎛
⎝ m∑

j=1

diQi

⎞
⎠⊗ L′,
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and degL′ = 0. Then by using (5.1.3), we have

L ∼= O
⎛
⎝∑

Pi +
m∑

j=1

(dj − 1)Qj

⎞
⎠ ,

where Pi, Qi ∈ S.
The last part of the lemma can be proved by an obvious modification of

the argument above. �

Remark 5.1.4. From the proof of the lemma, we see at once that the set
S can always be made arbitrarily large.

Following [8, Theorem 3.1], we will prove Proposition 5.1.1 by showing
that we can compute the density as the limit of a finite product of densities
over closed points where the sizes of the residue fields are bounded. The
following lemma enables us to do so.

Lemma 5.1.5. Let C, E and X be as in Proposition 5.1.1. For each M > 0
we define

QM,L = {s ∈ Γ(X, E ⊗ L) : ∃v ∈ |C|, |k(v)| ≥M and sx ∈ Xx}.

Then

lim
M→∞

lim sup
degL→∞

|QM,L|
|Γ(X, E ⊗ L)| = 0.

Proof. This statement is more or less a restatement of what is already proved
in the first part of the proof of [8, Theorem 8.1] (see also [8, Lemma 5.1]).
We will thus only indicate why this is the case.

Since we are only interested in the case where M � 0, we can throw
away as many points of C as we want. We can therefore replace C by any
open affine subscheme C ′ such that E is free over C ′. Now, Lemma 5.1.2
implies that we can choose C ′ such that our limit has the same form as the
limit defined in [8, Theorem 8.1].

Observe that Poonen proves his limit for the case where X|C′ is defined
by 2 equations that are generically relative primes. But now, we can conclude
by noting that since X is of codimension at least 2, we can find such f, g
that both vanish on X (see the proof of [8, Lemma 5.1]). �
Proof of 5.1.1. The proof of 5.1.1 can be carried word for word from the
proof of [8, Theorem 3.1], where Lemma 5.1.5 plays the role of [8, Lemma
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5.1]. Indeed, if we denote

μ(XM ) = lim
deg L→∞

|{s ∈ Γ(C, E ⊗ L) : s avoids X ⊗ L at all v ∈ |C|, |k(v)| < M}|
|Γ(C, E ⊗ L)| ,

then Lemma 5.1.5 implies that

μ(X) = lim
M→∞

μ(XM ).

Note that the linear map

Γ(C, E ⊗ L)→
∏

v∈|C|
|k(v)|<M

E ⊗ L ⊗ k(v) ∼=
∏

v∈|C|
|k(v)|<M

E ⊗ k(v)

is surjective when degL � 0 due to the vanishing of

H1

⎛
⎜⎜⎜⎝C, E ⊗ L

⎛
⎜⎜⎜⎝−

∑
v∈|C|

|k(v)|<M

v

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠

when degL � 0. Thus, we have

μ(XM ) =
∏

v∈|C|
|k(v)|<M

(
1− cv

|k(v)|n
)

,

where cv is defined as in Proposition 5.1.1. �
Using a similar argument, we have the following result also.

Proposition 5.1.6. Let C, E , X as above, and D ⊂ E be a sub-scheme
defined by the vanishing of an equation d : E → L′, where L′ is a line bundle
over C. Suppose that d is generically square-free, then the limit

lim
degL→∞

|{s ∈ Γ(C, E ⊗ L) : s ∈ E \X and s intersects D transversally}|
|Γ(C, E ⊗ L)|

converges to ∏
v∈|C|

(
1− cv

|k(v)|2n

)
,

where cv is the number of elements s in E ⊗ OC,v/m2
v such that s lies in

X ⊗OC,v/m2
v or d(s) = 0 in OC,v/m2

v.
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Proof. The proof of this proposition is almost identical to the one above.
As we have seen, all we need to do is to prove the analog of Lemma 5.1.5
for this case. Observe also that we only need to prove such a lemma for a
suitable open affine sub-curve C ′ which can be chosen such that E|C′ and
L|C′ are free. In this case, d is just a generically square-free polynomial with
coefficient in Γ(C ′,OC′).

If X is an empty scheme, this is already done in [8, Theorem 8.1]. When
X is not empty then we see that the error term is bounded above by the
sum of the error term in the case where X is empty and the error term
given in 5.1.5 above. But since both go to zero as M goes to infinity, we are
done. �

5.2. Some density computations

In this subsection, for brevity’s sake, we will use V (E) and V (E)reg to denote
V (E ,OC) and V (E ,OC)reg respectively (see the notation in subsection 4.4),
where E denotes an arbitrary fixed G-torsor.

Proposition 5.2.1. The density of V (E)reg inside V (E) is ζC(2)−1.

Proof. By Proposition 5.1.1, it suffices to show that the local density at a
point v ∈ |C| of the regular part is 1− |k(v)|−2. For this, we first count the
number of points in the non-regular part. By the classification of different
orbits on V , we know that a point f in the non-regular part must be of type
(2, 2) or (4) or 0. Thus, we see at once that up to a scalar multiple, f is a
square of a quadratic polynomial.

Note that the squaring map (from quadratic to quartic polynomials) is
a two to one map, except at the 0 polynomial. The image of the map is
not surjective on the non-regular part, and the missing points are precisely
those which are a scale of a point in the image by a non-square element in
k(v)×. Thus, the number of points in the non-regular part is

|{non-zero binary quadratic polynomials}|
2

|k(v)×/k(v)×2|+ 1

=
|k(v)|3 − 1

2
2 + 1 = |k(v)|3.

Thus, the local density of the regular part is

|k(v)|5 − |k(v)|3
|k(v)|5 = 1− |k(v)|−2.

�
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Proposition 5.2.2. The density of (a, b) ∈ Γ(C,L⊗4 ⊕ L⊗6) transversal to
the discriminant locus among all pairs (a, b) is

∏
v∈|C|

(1− 2|k(v)|−2 + |k(v)|−3).

Proof. By Proposition 5.1.6, it suffices to show that the local density at a
point v ∈ |C| of the transversal part is 1− 2|k(v)|−2 + |k(v)|−3.

Let denote R = k(v)[ε]/(ε2). We observe that (a, b) ∈ S(R) = R2 is in
the transversal part if and only if Δ(a, b) �= 0 in R. If (a, b) ∈ S(R), then we
denote (a, b) ∈ S(k(v)) the associated k(v)-point, by reduction. Observe that
Δ : A2 → A1 is smooth on S − {(0, 0)}. In particular, when (a, b) ∈ S(R)
such that (a, b) �= (0, 0), then the fiber of T(a,b)S → TΔ(a,b) has dimension
exactly one. Thus, the number of non-transversal pairs (a, b) ∈ S(R) is

∑
(a,b) 
=(0,0)

Δ(a,b)=0

|k(v)|+
∑

(a,b)=(0,0)

|k(v)|2 = |k(v)|(|Ga(k(v))| − 1) + |k(v)|2

= |k(v)|(|k(v)| − 1) + |k(v)|2
= 2|k(v)|2 − |k(v)|.

Thus, the local density of transversal pairs is

|k(v)|4 − 2|k(v)|2 + |k(v)|
|k(v)|4 = 1− 2|k(v)|−2 + |k(v)|−3,

where we have used |R|2 = |k(v)|4. �

Proposition 5.2.3. The density of sections in V (E) that are in V (E)reg
whose associated pair (a, b) is transversal to the discriminant is

∏
v∈|C|

(1− |k(v)|−2)(1− 2|k(v)|−2 + |k(v)|−3).

Proof. The strategy is similar to what we have done above. Here, we also
compute the complement of the described condition on V (E). As in the pre-
vious lemma, we let v ∈ |C| and R = k(v)[ε]/(ε2). In this computation, for
brevity’s sake, we denote k = Fq = k(v), and hence, q = |k(v)|. The number



Average size of 2-Selmer groups of elliptic curves over function fields 1329

of points that fail the described condition is

|V non-reg(R)|+ |V reg,non-transversal(R)|(5.2.4)

=
∑

f∈V non-reg(k)

|TV,f (k)|+
∑

f∈V reg(k)
Δ(f)=0

| ker dΔf (k)|

= q3q5 +
∑

f∈V reg(k)
a(f) 
=0,b(f) 
=0

Δ(f)=0

| ker dΔf (k)|+
∑

f∈V reg(k)
a(f)=b(f)=0

| ker dΔf (k)|,

where q3 comes from the computation made in Proposition 5.2.1 above.
Observe that if f ∈ V reg(k), then geometrically, namely, over Fq, f is in

the same orbit as y(x3 + a(f)xy2 + b(f)y3). The condition Δ(f) = 0, then
implies that f can only be of type (1, 1, 2) or (1, 3). We see easily that type
(1, 1, 2) and type (1, 3) can only occur in the second and third summands,
respectively, of (5.2.4).

We will now compute the number of f ∈ V (k) of type (2, 1, 1). We see at
once that the double root must be rational and hence, over k, we have f =
c(x− ay)2(x2 + uxy + vy2). Thus, the number of such f can be computed as

|Gm(k)||P1(k)||Sym2A1(k)− diagonal(k)| = (q − 1)(q + 1)(q2 − q)

= q(q2 − 1)(q − 1).

Similarly, the number of f of type (1, 3) can be computed as

|Gm(k)||P1(k)||A1(k)| = (q − 1)(q + 1)q = q(q2 − 1).

To compute the | ker dΔf | factors, we note that the map V reg → S is
smooth by corollary 3.2.7, and the smooth locus of Δ : S → A1 is precisely
S − {(0, 0)}. This enables us to compute the dimension of ker dΔf , and
hence its size, at some point f ∈ V reg(k). Indeed, for type (1, 1, 2) and (1, 3),
| ker dΔf (k)| is q3q = q4 and q3q2 = q5 respectively.

Gathering all the results above, we have

(5.2.4) = q8 + q5(q2 − 1)(q − 1) + q6(q − 1)(q + 1) = 3q8 − q7 − 2q6 + q5.

Thus, the number of transversal and regular points in V (R) is

q10 − 3q8 + q7 + 2q6 − q5 = q5(q2 − 1)(q3 − 2q + 1).
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The local density is thus

(1− q−2)(1− 2q−2 + q−3).

as stated. �

A similar computations and arguments as above will give us the following
results.

Proposition 5.2.5. The density of sections in S that are minimal is
ζC(10)−1.

Proposition 5.2.6. The density of sections in V (E) that are in V (E)reg
and whose associated invariant (a, b) is minimal is ζC(2)−1ζC(10)−1.

6. Counting

6.1. The Harder–Narasimhan polygon

We will first compute the average number of I-torsors, i.e., we want to
estimate the following:

lim
d→∞

|ML(k)|
|AL(k)| .

Let d = deg(L). Since we are only interested in the behavior of this quotient
when d →∞, when we do the computation below, we assume that d � 0.
Note also that when d � 0, |AL(k)| is easy to compute using Riemann–Roch,
since it is just the number of sections to L⊗4 ⊕ L⊗6. Indeed, we have

|AL(k)| = |H0(C,L⊗4 ⊕ L⊗6)| = q10d+2(1−g), when d � 0.

We will count |ML(k)| by using the map

ML → BunG

and a partition of BunG(k) according to the Harder–Narasimhan polygon.
Note that since H2(C, Gm) = 0 (see [6, p. 109]) every G-bundle E over C
can be lifted to a vector bundle F of rank 2 which is well defined up to
tensor twist by a line bundle. If F is not semi-stable, then there is a unique
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tensor twist so that its Harder–Narasimhan filtration has the form

(6.1.1) 0 �� L′ �� F �� OC
�� 0,

with degL′ > 0. Note that after such normalization, F is determined uniquely
by the associated G-bundle E , and we will call n = degL′ the unstable degree
of E . It is not difficult to determine the size of the automorphism group of
a G-bundle E of unstable degree n large enough compared to the genus g

(6.1.2) |AutG(E)| = (q − 1)qn+1−g.

Let E be a G-torsor of unstable degree n > 0; it can be lifted to a rank
two vector bundle F fitting in the exact sequence (6.1.1). We then have an
associated 5-dimensional vector bundle V (E ,L):

V (E ,L) = (V ×G E)⊗ L⊗2 = V (E)⊗ L⊗2 ∼= Sym4F ⊗ det−2F ⊗ L⊗2

and V (E ,L)reg the regular part of V (E ,L). The filtration (6.1.1) on F
induces an obvious filtration on V (E ,L)

0 ⊂ F0 ⊂ F1 ⊂ F2 ⊂ F3 ⊂ F4 = V (E ,L),

where Fi/Fi−1
∼= L′⊗(2−i) ⊗ L⊗2.

We will calculate the mass of the groupoid ML(k) in different ranges
according to the integers n and d:
Case 1: n > 2d. When d is sufficiently large, the exact sequence (6.1.1) splits,
and we have F ∼= L′ ⊕OC , which implies that

(6.1.3) V (E ,L) ∼= (L′⊗2 ⊗ L⊗2)⊕ (L′ ⊗ L⊗2)⊕ L⊗2 ⊕ (L′⊗−1 ⊗ L⊗2)⊕ (L′⊗−2 ⊕ L⊗2).

Because n > 2d, there is no non-zero sections to of last 2 summands. Thus,
any section f to V (E ,L) will have the form

f = c0x
4 + c1x

3y + c2x
2y2 = x2(c0x

2 + c1xy + c2y
2),

where c0, c1, c2 are sections of the first three summands in (6.1.3). Observe
that

c2
1 − 4c0c2 ∈ H0(C,L′⊗2 ⊗ L⊗4)

necessarily vanishes somewhere, and at that point, f is of type (2, 2), which
is not in the regular part. Thus the subset ofML(k) with n > 2d is empty,
and the contribution to the average is precisely 0.
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Case 2: n = 2d. If L′−1 ⊗ L⊗2 is not trivial, then since degL′−1 ⊗ L⊗2 = 0,
we have H0(C,L′−1 ⊗ L⊗2) = 0. Thus, similar to the first case, there is no
regular section. Hence, we need only to consider the case where L′ ∼= L⊗2. In
this case, when d is sufficiently large, then F ∼= L ⊕O, and hence, V (E ,L) ∼=
L⊗6 ⊕ L⊗4 ⊕ L⊗2 ⊕OC ⊕ L⊗−2. Therefore, any section f to V (E ,L)reg must
have the form (c0, c1, c2, c3, 0) with c3 �= 0, or in a different notation

f = c0x
4 + c1x

3y + c2x
2y2 + c3xy3,

since H0(C,L⊗−2) = 0. But now, we can bring this section to the form
y(x3 + axy2 + by3) via the automorphism

(
1 0

−c2/3 1

) (
c−1
3 0

0 1

) (
0 1
1 0

)
, c3 �= 0.

We have thus shown that all regular sections in this case actually factor
through the Weierstrass section. Thus, the contribution to the average of
this case is precisely 1.
Case 3: d < n < 2d. As above, where d is sufficiently large, the exact sequence
(6.1.1) splits, and we have F ∼= L′ ⊕O. This also splits V (E ,L) into a direct
sum of L′⊗(2−i) ⊕ L⊗2 as in (6.1.3). Using (6.1.2) and Riemann–Roch for
the first three summands, we see that the mass of ML in this range is
majorized by

2d−1∑
n=d+1

∑
degL′=n

q6d+3n+3(1−g)|H0(C,L′−1 ⊗ L⊗2)|
(q − 1)qn+1−g

(6.1.4)

=
2d−1∑

n=d+1

q6d+2n+2(1−g)|Sym2d−n
C (Fq)|

q − 1

≤
2d−1∑

n=d+1

Tq8d+n+2(1−g)

q − 1

=
Tq8d+2(1−g)

q − 1

2d−1∑
n=d+1

qn

≤ Tq10d+2(1−g)

q − 1
1

q − 1
,
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where at (6.1.4), T is a constant. Thus, the contribution to the average is
bounded above by

Tq10d+2(1−g)

(q − 1)2q10d+2(1−g)
=

T

(q − 1)2
.

We also note that the implied constant T only depends on the genus of C.
Case 4: d− g − 1 ≤ n ≤ d. Similar to the above, when d is sufficiently large,
F ∼= L′ ⊕OC , which induces a splitting of the filtration on V (E ,L). We then
see that

dimH0(C, V (E ,L)) =
4∑

i=0

dimH0(C,L′⊗(2−1) ⊗ L⊗2) ≤ 10d+ 5.

Thus, if we let A = |Pic0C/Fq
(Fq)| = |PiciC/Fq

(Fq)|,∀i (they are all equal since
we assume that C has an Fq-rational point), then the mass of ML in this
range is majorized by

d∑
n=d−g−1

Aq10d+5

(q − 1)qn+1−g
=

Aq10d+5

(q − 1)q1−g

d∑
n=d−g−1

1
qn

.

The contribution to the average is therefore

1
q10d+2(1−g)

Aq10d+5

(q − 1)qn+1−g

d∑
n=d−g−1

1
qn

=
Aq2+3g

q − 1

d∑
n=d−g−1

1
qn

.

But this goes to 0 as d goes to infinity, which means that there is no contri-
bution to the average from this case.
Case 5: 0 < n < d− g − 1 or F is semi-stable. By Riemann–Roch, we see
that when d is large enough,

dimH0(C, V (E ,L)) =
4∑

i=0

dimH0(C,L′⊗(2−i) ⊗ L⊗2) = 10d+ 5(1− g).

Thus, when 0 < n < d− g − 1 or F is semi-stable, we always have

|H0(C, V (E ,L))| = q10d+5(1−g).

To complete the computation in this case, we need one extra ingredient.
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Proposition 6.1.5. We have,

|BunG(Fq)| = 2q3(g−1)ζC(2).

Proof. This comes from the fact that the Tamagawa number of G is 2. �

The contribution of this part to the average can now be computed as fol-
lows (here, the measure on BunG(Fq) is just the counting measure, weighted
by the sizes of the automorphism groups):

lim
d→∞

∫
Bun<d−g−1

G (Fq)
|H0(C, V (E ,L)reg)|dμ

|H0(C, S ×Gm L)|

= lim
d→∞

∫
Bun<d−g−1

G (Fq)
|H0(C, V (E ,L)reg) dμ

|H0(C,L⊗4)||H0(C,L⊗6)|

= lim
d→∞

∫
Bun<d−g−1

G (Fq)
|H0(C, V (E ,L)reg)| dμ∫

Bun<d−g−1
G (Fq)

|H0(C, V (E ,L))| dμ

×

∫
Bun<d−g−1

G (Fq)
|H0(C, V (E ,L))| dμ

q10d+2(1−g)

= lim
d→∞

∫
Bun<d−g−1

G (Fq)
|H0(C, V (E ,L)reg)| dμ

|Bun<d−g−1
G (Fq)||H0(C, V (E ,L))|

× |Bun
<d−g−1
G (Fq)||H0(C, V (E ,L))|

q10d+2(1−g)

= lim
d→∞

q10d+5(1−g)

∫
Bun<d−g−1

G (Fq)

|H0(C, V (E ,L)reg)|
|H0(C, V (E ,L))| dμ

q10d+2(1−g)

= lim
d→∞

q3(1−g)

∫
Bun<d−g−1

G (Fq)
ζC(2)−1 dμ(6.1.6)

= |BunG(Fq)|q3(1−g)ζC(2)−1

= 2q3(g−1)ζC(2)q3(1−g)ζC(2)−1(6.1.7)
= 2.
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The equality at (6.1.6) is due to the dominated convergent theorem, the fact
that the integrand is bounded by 1, and the actual value of the limit given
by Proposition 5.2.1. The equality at (6.1.7) is due to Proposition 6.1.5.

Altogether, we have

lim sup
d→∞

|ML(k)|
|AL(k)| ≤ 3 +

T

(q − 1)2
.

6.2. The case E[2](C) is non-trivial

So far, we have estimated the average number of I-torsors. Proposition 4.3.5
shows that we have a weaker link between the number of I-torsors and
the size of the 2-Selmer groups when E[2](C) is non-trivial. This subsection
shows that the stronger inequality dominates our estimate of the average size
of the 2-Selmer groups. In other words, we will show that the contribution
from the case where E[2](C) is non-trivial is 0.

When E[2](C) is non-trivial, where E is given by (L, a, b), then we see
that x3 + axz2 + bz3 can be written in the form (x+ cz)(x2 − cxz + vz2),
where c ∈ H0(C,L⊗2) and v ∈ H0(C,L⊗4). In other words, (a, b) is in the
image of

H0(C,L⊗2)×H0(C,L⊗4)→ H0(C,L⊗4)×H0(C,L⊗6)

(c, v) �→ (v − c2, cv).

When d = degL is sufficiently large, then we can use Riemann–Roch to
compute the size of all the spaces involved and see that the number of all
such pairs (a, b) is bounded by q6d+2(1−g).

We know that the number of points on C, where the fiber of E fails to be
smooth is bounded by degΔ(a, b) = 10d. Let C ′ be the complement of these
points in C, then from an argument similar to that of Proposition 4.3.5, we
know that |Sel2(Ek(C))| ≤ |H1(C ′, E[2])|. Observe that we have the following
map

H1(C ′, E[2])→ {tame étale covers of C ′ of degree 4},
where we know that the image lands in the tame part since the characteristic
of our base field is at least 5 and the cover is of degree 4.

Note that the number of topological generators of πtame
1 (C ′) is bounded

by 2g + 10d, since it is the profinite completion of the usual fundamental
group of a lifting of C ′ to C. The RHS is therefore bounded by m410d where
m is some constant. Thus, to bound the size of H1(C ′, E[2]), it suffices to
bound the sizes of the fibers of this map.
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O, V.B. Lê Hùng and B.C. Ngô

Suppose T is a degree 4 étale cover of C ′, then giving T the structure
of an E[2]-torsor is the same as giving a map E[2]×C′ T → T compatible
with the structure maps to C ′ satisfying certain properties. Since everything
involved is proper and flat over C ′, a map E[2]×C′ T → T is determined
uniquely by (E[2]×C′ T )k(C) → Tk(C), compatible with the structure maps
to Spec k(C). Since everything here is étale over k(C), both sides they are in
fact products of field extensions of k(C). But now, we see at once that the
number of such maps is bounded by the product of the dimension of both
sides (as k(C)-vector spaces), which is m′ = 16× 4.

The contribution of this case to the average is therefore bounded above
by

mm′q6d+2(1−g)410d

q10d+2(1−g)
=

m′′410d

q4d
.

This goes to zero as d goes to infinity if q4 > 410 or equivalently, when q > 32.
This is the only source of restriction on the size of our base field.

6.3. The average in the transversal case

We will show that the average in this case is precisely 3, which is the content
of Theorem 2.2.5. The main observation is that we can completely ignore
the range d < n < 2d.

Lemma 6.3.1. When d < n < 2d, for all s ∈ Γ(C, V (E ,L)), Δ(s) ∈ Γ(C,
L⊗12) is not square-free (i.e., not transversal).

Proof. As before, when d is sufficiently large, F splits, which induces a split-
ting of V (E ,L),

V (E ,L) ∼= (L⊗2 ⊗ L′⊗2)⊕ (L⊗2 ⊗ L′)⊕ L⊗2 ⊕ (L⊗2 ⊗ L′⊗−1)⊕ (L⊗2 ⊗ L′⊗−2).

And hence, we can write s = (c0, c1, c2, c3, c4) where each “coordinate” is a
section of the line bundles in the summand above, in the same order. Clearly,
c4 = 0 since degL⊗2 ⊗ L′⊗−2 < 0. Moreover, since degL⊗2 ⊗ L′−1 > 0, there
exists a point v ∈ |C| such that c3 vanishes.

But now, at v, the discriminant is

Δ = −27c2
0c

4
3 + 18c0c1c2c

3
3 − 4c0c

3
2c

2
3 − 4c3

1c
3
3 + c2

1c
2
2c

2
3,

which vanishes to order at least 2. �
The result then follows from the computation in subsection 6.1. Indeed,

we can ignore case 3 due to Lemma 6.3.1, and use the density computation
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in Propositions 5.2.2 and 5.2.3 (instead of Proposition 5.2.1) in case 5. Note
also that the Weierstrass curves we are counting over are automatically
minimal, by the transversality condition.

6.4. The average size of 2-Selmer groups

We will now present the proof of Theorem 2.2.2. We have,

lim sup
degL→∞

∑
L(E)∼=L

|Sel2(EK)|

|H0(C,L⊗4 ⊕ L⊗6)|

= lim sup
degL→∞

∑
L(E)∼=L

E[2](C)={0}

|Sel2(EK)|+
∑

L(E)∼=L
E[2](C) 
={0}

|Sel2(EK)|

|AL(k)|

≤ lim sup
degL→∞

|ML(k)|+ 3
4

∑
L(E)∼=L

E[2](C) 
={0}

|Sel2(EK)|

|AL(k)|(6.4.1)

= lim sup
L→∞

|ML(k)|
|AL(k)|(6.4.2)

≤ 3 +
T

(q − 1)2
,(6.4.3)

where 4.3.5, 6.2, and 6.1 are responsible for (6.4.1), (6.4.2), and (6.4.3),
respectively.

Theorem 2.2.2 then follows from this computation and the following
remarks:

(i) We can exclude theWeierstrass curves E such that ΔE = 0, because [8,
Lemma 4.1] shows that their contribution is 0.

(ii) To impose minimality condition of E on the count, we use Proposi-
tions 5.2.5 and 5.2.6 in case 5, which still gives us the number 2. For
case 3, the estimate picks up at most an extra factor of ζC(10). Other
cases are not affected.

(iii) In the count, pairs of the form (a, b) and (c4a, c6b) with c ∈ k× give the
same isomorphism class. By rewriting, we get the expression in (2.2.1).
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For the lower bound, we have,

lim inf
degL→∞

∑
L(E)∼=L

|Sel2(EK)|

|H0(C,L⊗4 ⊕ L⊗6)| ≥ lim inf
degL→∞

∑
E transversal
L(E)∼=L

|Sel2(EK)|

|H0(C,L⊗4 ⊕ L⊗6)|(6.4.4)

= 3ζC(10)−1,

where the final equality at (6.4.4) is due to 2.2.5 and 5.2.2. The same remarks
as above apply, and we conclude the proof of Theorem 2.2.2.
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for Advanced Studies in Mathematics (VIASM). V.B. Lê Hùng and Q.P. H`̂o
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