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Non-trapping estimates near normally hyperbolic
trapping

PETER HINTZ AND ANDRAS VASY

In this paper, we prove semiclassical resolvent estimates for oper-
ators with normally hyperbolic trapping which are lossless rela-
tive to non-trapping estimates but take place in weaker function
spaces. In particular, we obtain non-trapping estimates in stan-
dard L? spaces for the resolvent sandwiched between operators
which localize away from the trapped set I' in a rather weak sense,
namely whose principal symbols vanish on T'.

1. Introduction

The purpose of this paper is to obtain semiclassical estimates for pseu-
dodiffererential operators Pj(z) with normally hyperbolic trapping for z
real which are lossless relative to non-trapping estimates, but take place in
weaker function spaces which are defined in a manner related to the Hamil-
tonian dynamics. Thus, the main result is an estimate of the form

[ull#t, - < CR™H|Pu(2)ullre; .
with certain function spaces Hj, r and HZI, described below; away from the
trapped set these are just standard L? spaces. As the main application of
such estimates is in so-called b-spaces, e.g., Kerr—de Sitter spaces, for which
the estimates follow from the semiclassical ones immediately in the pres-
ence of dilation invariance, we also prove their counterpart in the general,
non-dilation-invariant, b-setting. Extensions of special cases of these esti-
mates play an important role in the recent global analysis of nonlinear wave
equations on asymptotically Kerr—de Sitter spaces by the authors [6].

So at first we consider a family Py (z) of semiclassical pseudodifferential
operators Pj,(z) € ¥, (X) on a closed manifold X, depending smoothly on
the parameter z € C, with normally hyperbolic trapping at the trapped set
I', and assume that Py,(z) is formally self-adjoint near I" for z € R; moreover,
we add complex absorption W in such a way that all forward and backward
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bicharacteristics outside I' either enter the elliptic set of W in finite time or
tend to I', and in at least one of the two directions they tend to the elliptic set
of W. The bicharacteristics tending to I' in the forward/backward directions
are forward/backward trapped; denote by I'_, resp. I'y the forward, resp.
backward trapped set,! and assume that these are smooth codimension one
submanifolds of T* X which intersect transversally in I', which we moreover
assume to be symplectic.

In this normally hyperbolic setting, under additional hypotheses, Wun-
sch and Zworski [12] have shown polynomial semiclassical resolvent estimates

(1.1) u|| < Ch™N||Pu(2)ull, 0 < h < ho,

in small strips |Im z| < ch, ¢ > 0 sufficiently small, N > 1, and indeed for z
real, the loss (as compared to non-trapping estimates, which hold in many
cases where there is no trapping, and which lose a power of h=1) is merely
logarithmic, i.e., one has

(1.2) llu|| < C’h_l(log h_l)HPh(z)uH, 0 < h < hg,

where || - || is the L2-norm; Bony, Burq and Ramond [1] showed that (1.2) is
indeed sharp. Dyatlov [5] improved these estimates in Im z < 0 by making
c and N explicit; in a more general setting, Nonnenmacher and Zworski [9]
obtained the optimal value for c.

We are concerned with improved estimates (for z almost real) if one
localizes u and Pp(z)u away from the trapping I' in a rather weak sense,
such as by applying pseudodifferential operators with symbols vanishing
at I'. To place this into context, recall that Datchev and Vasy [2, 3] have
shown that under our assumptions, with Imz = O(h*°), if A, B € ¥;(X)
with WF},(A)NT = WF,(B)NT =0, B elliptic on WF},(A), then for all
M there is N such that

(1.3) [|Aull < Ch™H| BPy(2)ull + C'hM |[ul| + C"h™ ™ ||(1d —B) Py (2)ull.

Thus, if Pp(2)u is O(hN~1) at T (corresponding to the Id —B term in the
estimate), then on the elliptic set of A, hence off I" by appropriate choice

Tn the notation of Wunsch and Zworski [12], which we recall below in Section 2.1,
Iy are the backward/forward trapped sets for all (not necessarily null) bicharac-
teristics near the, say, zero level set of the semiclassical principal symbol py, ., and
I‘i are the corresponding sets within the A-level set of py, .
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of A, u satisfies non-trapping semiclassical estimates:
| AP, ()~  Av|| < CR™Hol],

with A as above (take B as above with WF} (Id —B) N WF}, (A) = 0). Here
the O(h*°) bound on Im z arises from the a priori estimate, (1.1), and if
1< N <3/2, eg., as is on, and sufficiently near, the real axis,? then one
can take Im z = O(h~'*2N). The purpose of this paper is to improve this
result by relaxing the conditions on WF} (A) and WF} (B) in (1.3).

The main point of the theorem below is thus that its estimate degener-
ates only at, as opposed to near, I'. The proof given here is closely related
to the proof of Wunsch and Zworski [12, Section 4] but can take place in
a significantly simpler, standard semiclassical pseudodifferential algebra, at
the cost of being suboptimal in terms of the L?-estimate, even though it
is optimal (i.e., non-trapping) when a pseudodifferential operator with van-
ishing principal symbol at I' is applied from both sides. To set this up, let
Q+ € ¥, °°(X) be self-adjoint and have symbols which are defining func-
tions of I'y near I', say on a neighborhood O of T. Let Qp € ¥9(X) be a
semiclassical operator with WF} (Qo) NT' = (0 which is elliptic on O°¢ (and
thus on a neighborhood of O¢), with real principal symbol for convenience.
One considers normally isotropic spaces at I', denoted Hj, 1, with squared
norms given by

lullZ,, . = 1Qoul® + 1Qull® + |Q—ul® + Allul|*;

this is just the standard L2-space microlocally away from I' as one of Q,
Q_ or Qg is elliptic there, and it does not depend on the choice of Q¢ as on
O\ T one of @+ and @Q_ is elliptic at every point. The dual space relative
to L? is then?

Hyp=h'?L? + Q L* + Q_L* + Qo L*

(which is L? as a space, but with this norm); P,(z)u will then be measured
in Hj .

2In the latter case by the Phragmén-Lindeldf theorem.

30ne really has Q% and Qf in this formula, but the reality of the principal
symbols assures that one may replace them by Qi and Qu modulo hL?. See
[8, Appendix A] for a general discussion of the underlying functional analysis; also
see Footnote 11.
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Theorem 1.1. Let P = Py,(2), Q+ be as above, Im z = O(h?). Then
(1.4) 1Q+ull + |Q—ull < Ch™ | Pulls; , + C'B?Ju],

and thus by (1.2),

(1.5) lullr, » < CR™HIPully;, .-

In fact, we also obtain a direct proof of (1.5) without using (1.2) at the
end of Section 2. Note that this theorem in particular implies the main result
of [2] in this setting, in that the estimates are of the same kind, except that
in [2] Pu is assumed to be microlocalized away from I', and u is estimated
microlocally away from I'.

The aforementioned b-estimates will be proved in Section 3, see
Theorem 3.2.

2. Semiclassical resolvent estimates on the real line
2.1. Notation and definitions

We will review some definitions of semiclassical analysis, partially in order
to fix our notation. For a general reference, see Zworski [13].

Let X be a compact n-dimensional manifold without boundary, and fix
a smooth density on X.

e For u € L*(X), denote by |lul| its L?(X) norm; moreover, denote by
(-,+) the (sesquilinear) inner product on L?(X).

e A family of functions u = (up)pe(o,1y) on X is polynomially bounded if
|ul| < Ch= for some N. If k € R, we say that u € O(hF) if |jul| <
Cph*, and v € O(R™) if ||u|| < CnhY for every N.

o For a = (ap)pe(o,1) € C°(T*X), we say a € h*S™(T*X) if a satisfies
0202 an(z, Q)| < Caph® ()17
for all multiindices a, 3 and all N € N in any coordinate chart, where

the z are coordinates in the base and ( coordinates in the fiber.
We define the semiclassical quantization Opy,(a) of a by

Opp(a)u(z) = (27h) " / %S/ ha(z, CYa(C/h) ¢
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for u € C°(X) supported in a chart and for general u € C°(X) by
using a partition of unity. We write Opy,(a) € h* ¥ (X). The quanti-
zation depends on the choice of partition of unity, but the resulting
class of operators does not, modulo operators that have Schwartz
kernel in h*°C*°(X?2). We say that a is a symbol of Opy,(a). The
equivalence class of a in h¥S™(T*X)/h*~1S™=1(T*X) is invariantly
defined and is called the principal symbol of Opy(a). All operators
below except (o € \112(X ) will in fact have compact microsupport
in the sense that they are quantizations of symbols a € h*S™(T*X)
satisfying in addition for all NV

|0§‘6?ah(z, O)| < CyRYN ()N for all multiindices «, 3

for ¢ outside of a compact subset of 7% X. We denote the class of such
symbols by h¥S(T*X) and the corresponding class of operators by
hF W, (X).

If A,B € Uy(X), then [A, B] € h¥,(X), and its principal symbol is
%Hab, where we define the Hamilton vector field in a coordinate chart
by

H, = (0¢a)0, — (0.a)0.

By a bicharacteristic of A we mean an integral curve of the Hamilton
vector field of the principal symbol of A. We denote the integral curve
passing through the point p € T*X by 7,, i.e., 7,(0) = p and 7,(s) =
Ha(7,(s)). We shall also write ¢*(p) := v,(s) for the bicharacteristic
flow.

For a polynomially bounded family (up)pe(o,1) and k& € RU {oo}, we
say that u = O(h*) at a point p € T*X if there exists a € S(T*X)
with a(p) # 0 such that |Op,,(a)u|| = O(h*). We define the semiclas-
sical wave front set WFp,(u) of u as the complement of the set of all
p € T*X at which u = O(h*>).

The microsupport of A = Opy,(a) € h*¥,(X), denoted WF)(A), is
the complement of the set of all p € T*X so that |0%a| = O(h™) near
p for every multiindex «, in any (and therefore in every) coordinate
chart.

For A € h*W,(X) with principal symbol a € h*S(T*X), we say that
A'is elliptic at p € T*X if there is a constant C' > 0 such that |a(p’)| >
Ch* for p' near p and h sufficiently small. For a subset E C T*X, we
say that A is elliptic on E if A is elliptic at each point of E. If A €
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hEW;, (X) is elliptic on E € T*X and Au = f with u, f polynomially
bounded and f is O(1) on E, then microlocal elliptic reqularity states
that v is O(h™%) on E.

e The semiclassical characteristic set of the semiclassical operator A €
U, (X) with principal symbol a is defined by ¥, = {p € T* X : a(p) =
0}.

o If A€ Uy(X) has a principal symbol with non-positive imaginary
part, u, f are polynomially bounded, Au = f, and v = O(h*) at p,
f=O(R*1) on 7,([0,7T]) for some T > 0, then the propagation of
singularities states that u = O(h¥) at ~,(T).

e Let P € ¥,(X) be a semiclassical operator. Let U C X denote an
open subset so that the cotangent bundle over U contains what will
be the trapped set, and place complex absorbing potentials in a neigh-
borhood of U¢.* We recall the notion of normal hyperbolicity from [12]:
Define the backward, resp. forward, trapped set I'y, resp. I'_, by

Iy ={peT"X:v,(s) ¢ T5;. X for all Fs>0}.

Let T} =T+ Np~!()\) be the backward/forward trapped set within the
energy surface p~1(\), and define the trapped set T'y := Fj\r NI . We say
that P is normally hyperbolically trapping if:

(1) There exists § > 0 such that dp # 0 on p~*(\) for || < 6;
(2) T+ Np~1(—6,68) are smooth codimension one submanifolds intersecting
transversally at ' Np~1(—6,68), and I' N p~1(—6, ) is symplectic;

(3) the flow is hyperbolic in the normal directions to I'y within the energy
surface: There exist subbundles Ef of Tr, (I'}) such that Tp, T =
1Ty & Ei[, where d¢®: Ef — E/j\[, and there exists # > 0 such that for
all A\ < ¢

s —0
[dg* (v)]] < Ce=M||u]| for all v € EF, 4t > 0.

4See [10, 12] for details; the point here is that the relevant part of our analysis
takes place microlocally near the trapped set, and the complex absorbing potentials
allow us to “cut off” the bicharacteristic flow in a neighborhood of the trapped set.
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2.2. Details on the setup and proof of the main result

Let p = pp, . be the semiclassical principal symbol of P = Pj,(z). Recall from
the work of Wunsch and Zworski [12, Lemma 4.1], with a corrected argu-
ment in [11], that for defining functions ¢+ of I'y (near I', namely in a
neighborhood O of ') one can take ¢1 with

Hypr = Fchoy

with ¢+ > 0 near I, and with®

{¢+7¢*} >0

near I'. This is the only relevant feature of normal hyperbolicity for this
paper; thus these identities and estimates could be taken as its definition for
our purposes. By shrinking O if necessary we may assume that this Poisson
bracket as well as c4+ have positive lower bounds on O. Then notice that

Hyp2 = —2¢2 0%, Hyp? =2c2¢2.

As indicated in the introduction, we consider normally isotropic spaces at
I, denoted Hj, r, with squared norms given by

lullZ, . = 1Qoull® + [Q+ull* + Q—ull* + Allull*;

we can take Q4+ with principal symbol ¢4, while Qg is elliptic on O¢ with
real principal symbol. This is just the standard L?-space microlocally away
from I' as one of @+, @— and Q) is elliptic there, and it does not depend
on the choice of Qp as on O \ I" one of Q4 and @_ is elliptic at every point.
Notice that in fact

(Qy —iQ )" (Qy —iQ_) =Q1Q+ + Q- Q- —i[Q4, Q]
and if B € U,(X) with WF, (B) C O then

h||Bv|? < CRe(i[Q4, Q-] Bv, Bv) + ChN'|jv|)?,

SThese defining functions exist globally when I'y is orientable; but even if '+
is not such, the square is globally defined. There is only a minor change required
below if ¢4 are not well defined; see Footnote 6.
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C >0, in view of {¢4,¢_} > 0 on O, so

Q0. +Q Q-
= L@1Q4 T Q20+ (@1 —iQ)(Qr —iQ) +i[Q1,Q )

shows that, for h > 0 small, the norm on Hy, r is equivalent to just the norm

lull?q, .2 = 1Qoull* + Q+ull* + [Q-ull*.

As mentioned in the introduction, the dual space relative to L? is then
Hyp=h2L* + Qi L? + Q_L* + QL™

Then Wp,(X) acts on Hjr, and thus on Hj 1, for B € ¥;(X) preserves
h=Y2L2 and gives

1Q+ Bul < |BQull + [[Q+, Blul| < Cl|Q+ul + Allul 2,

with a similar result for @Q_ and Q. We remark that the notation Hj
is justified as the space depends only on I', not on the particular defining
functions ¢+ as any other defining functions would change QQ+ by an elliptic
factor modulo an element of h¥,(X), whose contribution to the squared
norm can be absorbed into Ch?||ul|%., and thus dropped altogether (for h
small) in view of the equivalence of the two norms discussed above.

We are now ready to prove Theorem 1.1. We remark that the microlocal
version of the two estimates of the theorem is that given any neighborhood O’
of I' with closure in O, there exist By € ¥, (X) elliptic at I', By, By € ¥, (X)
with WF} (B2) NT'y = 0, WF},(B;) C O’ for j =0,1,2 such that

(2.1) 1BoQ-+ull + | BoQ—ull < h™| BiPulls; . + || Baul| 2
+ C'hY2 | 2,

respectively
(22) IBoull,.» < h™ || BiPully; . + || Baull 2 + C'hlful|z;

see (2.9). The theorem is then proved by controlling the Byu term using the
backward non-trapped nature of I'_ \ T".

Proof of Theorem 1.1. We first prove (1.4), which proves (1.5) by (1.2).
In fact, one can also give a direct proof of (1.5) without using (1.2); see
the discussion following this proof.
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Let xo(t) =e Yt for t>0, xo(t) =0 for t <0, x € C®([0,00)) be
identically 1 near 0 with ' < 0, and indeed with x"x = —x2, x1 >0, x1 €
C2°([0,00)), and let ¢ € C°(R) be identically 1 near 0. Let

a=xo(6% — 6> + K)x(63)(p),
k> 0 small. Notice that on suppa, if x is supported in [0, R],
% <R, ¢ <¢% +r=R+r,
so a is localized near I' if R and x are taken sufficiently small. Then
(@) == (A6 + 26 xon) (6% — ¢ + R} 0(p)?
— AL )x0(0F — 62 + 5)*(p)*.

Now x{, > 0, so the two terms have opposite signs. LetS

ax = 611/ (xoxp) (% — 2 + mX(E2)0(p),

and
e— = crdix1(d7)x0(0F — 8% + K)Y(p);
then
1
(2.3) ZHp(a2) =—c2a? —c?a® + €.
Here

supp e— C supp a,
suppe_ NIy =0,

with the last statement following from <j>2+ taking values away from 0 on
supp x1; see Figure 1.

One then takes A € Wy (X) with principal symbol a, and with WF},(A4) C
suppa, Ay € U, (X) with principal symbols of ax, and with WF},(Ay) C
supp at, Cy have symbol ci and with WF}, (Cy) C supp c4; one similarly

STf ¢+ is not defined globally, a+ are not defined as stated. (The term e? need not
have a sign, so this issue does not arise for it; see the Weyl quantization argument
below.) However, a+ need not be real below, so as long as one can choose ¥4
complex valued with |14|? = ¢3, replacing the first factor of ¢o with ¢4 in the
definition of a4 allows one to complete the argument in general.



1286 Peter Hintz and Andras Vasy
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supp e_
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Figure 1: Supports of the commutant ¢ and the error term e_ in the positive
commutator argument of the non-trapping estimate near the trapped set T,
Theorem 1.1. The support of a is indicated in light gray; on suppa \ suppe_,
darker colors correspond to larger values of a. Also shown are the forward,
resp. backward, trapped set I'_, resp. 'y, and the bicharacteristic flow
nearby. The figure already suggests that Hp(a2) is non-positive away from
supp e_, and actually negative away from suppe_ UT'; see equation (2.3)

lets E_ € Wy (X) have principal symbol e_, and wave front set in the support
of e_. This gives that

Z’ * * *
(24) [P AA] = ~(C4A ) (C4A) — (C-A)(CA)
+E*E_ +hF,
for some F' € Wy (X) with
WF}, (F) C suppa.

Thus
1: *
AP A" A, w) = — Oy Al — IO Aull® + | Bul> + h{Fu, u).

Expanding the left hand side gives

(PA*Au,u) — (A*APu, u)
= (Au, APu) — (APu, Au) + ((P — P*)A* Au, u).
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As we are assuming that P — P* is O(h?) near I', we may also assume that
this holds on supp a, thus the last term is O(h?)||u||*. Thus,

@5 Al + [C=Aul < | E—ull2 + h=|(APu, Au)| + Cyhljul2
Now, by the duality of Hj, r and H;‘;F relative to the L? inner product,

(2.6) [(APu, Au)|

IN

[APull2g; || Aulln,

IN

he 1
lAuly, .+ Sl APul;

Next, for € > 0 small, €]|@+ Aul|? can be estimated in terms of ||Cy A} ul|? +
O(h)|lul|?, as can be seen by comparing the principal symbols, in particular
using the ellipticity of C; on suppa. One can thus absorb %HAUH%{” into
the left hand side of (2.5). This shows

|G Al 4+ [Co Al < ClE_ul]® + Ch™*|APull}; .+ Chllul®

Now, since the region suppe_ is disjoint from I'y, it is backward non-
trapped, and thus the standard propagation of singularities with complex
absorption (see e.g., [3, Lemma 5.1]) implies that E_u is controlled by Pu
microlocalized off T'y, hence by @+ Pu, modulo higher order (in h) terms in
Pu. This proves the first part of Theorem 1.1 since A4 is an elliptic multiple
of Q+ microlocally near I'. Thus, if we have a bound ||u|| < C"h=1%|| Pul| 1z,
0 < s < 1/2, and thus hlu|? < C'h=17%|| Pu|)2. < C”h_1_25||PuH%Z _» this
implies a non-trapping estimate: )

lully, » < Ch™H|Pullyg, .-

This completes the proof of Theorem 1.1. O

In fact, as mentioned earlier, a slight change of point of view proves
Theorem 1.1 directly. To see this, we use the Weyl quantization” when
choosing a,a+,cq,e_; since we are on a manifold, this requires identify-
ing functions with half-densities via trivialization of the half-density bundle
by the Riemannian metric; this identification preserves self-adjointness. We
also write P}, , as the Weyl quantization of pg + hp1 with pg, p1 real modulo

"The Weyl quantization is actually irrelevant. It is straightforward to see that
if Ae U,(X) and if the principal symbol of A is real, then the real part of the
subprincipal symbol is defined independently of choices. This is all that is needed
for the argument below.
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O(h?). Then the principal symbol calculation above holds with pg in place
of p, and with p; included it yields additional terms

YHo(@®) = — (8 + ¢ — houHpby + ho_Hpdo)

4
< (xoX0)(#% — 8% + &)X (¢2)*¥(p)?
— (0% — hoHp, 0 1) (X'X)(93)x0(65 — ¢ + £)*¥(p)*.
Now, (2.4) becomes

[P, A"A] = = (C+A1)"(C1Ay) — (C-A)"(C-A-)
+h(ALGy+ GLAL+ A*G_+ G A_) + E+I°F,

(2.7)4h

with G being the Weyl quantization of

1
g+ = £5

3 (i 621/ (0x6) (62 — 02 + R)x(62)0(p),

and with F' € ¥, (X) with
WF},(F) C suppa.
Correspondingly, (2.5) becomes

28)  [CiAvul®+ | C-Aul?
< [(Bu,u)] + b [{APu, Au)| + 2h]| A ull [ G.yu]
+ 20| Al | Gul] + C1h2u]>.

The terms with G4 on the right hand side can be estimated by
el Apul® + e h2(|Gul® + el Aul? + R G ull?,

and for € > 0 sufficiently small, the || A+u||? terms can now be absorbed into
the left hand side of (2.8). Proceeding as above yields

(29)  [IC1Aul® + [|C-A_u|* < C|(Bu,u)| + Ch™*||APu
+ Ch2|\u||2.

2
Hi

Together with the non-trapping for the F term this gives the global estimate

lullf,, . < Ch=2||Pullfy,  + Ch?|lul?,
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and now the last term on the right hand side can be absorbed into the left
hand side for sufficiently small A, giving the estimate (1.5).

Notice that this also directly gives a weaker version of the Wunsch—
Zworski estimate (1.2), namely

lullze < Ch™2| Pul|Le,

in view of the continuity of the inclusions Hj;p — h=Y2L2 and K212 —

*
h,I'*

Remark 2.1. If one is interested in a fixed operator, rather than in a
parameter-dependent family of operators, one can naturally strengthen the
estimates (1.4)—(1.5) by adding h~"|| Pyul| to the left-hand sides, where Py is
any elliptic multiple of P. A more natural way of phrasing such an improve-
ment is to use “coisotropic, normally isotropic” spaces 7:[}171“ and 7:[};711, where
the squared norm on 7:{h7p is defined by

lull%;, - = 1Qoull® + 1Q+ull® + |Q—ull® + h~" | Poull? + Allull?,

2,.
Hn,r

which strengthens the space and therefore weakens its dual. Using these

spaces instead in (2.6), one obtains an additional term from hHAuH% ,

h,T

namely || Py Au||?, which is bounded by C(h~!||APu||%. + h|lu|?), and thus
h,I"

the remainder of the second proof goes through.
3. Non-trapping estimates in non-dilation invariant settings

We now transfer Theorem 1.1 into the b-setting; the discussion in the pre-
vious section is essentially the dilation invariant special case of this, as we
will explain below, although in the b-setting there is additional localization
near the boundary. One main application of the b-estimate is in the analysis
of linear and non-linear waves on asymptotically Kerr—de Sitter spaces; see
[6, 10] for details.

3.1. Notation and definitions

For a general reference for b-analysis, see Melrose [7].
Let M be an n-dimensional compact manifold with boundary X.

e Let V(M) be the Lie algebra of b-vector fields on M, i.e., of vector
fields on M which are tangent to X. Elements of V},(M) are sections
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bS* M
b7y M

oM
box

Figure 2: The radially compactified cotangent bundle bT* M near PT™* x M ;
the cosphere bundle PS* M, which is the boundary at fiber infinity of PT* M,
is also shown, as well as the zero section op; C PT*M and the zero section
over the boundary ox C PT*x M

of a natural vector bundle on M, namely the b-tangent bundle PTM;
in local coordinates (7, z) near X, the fibers of PTM are spanned by
70, and 0,. The fibers of the dual bundle PT*M, called b-cotangent
bundle, are spanned by dT—T and dzx.

It is often convenient to consider the fiber compactification PT* M
of PT* M, where the fibers are replaced by their radial compactifica-
tion. The new boundary of PT*M at fiber infinity is the b-cosphere
bundle PS*M; it still possesses the compactification of the “old”
boundary PT*x M, see Figure 2. PS*M is naturally the quotient of
PT*M \ o by the RT-action of dilation in the fibers of the cotangent
bundle. Many sets that we will consider below are conic subsets of
PT*M \ o0, and we will often view them as subsets of P.S* M.

For a € C®(PT* M), we say a € S™(PT*M) if a satisfies

10207 a(2, Q)| < Cap(¢)™ 17! for all multiindices a, 3

in any coordinate chart, where z are coordinates in the base and (
coordinates in the fiber; more precisely, in local coordinates (7, x) near
X, we take ( = (0,§), where we write b-covectors as

We define the quantization Op(a) of a, acting on smooth functions u
supported in a coordinate chart, by

Op(a)u(r,z) = (2m)™" /ei(T_T')‘}”(m_w% <T — T,>

-
x a(t,z,76,&)u(r, 2") dr' dz’ do dE,
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where the 7/-integral is over [0,00), and ¢ € C°((—1/2,1/2)) is
identically 1 near 0.8 For general u, define Op(a)u using a parti-
tion of unity. We write Op(a) € V' (M). We say that a is a symbol
of Op(a). The equivalence class of a in S™(PT*M)/S™ 1 (PT*M) is
invariantly defined on PT*M and is called the principal symbol of
Op(a). We will tacitly assume that all our operators have homoge-
neous principal symbols.

o If A€ U (M) and B € ¥]"*(M), then [A, B] € U "~1(M), and
its principal symbol is %Hab = %{a, b}, where the Hamilton vector
field H, of the principal symbol a of A is the extension of the Hamil-
ton vector field from T*M°\ o to PT*M \ o, which is a homoge-
neous degree m — 1 vector field on PT*M \ o tangent to the boundary
bT)*(M. In local coordinates (7, z, o, €) on PT* M as above, this has the
form

(3.1)  Ha=(0,0)(r0;) — (19;0)05 + Y _ ((0e,0)0a, — (9, a)0, ).
J

e We define bicharacteristics completely analogously to the semiclassi-
cal setting.

e The microsupport WF} (A) C PT*M \ 0 of A= Op(a) € ¥*(M) is
the complement of the set of all p € PT*M \ o such that a is rapidly
decaying in a conic neighborhood around p. Note that WF] (A) is
conic, hence we will also view it as a subset of PS* M.

e Fix a b-density on M, which is locally of the form a }d{ dz!, a > 0.
e Define the b-Sobolev space HF(M) for k € Z>¢ by

HE (M) = {uc L*(M): X;--- Xpu € L*(M), X1,...,X; € V,(M)},

and for general k € R by duality and interpolation. Moreover, define
the weighted b-Sobolev spaces Hy“(M) := 7*HE(M) for s,a € R,
where 7 is a boundary defining function, i.e., 7 =0 at X and dr # 0
there. Every b-pseudodifferential operator A € WUJ*(M) is a bounded
operator A: H*(M) — H; "™ %(M), s, € R.

8The cutoff ¢ ensures that these operators lie in the “small b-calculus” of Melrose,
in particular that such quantizations act on weighted b-Sobolev spaces, defined
below.
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e For A € U"(M) with principal symbol a € S™(PT*M), we say that
A is elliptic at p € PT*M \ o if there is a constant C' > 0 such that
la(z,¢)| > C|¢|™ for (z,() in a conic neighborhood of p. The charac-
teristic set of A is the complement (in P7*M \ o) of the set of all p
at which A is elliptic.

e Foru € H, **(M), define its H,"" wave front set WF}*(u) C PT*M \
0 as the complement of the set of all p € PT*M \ o for which there
exists a € SO(PT*M) elliptic at p such that Op(a)u € H,*(M). In
particular, WF}*(u) = 0 if and only if u € H,“(M).

e Microlocal elliptic reqularity states that if Au = f with A € U*(M),
u, f € H ™M), p¢ WEF,"™(f) and A is elliptic at p, then p ¢
WEY (u).

o If Ac U(M) has a principal symbol with non-positive imaginary
part, wu,f e H, °%(M), Au=f, moreover p¢ WF}“(u) and
v,([0, 7)) N WE; 5% () = @ for some T > 0, then the propagation
of singularities states that ~,(T) ¢ WF(u).

3.2. Setup, statement and proof of the result

Suppose P € V' (M), P —P* € Q/?_Q(M). Let p be the principal symbol of
P, which is thus a homogeneous degree m function on PT*M \ o, which we
assume to be real-valued. Let p denote a homogeneous degree —1 defining
function of PS* M. Then the rescaled Hamilton vector field

V =p5""H,

is a C* vector field on PT*M away from the O-section, and it is tangent to
all boundary faces. The characteristic set ¥ is the zero-set of the smooth
function p™p in PS*M. We will, somewhat imprecisely, refer to the flow of
V in ¥ € PS*M as the Hamilton, or (null)bicharacteristic flow; its integral
curves, the (null)bicharacteristics, are reparameterizations of those of the
Hamilton vector field H, projected by the quotient map PT*M \ o — PS*M.
We first work microlocally near the trapped set, namely assume that

(1) T € ¥NbS%M is a smooth submanifold disjoint from the image of
T*X \ o (so 7D, is elliptic near I'),

(2) T is a smooth submanifold of 3 N PS$% M in a neighborhood U; of T,
(3) T is a smooth submanifold of ¥ transversal to ¥ N >S% M in Uy,
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bSE M

pel_

Figure 3: An exemplary situation with trapping: Shown are the (projection
from PS*M to the base M of the) trapped set I, the b-cosphere bundle over
X as well as a forward bicharacteristic starting at a point p € I'—

(4) T4 has codimension 2 in ¥, I'_ has codimension 1,
(5) I'y and T'_ intersect transversally in ¥ with 'y NT'_ =T,

(6) the rescaled Hamilton vector field V = p™~1H,, is tangent to both T';.
and I'_, and thus to I.

We assume that I'y is backward trapped for the Hamilton flow
(i.e., bicharacteristics in I'} near I" tend to I' as the parameter goes to —c0),
i.e., is the unstable manifold of I', while I'_ is forward trapped, i.e., is the
stable manifold of I'; see Figure 3; indeed, we assume a quantitative version
of this. (There is a completely analogous statement if ' is forward trapped
and I'_ is backward trapped: replacing P by —P preserves all assumptions,
but reverses the Hamilton flow.) To state this, let ¢_ be a defining function
of I_, and let ¢4 € C*°(°S*M) be a defining function of I'y. in "S% M; thus
', is defined within PS*M by 7 = 0, ¢, = 0. Notice that V being to tangent
to PS% M (due to (3.1)) implies that V7 is a multiple of 7; we assume that,
near I',

(3.2) V= —0(29’7', co > 0;

this is consistent with the stability of I'_. By the tangency requirement,
with
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Vo =a_¢_ 4+ v_pg, a— smooth; notice that changing ¢_ by a smooth non-
zero multiple f gives V(f¢_) = a_fé_ +v_fpo+ (Vf)é_, so a_ depends
on the choice of ¢_. On the other hand, the tangency requirement gives
Voi = aror + 847 + vypo. For the sake of conciseness, rather than stating
the assumptions on the Hamilton flow as in [12], we assume directly that
¢+ satisfy

(3.3) Vo= +vpo, Vor = —cAoy + BT+ vipo,

with cx > 0 smooth near I, 54, v+ smooth near I" and

(3-4) {$+,6-1 >0

near I'. Let Uy C Uy C U; be a neighborhood of ' such that the Poisson
bracket in (3.4) as well as ¢4 have positive lower bounds.

Now, given a boundary defining function 7, ®S% M \ S*X (where S*X
is the image of 7 X under the R*-dilation quotient) can be identified with
(d{ +T*X)U (—d{ + 7% X)) (which in turn can be identified with two copies
of T*X) since PT5 M = Span{%} & T*X, and each RT-orbit outside T*X
intersects (% +T*X)U (—df + 7" X) in a unique point. This provides the
connection between the b- and the semiclassical perspectives, i.e., analysis
on bT)*(M and that of 7" X. In fact, if p is a homogeneous degree m function,
then p™p, where p can be taken as the reciprocal of the absolute value of the
symbol of 7D, in this region (which is well-defined, independent of choices),
gives a function on {#1} x T*X; this is exactly the semiclassical rescaling,
with p™p the semiclassical principal symbol (depending on the parameter
+1) of the rescaled operator family (cf. [10, Section 2.1]).

Notice that if we merely assume the normal hyperbolicity within bS}}M ,
in the sense of this identification with 7*X, as in [12, Section 1.2], then
[12, Lemma 4.1], as corrected in [11], actually gives such defining func-
tions ¢% within PS% M (i.e., letting 7 = 0); taking an arbitrary extension
in case of ¢4, and an extension which is a defining function in case of I'_,
all the requirements above are satisfied. In particular, Kerr and Kerr—de
Sitter spaces satisfy these assumptions, as do their perturbations when the
angular momentum |a| is small; see [12, Proposition 2.1] for the Kerr setting
and [10, Section 6] for the Kerr—de Sitter one. Indeed, in the Kerr case the
full range of |a| < M, M the black hole mass, satisfies the hypotheses, as
shown by Dyatlov [4].



Non-trapping estimates 1295

There is an asymmetry between the roles of ¢+ and 7, and thus we
consider the parabolic defining function

py =%+ Mr
for 'y, M > 0, to be chosen. Then, near I,

pr = Vpy = =2630% + 261647 + 20161 o — McGr
(3.5) = —2c1 9% — (M3 — 28464)7 + 204 b o
< _53»p+ + 2y+¢+ﬁ07 6-i- > O)

if M > 0 is chosen sufficiently large, consistently with the forward trapped
nature of I'_. (Here the term with py is considered harmless as one essentially
restricts to the characteristic set, po = 0.) Also, note that one can use’ the
reciprocal p = |o|~! of the principal symbol o of 7D, as the local defining
function of PS*M as fiber-infinity in P7*M near T'; then

(3.6) Vp=apr

for some & smooth in view of (3.1).

Similar to the normally isotropic spaces in the semiclassical setting,
we introduce spaces which are normally isotropic at T.19 Concretely, let
Q+ € ¥)(M) have principal symbol ¢ as before, B e U (M) have prin-
cipal symbol pg and let Qy € \Ilg(M ) be elliptic, with real principal symbol
for convenience, on U§ (and thus nearby). Define the (global) b-normally
isotropic spaces at I' of order s, Hy s by the norm

HUH%{“ = ”QOUH%{{; + HQ-I—UH%IQ + HQ—UH%I; + HTl/QUH%Ig

(3.7) + 1 Poullzg + lelles/e

9Indeed, in the semiclassical setting, after Mellin transforming this problem, |o|~*
plays the role of the semiclassical parameter h, which in that case commutes with
the operator.

1ONote that PT*M is not a symplectic manifold (in a natural way) since the
symplectic form on ij(/[oM does not extend smoothly to PT* M. Thus, the word
“normally isotropic” is not completely justified; we use it since it reflects that in
the analogous semiclassical setting, see [12], the set ' is symplectic, and the origin
in the symplectic orthocomplement (7,I')* of T,I', which is also symplectic, is
isotropic within (7,I')*.
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and let ’H{Z’;S be the dual space relative to L?, which is thus!!
QOH};S + Q+H[:S + Qbeis + TI/QHQS + POHl:S + Hb—5+1/2‘

Note that microlocally away from I', H} 1 is just the standard H; space,
while HZES is H, ® since at least one of Qy, Q+ and 7 is elliptic. Moreover,
UE(M) > A: Hiyp — Hf)}k is continuous since [Q, A] € WF™! (M) etc.; the
analogous statement also holds for the dual spaces. Further, the last term in
(3.7) can be replaced by ||u|]fq,1 as i[Q+,Q_]=B*B+ R, B € \111:1/2(M),
b

Rec Vv, 2(M), using the same argument as in the semiclassical setting (how-
ever, it cannot be dropped altogether unlike in the semiclassical setting!).

Remark 3.1. The notation Hj (M) is justified for the space is indepen-
dent of the particular defining functions ¢+ chosen; near I' any other choice
would replace ¢+ by smooth non-degenerate linear combinations plus a mul-
tiple of 7 and of pgy, denote these by qﬁi, and thus the corresponding Q- can
be expressed as

B+Q+ + Bfo + B87_ + EPO + BOQO + R?
By, By, By, B € U)(M), Re U ' (M),

so the new norm can be controlled by the old norm, and conversely in view
of the non-degeneracy.

Our result is then:

Theorem 3.2. With P, HbF,HE"; as above, for any neighborhood U of T’
and for any N there exist By € WY (M) elliptic at T and By, By € U9 (M)
with WFy(B;) c U, j =0,1,2, WFb(BQ) NIy =0 and C > 0 such that

(3.8) HB()uHH |B177uHH* s—m+1 + HBQU,HHS + CHUHH

b < |

, if all the functions on the right hand side are in the indicated spaces:
B173u € H* smmtl , ete., then Bou € Hy 1, and the inequality holds.

1'We refer to [8, Appendix A] for a general discussion of the underlying functional
analysis. In particular, Lemma A.3 there essentially gives the density of C*° (M) in
H; (M): one can simply drop the subscript “e” in the statement of that lemma to
conclude that He (M) (so in particular Hy(M)) is dense in H3 (M), and then the
density of C>° (M) in Hf)/ (M) for any s’ completes the argument. The completeness
of Hy, (M) follows from the continuity of U (M) on Hs_l/Q (M).
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The same conclusion also holds if we assume WF} (Bg) NT'— = () instead
of WF(Bz) N T4 = 0.
Finally, if r <0, then, with WF} (B2) NT'y =0, (3.8) becomes

(39) ||Bou||H§r < HBﬂ?uHHS—mH,T + ||BQU||H5T + CHUHH}?N‘T’
while if r > 0, then, with WF(By) NT— =0,
(310)  IBoullngr < | BiPullyo-noss + | Baullgy + Cllull o

Remark 3.3. Note that the weighted versions (3.9) and (3.10) use standard
weighted b-Sobolev spaces; this corresponds to non-trapping semiclassical
estimates if the subprincipal symbol has the correct, definite, sign at T'.

Proof. We may assume that U C Uy is disjoint from a neighborhood of
WEF,(Qo), and thus ignore Qo in the definition of Hj . below.

The main part of the proof is to show that there exist By, By, By as
above and Bs € WY (M) with WF} (B3) C U such that

(3.11) [ Boulln, < [1B1Pullygesmss + | Boullarg + | Bsul g + Clull .

An iterative argument will then prove the theorem.

The proof is a straightforward modification of the construction in the
semiclassical setting above, replacing qbi by qbi + M7, M > 0 large, in accor-
dance with (3.5).

We start by pointing out that for any By € W) (M) and any Bs € U9 (M)
elliptic on WF},(By), we have

(3.12) 12y Boul|; < C||BoPull go-m + C'|| Byu| o+

by using that By is an elliptic multiple of 73 modulo \I/_ (M ). Since
1BoPul| g-m < C||BoPullyy: in (3.11)
is thus automatlcally controﬂed

So let xo(t) = e/t for t >0, xo(t) =0 for t <0, with v > 0 (large)
to be specified, x € C°([0,00)) be identically 1 near 0 with x’ <0, and
indeed with x'x = —x3%, x1 >0, x1 € C°([0,00)), and let ¥ € C>°(R) be
identically 1 near 0. As we use the Weyl quantization,'? we write P as

12 Again, the Weyl quantization is irrelevant: if A € U/"(X) and the principal
symbol of A is real, then the real part of the subprincipal symbol is defined inde-
pendently of choices, which suffices below.
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the Weyl quantization of p = pg + pp1, with pp; of order m — 1. Let
(3.13) a=p T2y (0p — 62+ B)x(p )Y (P D),
k > 0 small. Notice that on supp a, if x is supported in [0, R],

py <R, ¢ <pp+rK=R+k,

so a is localized near I if R and x are taken sufficiently small. In particular,
the argument of x( is bounded above by R + k, so given any Mg > 0 one
can take v > 0 large so that

Xox0 — Moxg = b* x4 X0,

with b > 1/2, C*°, on the range of the argument of yj.
In fact, we also need to regularize, namely introduce

(3.14) ac=(1+ep 1) %a, ec0,1],

which is a symbol of order s — (m —1)/2 —2 for € > 0, and is uniformly
bounded in symbols of order s — (m — 1)/2 as € varies in [0, 1]. In order to
avoid more cumbersome notation below, we ignore the regularizer and work
directly with a; since the regularizer gives the same kind of contributions
to the commutator as the weight p~+(m=1/2 these contributions can be
dominated in exactly the same way.

Then, with p = pg + pp1 as above, W = ﬁm_QHﬁpl, which is a smooth
vector field near PS*M as pp; is order m — 1, noting Wp = a1 7p similarly
to (3.6), and Wt = ap 17 by the tangency of W to 7 =0,

(3.15)
%Hp(QQ) = — (—p4/2+ P2 +v_d_po— pp+(Woy) — pMag 1T
+p0- (W) 2 (xoxo) (4 — &2 + #)x(p+) (5" p)*
+=(=2s+m— 1) (@ + par)rxo(ps — ¢2 +K)?
X x(p4)*(5"p)?
P2 (pr 4+ W) (X X) (p)x0(py — 6% + K)* (")

(@ + pan)p > (" p)mxo(pr — 02 + £)*x(p4) > (V") (5" p).

N

| =

+

+

SE
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A key point is that the second term on the right-hand side, given by the
weight p25+™~1 being differentiated, can be absorbed into the first by mak-
ing v > 0 large so that pyxj(p+ — ¢% + k) dominates

=25 +m — 1||@mxo(ps — 62 + k)

on suppa, which can be arranged as |-2s+m — 1||&|7 is bounded by a
sufficiently large multiple of p; there. Thus,

1
Ty (e) = el — g
(3.16) +29-a_+e+ée+2arjip+2a_j_p

with

ax = 50/ Coxh) (o — 82 + R)x(p )0 (D),

ag = por'/? ((M(C%/Q) — Bydy — Mag1)(xoxo) (p+ — &> + k)
/
(254 m = D)@+ aaxolos — 6 4 1)) (o)D),

g = %55 (W) — v o)y onh) o — 02+ 0)x(o )™,

1 o .
e=—3p 2 (py + pWpi)xa(p+)*x0(py — &2 + k)2 (5"p)?,

M _og

5P 2P @+ pan)Txo(pr — 62 + 8)"x(p1)* (41) (7).

i = g ox) o1 — 62 + KXo U

€ =

the square root in ag is that of a non-negative quantity and is C*° for M large
(so that B¢+ can be absorbed into M(c3/2)) and ~ large (so that a small
multiple of x{, can be used to dominate x), as discussed earlier. Moreover,
suppe C suppa, suppe NIy =0,
supp € C suppa, suppe N = (.

This gives, with the various operators being Weyl quantizations of the cor-
responding lower case symbols,

,L' * * * *
AP AT Al == (C1A4)7(ChAy) = (C-A-)"(C-A-) — A54s
(3.17) FGAL +ALGL A GRA + ATG
+E+E+ALJ P+ P ILA + AL T P+ P*JA_+F,



1300 Peter Hintz and Andras Vasy

where now A € W5~V (M), AL Ag € U3 (M), Gy € UTH(M), E € U
(M), E € U2(M), Jy € U;"™(M), F € U2* *(M) with WF[(F) C suppa.

After this point the calculations repeat the semiclassical argument: first
using P — P* € U7 2(M),

(3.18)
I Aul® + [[C-A—ul)? + || Aoul®

< [(Bu,w)| + |{Eu, u)| + [(APu, Au)| + 2[| Ay ul[[|Grul| + 2[ A—ul| |G-
+ 2|(J4 Pu, Ay u)| + 2[(J_Pu, A_u)| + C’1HF1u||§{£_1 - C'1Hqu2q§N,

where we took F} € WP (M) elliptic on WF(F) and with WF} (F}) near T.
Noting that WF(E) N'Y = 0, the elliptic estimates give

(B, u)| < CIBiPulm + Cllul% s

if By € WO(M) is elliptic on suppé. Let A € U /2(11) be elliptic with
real principal symbol A, and let A~ € ¥, (m=1)/2 (M) be a parametrix for it
so that AA™ —Id = Ry € ¥ °°(M). Then

[{APu, Au)| < |[(A~APu, A* Au)|| + [{RoAPu, Au)|

IN

1 - 2 €A% 2 / 2
£||A APUHH;;PF + §HA A“”Hgf +C ||u||Hb,N.

As A*A € U3 (M), for sufficiently small € > 0, %HA*AUH%Q _ can be absorbed

into®® ||Cy Ayul|? + [|C_A_ul|]® + || Apul|? plus HBOPOuH%{g, and as discussed
above, the latter already has the control required for (3.11). On the other
hand, taking By € U9(M) elliptic on WF},(A), as A=A € ¥ (A1),

|A=APul3,.0 < CIBPUl s + Cfull .

3The point being that ALCTCLAL — eA"AQ Q1 A" A has principal symbol
ciai — eaqui)\Q which can be written as the square of a real symbol for € > 0
small in view of the main difference in vanishing factors in the two terms being
that x( in aﬁ_ is replaced by xo in a, and thus the corresponding operator can be
expressed as C*C for suitable C', modulo an element of \I/ES_Q(M ), with the latter

contributing to the H; ™' error term on the right-hand side of (3.11).
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Similarly, to deal with the Ji terms on the right-hand side of (3.18), one
writes

€
(TP, Axu)| < o (IBPully o+ C"ulllyv ) + Sl Axul:

1
2e
1 2 " 2 € 2
< o (IBPulye o+ C ) + 5 Asul 3o,
while the G4 terms can be estimated by

el Avul® + e HGrull® + e A—ul? + M| Gull?,

and for € > 0 sufficiently small, the ||A1u|/?> terms in both cases can be
absorbed into the left-hand side of (3.18) while the G+ into the error term.
This gives, with Fy having properties as F1,

IC Ayl + [ C-A-ul + | Agu]?
< (B, )|+ ClIByPuly o+ Call Pyl s + Calfully .

By the remark before the statement of the theorem, if By € WP (M) is
such that xo(p+ — 62 + #)x(p+)1(p) > 0 on WFL(Bo), || Boul[f;. /> can be
added to the left-hand side at the cost of changing the constant in front of
||F2u||H§,1 + HUHH;N on the right-hand side. Taking such By € W9 (M), and
By elliptic on WF},(A) as before, By € (M) elliptic on WF} (E) but with
WF} (By) disjoint from I'y, we conclude that

|Boullyy, < CUBIPul-mes + CIBaullly, + Oyl + Cllully s,

proving (3.11), up to redefining B; by multiplication by a positive constant.
Recall that unless one makes sufficient a priori assumptions on the regularity
of u, one actually needs to regularize, but as mentioned after (3.14), the
regularizer is handled in exactly the same manner as the weight.

Now in general, with x as before, but supported in [0, 1] instead of [0, R],
let xr = x(-/R) and write a = ap, to emphasize its dependence on these
quantities. When R and k are decreased, supp ar  also decreases in X in the
strong sense that 0 < R < R and 0 < k < &/ imply that ap . is elliptic on
supp ar,, within 3, and indeed globally if the cutoff 1) is suitably adjusted
as well. Thus, if u € Hb_N, say, one uses first (3.11) with s = —N + 1, and
with B; given by the proof above, so the Bzu term is a priori bounded, to
conclude that Byu € Hf;,r and the estimate holds, so in particular, u is in

H, N+1/2 microlocally near I' (concretely, on the elliptic set of By). Now one
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decreases x and R by an arbitrarily small amount and applies (3.11) with
s =—N +3/2; the Bsu term is now a priori bounded by the microlocal

N+1/2 N+3/2

membership of u in H, , and one concludes that Bou € Hy |- , 80 in

particular u is microlocally in H, N+1 Proceeding inductively, one deduces
the first statement of the theorem, (3.8).

If one reverses the role of I'y and I'_ in the statement of the theorem,
one simply reverses the roles of p; = gba_ + M7 and ¢2 in the definition of
a in (3.13). This reverses the signs of all terms on the right-hand side of
(3.15) whose sign mattered below, and thus the signs of the first three terms
on the right-hand side of (3.17), which then does not affect the rest of the
argument.

In order to prove (3.9), one simply adds a factor 772" to the definition
of a in (3.13). This adds a factor 772" to every term on the right-hand side
of (3.17), as well as an additional term

T on
57 PR ex0(ps — 0L + 1) "x(p) U (),

which for » < 0 has the same sign as the terms whose sign was used above,
and indeed can be written as the negative of a square. Thus (3.16) becomes

2

1 2 2 2
- r

~Hy(a?) = - cta - c%a

p— 2 u—
(3.19) 4 o a

+2gpay +2g a +e+é+2apt2ap
with
_7’1 _ —
ar =\ 570 eoxolp+ ¢2 + K)x(p1 )0 (p),

and all other terms as above apart from the additional factor of 7=" in the
definition of aL, etc. Since a, is actually elliptic at I" when 7 # 0, this proves
the desired estimate (and one does not need to use the improved properties
given by the Weyl calculus!).

When the role of I'y and I'_ is reversed, there is an overall sign change,
and thus r > 0 gives the advantageous sign; the rest of the argument is
unchanged. (]

Remark 3.4. As in the semiclassical setting, see Remark 2.1, the estimate
(3.8) can be strengthened by adding the term ||B0f’0u|\H§+1 to the left-hand
side, which is controlled by elliptic regularity, likewise for (3.9) and (3.10).
A more natural way of phrasing such an improvement is to use “coisotropic,
normally isotropic” spaces ﬂii,r and 7-2;? in the estimate (3.8), where the
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squared norm on 7:{@ r is defined by

lull%, = l1QoulFr; + 1Q+ullfy; + Q-ullZy + 17"/ 2ull?,

Pyl + el

i.e., strengthening the norm of Pyu by a half, which strengthens the space
and weakens its dual. To obtain the necessary elliptic estimate (3.12) with
the strengthened norms on the terms involving By, but keeping the norm on
Bsu (which is required for the iterative argument at the end of the proof),
one can choose By with WF} (I — By) N T' = ) so that Bz can be chosen to
be microsupported away from I', and thus ||Bgu||Hs71/2 < C”BgU”Hi—Fl/Z is
controlled using (3.8), with the norm on BiPu being ”Blpu||,’_{z,;fmy+l/2 <

. . -3/2 -
C||B1Pul|+.s-m+1, and the error term being measured in Hy 25 HL
b,T"
as required.
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