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Transversely affine foliations on projective manifolds

Gaël Cousin and Jorge Vitório Pereira

We describe the structure of singular transversely affine foliations
of codimension one on projective manifolds with zero first Betti
number. Our result can be rephrased as a theorem on rank two
reducible flat meromorphic connections.
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Jorge Vitório Pereira is partially supported by CNPq-Brazil. During preparation
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1. Introduction

In this paper, we study holomorphic foliations of codimension one on pro-
jective manifolds which are singular transversely affine in the sense of [24].
These are natural generalizations of (smooth) transversely affine foliations
of codimension one as defined in [16]. The classical definition is weakened
at two points: the transverse structure is defined only on the complement of
a divisor (but extends meromorphically through this divisor); and its devel-
oping map is not necessarily a submersion. A precise definition is given in
Section 2.1.

A Theorem due to Singer [26] says that the class of singular transversely
affine foliations of codimension one, roughly speaking, coincides with the
class of codimension one foliations which admit first integrals that can be
obtained by iteration of the following three operations: resolution of alge-
braic equations, exponentiation, and integration of closed 1-forms. More pre-
cisely, there exists a Liouvillian extension (cf. loc. cit. for a definition) of the
field of rational functions of the ambient manifold containing a non-constant
first integral for the foliation.

Our main result describes the structure of singular transversely affine
foliations of codimension one on a projective manifold X rather precisely,
at least under the assumption h1(X,C) = 0.
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Theorem A. Let X be a projective manifold with h1(X,C) = 0 and let F
be a singular transversely affine foliation of codimension one on X. Then at
least one of following assertions holds true.

(1) There exists a generically finite Galois morphism p : Y → X such that
p∗F is defined by a closed rational 1-form.

(2) There exists a transversely affine Ricatti foliation R on a surface S
and a rational map p : X ��� S such that p∗R = F .

Our proof does not use the hypothesis on the topology of X when the
transverse affine structure is regular (the connection on NF has at most
logarithmic singularities); or when the monodromy of the transverse affine
structure is Zariski dense.

We do not know if the hypothesis on the topology is necessary in gen-
eral. The result as stated above probably holds also on compact Kähler
manifolds, but at some key points we used results that are only avail-
able in the algebraic category. We do know that the result does not hold
for compact complex manifolds in general; foliations on Inoue surfaces are
perhaps the easiest counterexamples, see [7, Remark 2.1]. Also, the result
does not hold for transversely affine germs of codimension one foliations, see
[27, Section IV].

There were previous attempts to arrive at a structure theorem for sin-
gular transversely affine foliations of codimension one on projective spaces,
see [9, 12, 24] to have a sample of such attempts. All these works approach
the problem through the study of the foliation on a neighborhood of the
singular divisor of the transverse affine structure based on an analysis of
the (generalized) holonomy of this divisor, see also [21]. They use extension
results to globalize the semi-local conclusions. The nature of this method
leads one to impose restrictions on the type of singularities of the folia-
tion. In contrast, our approach is based on the study of the monodromy
representation of the singular transversely affine foliation, and relies on
recent results [3, 8] on the structure of representations of the fundamen-
tal groups of quasi-projective manifolds in the affine group Aff(C). We also
make use of some classical results on the periods of families of closed rational
1-forms [14] combined with basic properties of Picard–Fuchs equations; as
well as results on the local/semi-local structure of singular transversely affine
foliations.

As a rather concrete application, we provide a classification of Liouvillian
integrable 1-forms on Cn which do not admit invariant algebraic hypersur-
faces.
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Corollary B. Let ω be a polynomial differential 1-form on Cn. If ω is
Liouvillian integrable and has no invariant algebraic hypersurface then there
exists a polynomial map P : Cn → C2 and polynomials a, b ∈ C[x] such that

ω = P ∗(dy + (a(x) + b(x)y)dx).

The existence of such Liouvillian integrable 1-forms have been recently
recognized by [15] as a new phenomenon, but as stated above they are
nothing but disguised classical Riccati equations.

Our Theorem A can be rephrased as a structure theorem for reducible
flat meromorphic sl(2)-connections over projective manifolds. By a sl(2)-
connection we mean a connection with zero trace on a rank two vector
bundle with trivial determinant.

Theorem C. Let X be a projective manifold with h1(X,C) = 0. Let ∇ be
a reducible flat meromorphic sl(2)-connection on a vector bundle V over X.
There exists a generically finite Galois morphism p : Y → X such that at
least one of the following assertions holds true.

(1) The connection matrix of p∗∇ in a suitable basis of rational sections
of p∗V is [

0 ω
0 0

]
or

[
η/2 0
0 −η/2

]
.

In particular the monodromy of ∇ is virtually abelian.

(2) There exists a curve C, a meromorphic flat connection ∇0 on a rank
two bundle over C and a rational map π : Y ��� C such that p∗∇ is
birationally gauge equivalent to π∗∇0. Moreover, in this case the degree
of p is at most two.

2. Transversely affine foliations

2.1. Definition

Let F be a codimension one holomorphic foliation on a complex manifold
X with normal bundle NF , i.e., F is defined by a holomorphic section ω of
NF ⊗ Ω1

X with zero locus of codimension ≥2 and satisfying ω ∧ dω = 0.
A singular transverse affine structure for F is a meromorphic flat
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connection

∇ : NF −→ NF ⊗ Ω1
X(∗D), satisfying ∇(ω) = 0;

where D is a reduced divisor on X and Ω1
X(∗D) is the sheaf of meromorphic

1-forms on X with poles (of arbitrary order) along D. We will always take
D minimal, in the sense that the connection form of ∇ is not holomorphic
in any point of D. The divisor D is the singular divisor of the transverse
affine structure.

A codimension one foliation F is a singular transversely affine folia-
tion if it admits a singular transverse affine structure. Aiming at simplicity,
from now on we will omit the adjective singular when talking about singular
transverse affine structures and singular transversely affine foliations.

As will be seen in Example 2.5, the same holomorphic foliation can admit
more than one transverse affine structure. When we want to keep track of
the transverse affine structure, we write (F ,∇) instead of F .

2.2. Interpretation in terms of rational 1-forms

When X is an algebraic manifold, the transverse affine structure can be
defined by rational 1-forms. If ω0 is a rational 1-form defining F then the
existence of a meromorphic flat connection on NF satisfying ∇(ω) = 0 is
equivalent to the existence of a rational 1-form η0 such that

dω0 = ω0 ∧ η0 and dη0 = 0.

Indeed, if U is an arbitrary open subset of a complex manifold X where NF
is trivial then a flat meromorphic connection on a trivialization of NF in U
can be expressed as

∇|U (f) = df + f ⊗ η0,

where η0 is a closed meromorphic 1-form which belongs toH0(U,Ω1
X(∗D)|U ).

If ω0 represents ω on U then∇|U (ω0) = dω0 + η0 ∧ ω0 and∇(ω) = 0 is equiv-
alent to dω0 = ω0 ∧ η0. If X is algebraic we can trivialize NF in the Zariski
topology and get the sought pair of rational 1-forms.

Most of time we will work with U an affine open subset of a projective
manifold X. At some points we will need to work with open subsets in the
analytic topology, as we are going to make use of results on the normal forms
of singularities of codimension one foliations.

Notice that a change of trivialization does change η0, and also changes
ω0. If the pair (ω0, η0) represents (ω,∇) in a given trivialization over U
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then in another trivialization over U the representatives will be of the form
(gω0, η0 − d log g) for a suitable nowhere vanishing function g ∈ OX(U)∗.

The equality dω0 = ω0 ∧ η0 implies that the (multi-valued) 1-form
exp(

∫
η0)ω0 is closed. Its primitives are first integrals for the foliation F .

These first integrals belong to a Liouvillian extension of the field of rational
functions on X, and conversely the existence of a non-constant Liouvillian
first integral for F implies that F is transversely affine, see [26].

Even if ω0 and η0 may have poles in the complement of D, the multi-
valued function

∫
exp(

∫
η0)ω0 coincides with the developing map of

F|X−(D∪singF) and extends holomorphically to the universal covering of
X −D. Indeed, at a point p in the polar set of η0 or of ω0 which do not
belong to D, we can choose another pair (ω′0, η′0) of rational 1-forms, regular
at p, defining locally the foliation F and the connection ∇.

For any given base point q ∈ X −D, its monodromy is an anti-
representation � of the fundamental group of the complement of D in X
to the affine group Aff(C) = C∗ � C. The linear part of � will be denoted by
ρ. It coincides with the monodromy of ∇.

π1(X −D) Aff(C)

C∗

�

ρ

Here and throughout the paper we will deliberately omit the base point of
the fundamental groups. This should not lead to any confusion. Notice that
for any path γ contained in the locus where both ω0 and η0 are regular we
can write

ρ(γ) =
{
z 	→ z · exp

(∫
γ
η0

)}
and

�(γ) =
{
z 	→ z · exp

(∫
γ
η0

)
+
∫

γ
exp

(∫
η0

)
ω0

}
.

2.3. Singular divisor and residues

Recall from the previous section that the singular divisor of a transverse
affine structure ∇ is nothing but the reduced divisor of poles of ∇.
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Proposition 2.1. The irreducible components of the singular divisor D
of a transverse affine structure ∇ for a codimension one foliation F are
invariant by F .

Proof. Let f be a local equation for an irreducible component C of D and
(ω0, η0) be a local pair describing (F ,∇) at a sufficiently small neighborhood
of general point of C. The equation dη0 = 0 imposes η0 = α+ h(f) df

fk with
α a germ of holomorphic 1-form and h a germ of holomorphic function
on (C, 0) not vanishing at zero. The equation dω0 = ω0 ∧ η0 implies that f
divides ω0 ∧ df , i.e., C = {f = 0} is F-invariant. �

To each irreducible component C of D we can attach a complex number
ResC(∇), defined as the residue of any local meromorphic 1-form η0 defining
∇ at a general point p of C, i.e.,

ResC(∇) = 1
2iπ

∫
γ
η0

for γ equal to the boundary of a disc intersecting (∇)∞ transversely at p,
and only at p. The flatness of ∇ (i.e., closedness of η0) implies that this
complex number is independent of the choices of η0, p, and γ.

Proposition 2.2. Let X be a projective manifold. If ∇ is any flat mero-
morphic connection on a line-bundle L then the class of −∑ResC(∇)[C] in
H2(X,C), with the summation ranging over the irreducible components of
the singular divisor D, represents the Chern class of L. Reciprocally, given a
C-divisor R =

∑
λCC with the same class in H2(X,C) as a line bundle L,

there exists a flat meromorphic connection ∇L on L with logarithmic poles
and Res(∇L) = −R.

Proof. When X is a curve it is well known that the Chern class of a line-
bundle L with a meromorphic connection∇ can be recovered from−∑ResC
(∇)[C] in H2(X,C), see for instance [23, Chapter IV, Exercise 1.10]. The
general case can be proved by restriction of ∇ to general curves in X.

To realize a C-divisor R =
∑
λCC as the residue divisor of a logarithmic

connection with singular divisor D =
∑
C, we can replace the pair (X,D)

by a log resolution since it suffices to construct the sought connection on L
in the complement of a codimension two analytic subset and then extend it
using Hartog’s Theorem.
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Suppose without loss of generality that D is a simple normal crossing
divisor. We have the exact sequence

0→ Ω1
X −→ Ω1

X(logD) −→ ⊕OC → 0

with the first arrow given by the inclusion and the second arrow given by
the residue map, cf. [6, Chapter 6]. The boundary map ⊕H0(C,OC)→
H1(X,Ω1

X) sends (λC) to
∑
λC [C], where [C] is the Chern class of OX(C)

inH1(X,Ω1
X) ⊂ H2(X,C). The inclusion ofH1(X,Ω1

X) inH
2(X,C) is given

by Hodge decomposition.
Suppose c1(L) = −c1(R) = −

∑
λC [C] in H1(X,Ω1

X). Let s be a general
rational section of L. Here by general we mean that D′ = (s)0 + (s)∞ +D
is a simple normal crossing divisor. Then there exists a logarithmic 1-form
η with poles in D′ and residue divisor equal to R0 = R+ (s)0 − (s)∞. Since
logarithmic 1-forms on compact Kähler manifolds are closed [6, Chapter 6],
the connection ∇0 = d+ η is a flat connection on the trivial line-bundle with
residue divisor equal to R0. Let∇1 be the rational connection on L satisfying
∇1(s) = 0. If s is given in a trivialization of L by a rational function f
then, locally, ∇1 = d− df

f . Therefore ∇1 is a flat logarithmic connection
with residue divisor (s)∞ − (s)0. The tensor product ∇0 ⊗∇1, obtained by
summing up the local connection forms, is a flat logarithmic connection in
L with residue divisor equal to R0 + (s)∞ − (s)0 = R. �

Remark 2.3. Two flat meromorphic connections ∇1 and ∇2 on the same
line-bundle L differ by a closed rational 1-form, i.e., ∇1 −∇2 = β for β a
closed rational 1-form. If the residues of ∇1 and ∇2 coincide then β has
no residues; in particular, when h1(X,C) = 0, the rational 1-form β is the
differential of a rational function.

2.4. Examples and first properties

We collect below the standard examples of transversely affine codimension
one foliations and some basic properties concerning the (non) uniqueness of
transverse affine structure for a given foliation.

Example 2.4 (Foliations with rational first integral). If F : X ��� C
is a dominant rational map to a curve, then ω0 = dF is a rational form which
defines a transversely affine codimension one foliation. It has many different
transverse affine structures, see Example 2.5 below.
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Example 2.5 (Foliations defined by closed 1-forms). If F is a codi-
mension one foliation on a projective manifold defined by a closed rational
1-form ω0, then F admits a family of pairwise distinct transverse affine
structures parametrized by α ∈ C. Indeed, for any constant α ∈ C we have
that η0 = αω0 is closed and satisfies dω0 = ω0 ∧ η0. If α �= 0, since the mon-
odromy is obtained by the analytic continuation of F =

∫
exp(

∫
αω0)ω0 =∫

exp(αG)dG = exp(αG)/α, where G =
∫
ω0, it must be of the form γ 	→

(exp
∫
γ ω0)α ∈ C∗. If α = 0,

∫
exp(

∫
αω0)ω0 =

∫
ω0, and the monodromy is

γ 	→ ∫
γ ω0 ∈ (C,+).

Proposition 2.6. Let F be a codimension one foliation on a projective
manifold X. Suppose F admits two distinct transverse affine structures.
Then F is defined by a closed rational 1-form. Moreover, if F does not admit
a non-constant rational first integral then every transverse affine structure
for F belongs to the one-parameter family presented in Example 2.5.

Proof. If F admits two distinct transverse affine structures, then for any
rational 1-form ω0 defining F , there exist two distinct closed rational 1-
forms η1 and η2 such that

dω0 = ω0 ∧ ηi, i = 1, 2.

Therefore ω0 ∧ (η1 − η2) = 0 and consequently η1 − η2 is a closed rational
1-form defining F .

If F is defined by a closed rational 1-form ω0 and (ω0, η0) represents
(F ,∇), then η0 must satisfy ω0 ∧ η0 = 0. Therefore η0 = hω0 for a suitable
rational function. Differentiation shows that h must be constant along the
leaves of F , i.e., h is a rational first integral for F . If F does not admit a
non-constant rational first integral then we are in the situation described in
Example 2.5. �

If F is defined by a closed rational 1-form ω0, the case α = 0 in
Example 2.5 says there exists an transversely affine structure for F which
has at worst logarithmic poles at the zeros and poles of ω0 and has additive
monodromy group. The converse of this statement also holds true.

Proposition 2.7. Let (F ,∇) be a transversely affine codimension one foli-
ation on a projective manifold X. If ∇ has at worst logarithmic singularities
and the monodromy group of (F ,∇) is contained in (C,+), then F is defined
by a closed rational 1-form.



994 Gaël Cousin and Jorge Vitório Pereira

Proof. We have a locally well-defined closed meromorphic 1-form exp(
∫
η0)

ω0 defining F in X −D, the monodromy hypothesis says it is well-defined
in X −D. We only have to check exp(

∫
η0)ω0 extends meromorphically

through D. In a neighborhood U of any smooth point of D, take a local
pair (ω, η) representing (F ,∇). Notice that η = α+ λdf

f for a local equa-
tion f of D, α closed holomorphic 1-form in U and λ ∈ Z. There exists
a meromorphic function g on U such that (ω0, η0) = (gω, η − dg

g ). Thus
exp(

∫
η0)ω0 = g−1 exp(

∫
η)gω = exp(

∫
α)fλω is meromorphic in U . Since

U is arbitrary, it follows that exp(
∫
η0)ω0 is a well-defined meromorphic

1-form on X. �
The hypothesis on the nature of the singularities of∇ is important in the

proposition above. There exist transversely affine codimension one foliations
F on projective manifolds which have trivial monodromy group but are not
given by a closed rational 1-form.

Example 2.8. A simple example on P1 × P1 is given in affine coordinates
by

ω0 = x3dy + 1/2(x+ y)dx and η0 = −dx
x
+
dx

x3
.

The only invariant curves are {x = 0} and the {y =∞}. Proposition 2.6
implies that this foliation cannot be given by a closed rational 1-form. It is
birationally equivalent to the one appearing in [15, Theorem 3].

If F is a codimension one foliation defined by a closed rational 1-form on
a projective manifold X and F is invariant by a finite group G ⊂ Aut(X),
then the quotient of F by G, seen in any resolution of X/G, is also a trans-
versely affine foliation. Indeed, transversely affine structures behave rather
well under rational maps between foliations.

Proposition 2.9. Let X and Y be projective manifolds, f : X ��� Y a
dominant rational map, and F a codimension one foliation on Y . The foli-
ation f∗F has a transverse affine structure if and only if so does F . If this
occurs, the pull-back of any transversely affine structure (F ,∇) for F has as
monodromy group a finite index subgroup of the monodromy group of (F ,∇).

Proof. The result, phrased in terms of extensions of differential fields, is
already implicit in [26]. Except for the finiteness of the index, a geometric
proof can be found in [11, Theorem 2.21]. We can write f = π ◦ h with
π : Z ��� Y a generically finite rational map from a projective manifold Z
to Y , and h : X ��� Z a rational map with irreducible generic fiber. The
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monodromy of the pull-back of the affine structure (F ,∇) factors through
h, and h induces a surjective map of fundamental groups, after restriction
to any nonempty Zariski open set. On the other hand, if we restrict π over
a sufficiently small nonempty Zariski open set, it induces a monomorphism
with finite index image between fundamental groups. �

Example 2.10 (Quotients). Let F be a codimension one foliation on a
projective manifold X defined by a closed rational 1-form ω0 and which
does not admit a rational first integral. If ϕ ∈ Aut(X) is an automorphism
of finite order of F then ϕ∗(ω0) is also a closed 1-form defining F and since
F does not admit a rational first integral, we must have ϕ∗ω0 = ξω0 for some
root of unity ξ. The quotient of F by ϕ is a transversely affine foliation with
monodromy group equal to an extension of the subgroup of C∗ generated
by ξ by a subgroup of (C,+), determined by the integrals of ω0 along paths
joining points in the same orbit of ϕ.

Example 2.11 (Riccati foliations). Let X be a projective manifold and
π : X → Y a fibration with generic fiber isomorphic to P1. If F is a codimen-
sion one foliation on X which has no tangencies with the general fiber of π
then we say that F is a Riccati foliation. An arbitrary Riccati foliation does
not admit a transverse affine structure. Indeed, it follows from a classical
result of Liouville that a Riccati foliation admits a transverse affine struc-
ture if and only if there exists a hypersurface H ⊂ X, invariant by F and
which dominates Y , i.e., with π(H) = Y . For example, if H intersects the
general fiber at only one point then there exists a birational transformation
ϕ : Y × P1 ��� X such that the strict transform ofH is the section at infinity
of Y × P1 → Y . On Y × P1 the foliation ϕ∗F is defined by a rational 1-form
ω0 = dy + α+ yβ, with α, β pull-backs of rational 1-forms on Y . Since ω0 is
integrable it follows that dα = α ∧ β and β is closed. If we take η0 = β then
dω0 = ω0 ∧ η0 which shows that ϕ∗F is a transversely affine foliation.

It follows from the Riemann–Hilbert correspondence that there are no
restrictions on the monodromy group of these Riccati foliations, see [20]. In
particular, any finitely generated subgroup of Aff(C) appears as the mon-
odromy group of a transversely affine Riccati foliation over Y = P1.

Notice that there exist transversely affine Riccati foliations with trivial
monodromy but not given by a closed rational 1-form, e.g., Example 2.8.
Similarly, there are Riccati foliations with trivial monodromy which are not
transversely affine foliations.
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2.5. Holonomy

For a transversely affine codimension one foliation (F ,∇) with singular divi-
sor D, we define the singular leaves of F as the leaves contained in D.
Every other leaf of F will be called a non-singular leaf.

Proposition 2.12. The holonomy of any non singular leaf L of F is lin-
earizable.

Proof. Let U = X − (D ∪ singF). Notice that the holonomy of any leaf of
F|U is in Aff(C) and fixes a point in C. Therefore it is linearizable. Since
any element of π1(L) can be represented by a loop in L ∩ U , it follows that
the same holds true for the holonomy of L. �

The determination of the holonomy of the singular leaves of F is more
subtle and we will not treat the general case. For our purposes the statement
below suffices.

Proposition 2.13. Let L be a smooth and irreducible component of D.
Then the holonomy of L is solvable. Moreover, if the singularity of ∇ along
L is not logarithmic then the holonomy group of L has a finite index subgroup
tangent to the identity, and is thus virtually abelian.

Proof. The fact that the holonomy group L is a solvable subgroup of
Diff(C, 0) is well-known, see for instance [21] or [4]. To prove the state-
ment about non-logarithmic singularities of ∇ we adapt the arguments of
[12, pages 3076–3077].

Let q ∈ L be a point where the foliation is smooth. In suitable local ana-
lytic coordinates at a neighborhood of q the foliation F is defined by a 1-form
ω = dy and the connection form is η = λdy

y + d(1/a(y)) with a(0) = 0. Let
Σ be a transversal to F at q with coordinate y. The restriction of the (multi-
valued) first integral

∫
exp(

∫
η)ω to a sector with vertex at q on Σ is (one

of the determinations of) f(y) =
∫ y
� s

λ exp(1/a(s))ds. If h : (Σ, q)→ (Σ, q)
is a holonomy map, then

f(y) = αf(h(y)) + β

for suitable α ∈ C∗ and β ∈ C. After differentiating we can express α as

α =
f ′(y)

f ′(h(y))h′(y)
=

1
h′(y)

·
(

y

h(y)

)λ

· exp
(

1
a(y)

− 1
a(h(y))

)
.



Transversely affine foliations 997

Since α is constant, the parameter in the exponential must be holomorphic
as all the other factors in the product have moderate growth. This implies
h′(0)k = 1, where k is the vanishing order of a(y) at y = 0. Thus the linear
part of the members of H are all roots of unity of order ≤k and form a finite
subgroup of C∗. Therefore H admits a finite index subgroup consisting of
germs of diffeomorphisms tangent to the identity. But solvable subgroups
of Diff(C, 0) with trivial linear part are abelian, [19, pages 3–4], and we
conclude that the holonomy of L is virtually abelian. �

2.6. Transversely affine foliations as transversely projective
foliations

A codimension one foliation F on a projective manifold X is a singular
transversely projective foliation if there exists

(1) π : P → X a P1-bundle over X locally trivial in the Euclidean
topology;

(2) H a codimension one singular holomorphic foliation of P transverse to
the generic fiber of π;

(3) σ : X ��� P a rational section generically transverse to H;
such that F = σ∗H. The triple P = (P,H, σ) is, by definition, a trans-
verse projective structure for F . This definition of singular transversely
projective foliation is essentially equivalent to the one given in [24], for a
comparison between the two definitions and thorough discussion see [20]. As
in the case of singular transverse affine structures/foliations we will delib-
erately omit the adjective singular, and refer to this class of foliations from
now on as transversely projective foliations.

Any two such triples P = (P,H, σ) and P ′ = (P ′,H′, σ′) are said bira-
tionally equivalent when they are conjugate by a birational bundle trans-
formation φ : P ��� P ′ satisfying φ∗H′ = H, and φ ◦ σ = σ′.

The polar divisor of the transverse structure, denoted by (P)∞, is the
divisor on X defined by the direct image under π of the tangency divisor
between H and the one-dimensional foliation induced by the fibers of π.

Let |(P)∞| be the support of the polar divisor. Themonodromy repre-
sentation of a projective structure P = (P → X,H, σ) is the (anti-)
representation of π1(X \ |(P)∞|) into PSL(2,C) obtained by lifting paths
on X \ |(P)∞| to the leaves of H. Notice that the monodromy representa-
tion does not depend on σ.
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Over a sufficiently small open subset U of X, the foliation H is the
projectivization of a foliation on a rank two vector bundle over U given
by the flat sections of a meromorphic flat sl(2)-connection. We say that a
transverse projective structure (P,H, σ) has regular singularities when
the corresponding flat meromorphic connection is regular in the sense of
[14, Chapter II].

Lemma 2.14. If we have two transverse projective structures (P,H, σ) and
(P ′,H′, σ′) on X, both having regular singularities then they have conjugate
monodromies if and only if there exists a birational bundle map φ : P ��� P ′
such that φ∗H′ = H.

Proof. To compare the monodromies, we have to consider structures with
the same polar locus D; to be in that situation we may take D the union of
both original polar loci. Once this is done, suppose these monodromies are
the same (or rather conjugated).

Over X \D, there exists a P1-bundle isomorphism ψ such that
ψ∗H′|X\D = H|X\D, since both foliations are defined over X \D by the sus-
pension of the corresponding representations. We want to show ψ extends
to φ, a bimeromophic P1-bundle map, defined on the whole of X. We first
show that ψ extends meromorphically in the neighborhood of any smooth
point q of D. Let U be a sufficiently small neighborhood of q and f a local
equation in U for the irreducible component C of D through q. We take
sl(2)-connections (E,∇), (E′,∇′) which are local lifts for (P,H), (P ′,H′) as
in [20, Section 2.1].

By regularity of the connections, and up to bimeromorphic transforma-
tions of E|U , E′|U which are biholomorphic outside of E|C , we can suppose
that both vector bundles are trivial and that the connections have at worst
logarithmic poles. Moreover, by coincidence of monodromy, we can assume
that the spectra {θ/2,−θ/2}, {θ′/2,−θ′/2} of the residues matrices at C
are the same. According to [20, Remark 4.9], in suitable coordinates both
H and H′ can be defined by

dz − θz df
f

or dz − (nz + fn)
df

f
,

where n = θ ∈ N in the second case.
Therefore, ψ|U\D can be interpreted as a symmetry (x, z̃) 	→ (x,A(f, z))

of H|U\D where A(t, z) = (a(t)z + b(t))(c(t)z + d(t))−1 is a Moebius trans-
formation with coefficients a, b, c, d holomorphic in a punctured neighbor-
hood of 0 ∈ C. In any case, plugging the coordinate functions of A in the
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equations for the symmetry of H|U\D shows that A is meromomorphic at
f = 0. Since q ∈ D is an arbitrary smooth point, it follows that we can mero-
morphically extend ψ to the complement of a codimension two subset of P .
Levi extension theorem allows us to meromorphically extend ψ to the whole
X, and obtain the sought birational bundle map φ. �

Every transversely affine codimension one foliation (F ,∇) on a projec-
tive manifold X carries a natural transverse projective structure P∇. It is
given by (P,H, σ) as follows.
• P = P(E) is the family of lines in E where E = NF ⊕OX ;

• σ : X → P the section corresponding to the inclusion
OX → NF ⊕OX ;

• H the foliation on P defined by projectivization of a flat connection
D on E; its leaves are the projections of horizontal sections of D. We
now describe D. We have a flat connection ∇̂ on E given by ∇̂ =
∇⊕ d, we also have a map i : NF ⊗ Ω1

X → End(E)⊗ Ω1
X induced by

the composition of natural maps

NF � Hom(OX , NF) ↪→ End(E);

let ω ∈ H0(X,NF ⊗ Ω1
X) be a section defining F , we define D to be

the translated of ∇̂ by i(ω): D = ∇̂+ i(ω). It is easily checked that D
is flat.

If we perform the construction ofD starting with another section λω, λ ∈ C∗,
then we obtain D′, the transform of D by the automorphism λ⊕ 1 of E. So
that the isomorphism class of D is canonically defined by the transverse
affine structure of F .

If we use a trivialization coordinate z : NF|U → C on NF|U and z ⊕ id
on E|U , we see that D = d+Ω has connection matrix Ω =

[
η ω̃
0 0

]
, where

ω̃ and η represent respectively ω and the connection matrix of ∇ in the
trivializations.

In such a trivialization, H coincides with the foliation defined by the
meromorphic 1-form

dz + ω̃ + zη

on the open subset U × P(NF|U ⊕ 1). Over U , the section σ is z = 0.
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Proposition 2.15. Let F be a transversely projective codimension one
foliation on a projective manifold X with transverse projective structure
P = (P,H, σ). Suppose there exists a fibration f : X → C with connected
fibers such that the (local) meromorphic flat connection defining H has reg-
ular singularities along the general fiber of f and that the monodromy rep-
resentation ρ of P factors through f , i.e., there exists a divisor F supported
on finitely many fibers of f and a representation ρ0 from the fundamental
group of C0 = f(X − |(P)∞ + F |) to PSL(2,C) fitting in the diagram below.

π1(X − |(P)∞ + F |) PSL(2,C)

π1(C0)

ρ

f∗
ρ0

Then there exists a P1-bundle S over C; a Riccati foliation R on S; and a
rational map p : X ��� S such that p∗R = F .

Proof. Let π denote the projection of P , and G be the codimension two foli-
ation of P obtained as the intersection of H with the foliation determined
by f . The leaves of G are the leaves of the restrictions H|f−1(y) over the
fibers of f . For generic y ∈ C, H|f−1(y) has regular singularities and triv-
ial monodromy, hence according to Lemma 2.14 it is birationaly equivalent
to the trivial horizontal codimension one foliation on the trivial P1-bundle
over f−1(y). The main result of [17] (see also [22, Section 8]) implies that
G is defined by the levels of a rational dominant map with connected fibers
F : P ��� S, with S a smooth projective surface. By construction, f ◦ π fac-
tors through F : f ◦ π = q ◦ F , for some rational map q : S ��� C. Up to bira-
tional transformation of S, we can suppose q is holomorphic. It follows from
[11, Lemma 3.1] that H projects to a foliation R on S such that F ∗R = H.

For general x ∈ X, the restriction of F to π−1(x) � P1 is not constant,
and it separates the points of π−1(x) as they correspond to different leaves
of G. Therefore F takes a general fiber of π biholomorphically into a fiber
of q. We conclude that R is a Riccati foliation on S, with adapted fibration
q. Defining p := F ◦ σ yields the conclusion. �

Proposition 2.16. Let X and Y be projective manifolds, f : X ��� Y a
dominant rational map, and F a codimension one foliation on Y . If f∗F is
a pull-back of a transversely affine Riccati equation on a surface then either
F is a pull-back of a transversely affine Riccati equation on a surface, or
there exists a generically finite morphism g : Z → Y such that g∗F is given
by a closed rational 1-form.



Transversely affine foliations 1001

Proof. It suffices to consider the case where dimX = dimY since we can
replace X by a general submanifold with the same dimension as Y . Let
r : Z ��� X be a dominant rational map between manifolds of the same
dimension such that the composition g = f ◦ r defines a Galoisian field
extension g∗ : C(Y )→ C(Z), i.e., the group of birational transformations
ϕ : Z ��� Z which satisfy g ◦ ϕ = g acts transitively on the general fiber of
g. Notice that g∗F admits a transverse affine structure and is the pull-back
of a Riccati foliation on a surface.

If the transverse affine structure for g∗F is not unique then g∗F is defined
by a closed rational 1-form according to Proposition 2.6.

If the transverse affine structure for g∗F is unique then it must be invari-
ant under birational maps ϕ : Z ��� Z such that g ◦ ϕ = g. In other words, if
we consider the projective structure (P,H, σ) naturally associated with g∗F
then every birational deck transformation ϕ of g lifts to a birational map
Φ : P ��� P which preserves H and σ, i.e., Φ∗H = H and Φ ◦ σ = σ. Since
g∗F is a pull-back of a Riccati foliation H0 on a surface S, the same holds
true for H. Notice that the fibers of the pull-back map (P,H) ��� (S,H0)
define a codimension two foliation G by algebraic subvarieties tangent to
H. To prove that F is also a pull-back of a Riccati foliation on a surface
it suffices to verify that G is invariant by Φ. Since H is invariant by Φ, if
Φ∗G �= G then Φ∗G would be another foliation by codimension two algebraic
subvarieties tangent to H. But this would imply that the leaves of H are
algebraic and the same would hold true for g∗F and F . This contradiction
shows that Φ∗G = G, and therefore F is also a pull-back of a Riccati foliation
on a surface under a rational map. �

3. Cohomology jumping loci for local systems

Let X be a projective manifold and U ⊂ X be the complement of a divisor
D of X. In this section, we are going to review results on the structure of
representations

� : π1(U) −→ Aff(C),

which will be essential in what follows.

3.1. Group cohomology

Let Γ be a group, V a finite dimension vector space, and ρ : Γ→ GL(V ) a
morphism of groups. The homomorphism ρ endows V with the structure of a
Γ-module which we will denote by Vρ. The first cohomology group of Γ with
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values in Vρ can be defined as the quotient of 1-cocycles and 1-coboundaries

H1(Γ, Vρ) =
{ϕ : Γ→ V ;ϕ(γ1 · γ2) = ϕ(γ1) + ρ(γ1)ϕ(γ2)}

{ϕ : Γ→ V ;∃v ∈ V such that ϕ(γ) = ρ(γ)v − v ,∀γ ∈ Γ}.

Let � : Γ→ Aff(V) a representation in the affine group Aff(V ) =
GL(V )� V . If γ belongs to Γ then we can write �(γ)(z) = ρ(γ)z + τ(γ),
where ρ : Γ→ GL(V ) is a homomorphism; and τ : Γ→ V is a 1-cocycle with
values in Vρ. The class of τ in H1(Γ, Vρ) is trivial if and only if the action
of �(Γ) fixes a point, so that we can write �(γ)(v) = ρ(γ) · (v − v0) + v0. If
ρ is the trivial homomorphism then H1(Γ, Vρ) = Hom(Γ, V ).

3.2. Cohomology jumping loci for quasi-projective manifolds

Let U be a quasi-projective manifold. If Γ = π1(U) then H1(Γ, Vρ) =
H1(U,Cρ), where Cρ is the rank one local system on U having ρ as its
monodromy. The characteristic varieties of U are defined as

Σi
k(U) = {ρ ∈ Hom(π1(U),C∗); dimH i(U,Cρ) ≥ k}.

When U is compact they have been studied by Green–Lazarsfeld, Beauville,
Catanese, Simpson, Campana, Delzant and others, and when U is not proper
they have been studied by Arapura, Dimca, Bartolo-Cogolludo-Matei,
Budur-Wang and others. See [3, 8] and references therein.

Of particular interest for us, is the first characteristic variety which is
described by the following theorem which combines results by Arapura and
Bartolo-Cogolludo-Matei, and is stated in [3] in a slightly different form
which we present afterwards.

Theorem 3.1. If U is a quasi-projective manifold then Σ1
k(U) is a finite

union of torsion translates of subtori of Hom(π1(U),C∗). Moreover, each
irreducible component of Σ1

k(U) of positive dimension is a translate by a
torsion element of a subtorus of the form

f∗Hom(π1(C),C∗)

where C is a quasi-projective curve and f : U → C is a morphism.

In particular, if ρ : π1(U)→ C∗ belongs to a positive-dimensional compo-
nent of Σ1

k(U) then there exists an étale covering p : V → U and ρ′ : π1(C)→
C∗ such that the following diagram commutes.
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π1(V ) π1(C)

π1(U) C∗

(f ◦ p)∗

p∗ ρ′
ρ

The covering p is determined by the torsion character used to translate
the subtorus and is related to the presence of multiple fibers of the fibration
f : U → C. This factorization is more succinctly stated in the language of
orbifolds: there exists C an orbifold of dimension one, f : U → C a morphism
of orbifolds, and a representation ρ′ : πorb

1 (C)→ C∗ such that

ρ = ρ′ ◦ f∗.

This is the statement of [3, Theorem 1].

4. Factorization of representations

The result below is an easy consequence of Theorem 3.1, and is well known
to the specialists. Indeed, in [3, Theorem 5.1] it appears as an important
intermediate step toward the proof of Theorem 3.1. Nevertheless, we present
a proof using Theorem 3.1 as a black-box, since the argument is short and
clarifies what sort of obstructions one may find when trying to factorize a
representation in Aff(C) through a fibration.

Theorem 4.1. Let U be a quasi-projective manifold and � : π1(U)→ Aff(C)
be a representation in the affine group. If the image of � is Zariski dense
in Aff(C) then there exists an orbifold C of dimension one, a morphism of
orbifolds f : U → C, and a representation �̃ : πorb

1 (C)→ Aff(C) factoring �
as in the diagram below.

π1(U) Aff(C)

πorb
1 (C)

�

f∗
�̃

Proof. Let ρ : π1(U)→ C∗ be the linear part of �, i.e., ρ is the composi-
tion of � with the natural projection Aff(C)→ C∗. Since � has Zariski dense
image, it must be non abelian and therefore k = h1(U,Cρ) > 0. Since ρ is not
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torsion, Theorem 3.1 implies that the germ Σρ of Σ1
k(U) at ρ is smooth of

positive dimension. Indeed, if there are two distinct irreducible components
through ρ then ρ factors through two distinct fibrations and the general fiber
of one of the fibrations dominates the basis of the other fibration. Since the
representation is the identity over the general fiber of both fibrations, [13,
Lemma 4.19] implies that the representation has finite image, i.e., ρ is tor-
sion. Therefore every ρ′ ∈ Σρ satisfies h1(U,Cρ′) = h1(U,Cρ). Consequently
we have a morphism Ψ : Σρ → Hom(π1(U),Aff(C)) such that Ψ(ρ) = � and
Ψ(ρ′) is a representation with linear part ρ′, see [25, Lemma 2.1].

Let f : U → C be the morphism of orbifolds given by Theorem 3.1. Let
U0 ⊂ U be a Zariski open subset such that the restriction of f to U0 is a
smooth fibration, locally trivial in the C∞ category, over C0 = f(U0). Let
us compare the long exact sequence for the homotopy groups of a fibration
with the factorization of the linear part of �.

0 (C,+) Aff(C) C∗ 1

0 π1(F ) π1(U0) π1(C0) 1
f∗

� � ρ

From this diagram we deduce that �(π1(F )) is a finitely generated normal
subgroup of �(π1(U0)) = �(π1(U)) with trivial linear part. If τ ∈ �(π1(F )) ⊂
(C,+) and λ ∈ ρ(π1(U0)), then by conjugation

λiτ ∈ � (π1(F ))

for every i ∈ Z. Since �(π1(F )) is finitely generated, if τ �= 0 then both λ
and λ−1 are roots of polynomials with integer coefficients. Therefore either
�(π1(F )) = 0 or ρ(π1(U0)) is contained in the ring of algebraic integers of
some number field K ⊂ C.

Notice that a general ρ′ ∈ Σρ is not defined over a number field and there-
fore the representation Ψ(ρ′) factors. Since the factorization is equivalent to
the triviality of Ψ(ρ′) over a general fiber of f and this is a closed property,
it follows that the representation � = Ψ(ρ) also factors as wanted. �

5. Proof of Theorem A

Let (F ,∇) be a transversely affine codimension one foliation on a projec-
tive manifold X with singular divisor D and complement U = X −D. Let
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� : π1(U)→ Aff(C) be its monodromy representation and ρ : π1(U)→ C∗ be
its multiplicative part.

We will divide the proof of Theorem A according to the properties of �.

5.1. Zariski dense monodromy

Under the assumption that � has Zariski dense image we are able to prove
Theorem A on arbitrary projective manifolds as already mentioned in the
introduction.

Theorem 5.1. Let X be a projective manifold and let (F ,∇) be a trans-
versely affine codimension one foliation on X. If the monodromy of (F ,∇)
is Zariski dense in Aff(C) then there exist a transversely affine Ricatti foli-
ation R on a projective surface S and a rational map p : X ��� S such that
p∗R = F .

Proof. Suppose that � has Zariski dense image in Aff(C). Theorem 4.1
implies that the representation � factors through a morphism of orbifolds
f : U → C0 where C0 is a quasi-projective orbicurve. Include in D the fibers
of f over the multiple fibers of f . Over the new U = X −D, f is just a reg-
ular morphism to a quasi-projective curve C0, restriction of a rational map
f : X ��� C between projective manifolds. Modulo resolving the indetermi-
nacies of this map, we can assume that f : X → C is regular, and its restric-
tion to a Zariski open subset U factors the monodromy of (F ,∇) through
a quasi-projective curve CU = f(U), i.e., there exists �f : π1(CU )→ Aff(C)
such that �f ◦ f∗ = �.

In order to be able to apply Proposition 2.15 we have to exclude the
existence of irreducible components H of the singular set of ∇ which are
not logarithmic and have image under f dominating C. We argue by con-
tradiction and assume the existence of an irreducible component H in the
polar set of ∇ which is not logarithmic and which dominates C. Since
the monodromy of (F ,∇) factors through CU , it induces a representation
�H : π1(UH)→ Aff(C), where UH = f−1(f(U)) ∩H, and �H = �f ◦ (f|H)∗.
Moreover, according to Proposition 2.13, there exists a finite index subgroup
G of π1(UH) whose image under the holonomy representation is abelian.

Since elements in [G,G] have trivial holonomy, representatives of them
lift to leaves of F nearby H, and consequently �H([G,G]) = {id}. To arrive
at a contradiction with the density of the monodromy group notice that
f∗π1(UH) has finite index in π1(CU ) according to [13, Lemma 4.19]. This
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proves that such an H cannot exist, and the theorem follows from
Proposition 2.15. �

5.2. Virtually additive monodromy

Theorem 5.2. Let X be a projective manifold with h1(X,C) = 0 and let
(F ,∇) be a transversely affine codimension one foliation on X. If the mon-
odromy of (F ,∇) is contained in a finite extension of (C,+) ⊂ Aff(C), then
either there exists a generically finite Galois morphism p : Y → X such that
p∗F is defined by a closed rational 1-form or there exists a transversely affine
Ricatti foliation R on a surface S and a rational map p : X ��� S such that
p∗R = F .

Proof. If ∇ is logarithmic, with connection form η0 in a Zariski open set,
then exp(

∫
η0) is a multi-valued algebraic function. Its branches determine

a generically finite Galois morphism p : Y → X such that p∗F is defined by
a closed rational 1-form.

Suppose that ∇ is not logarithmic. Proposition 2.2 implies the existence
of a logarithmic connection ∇log on NF having the same residues as ∇. As
explained in Remark 2.3, the difference ∇log −∇ is a closed rational 1-form
β without residues. Since h1(X,C) = 0, the 1-form β is exact in the sense
that there exists a rational function g ∈ C(X) such that β = dg. We can
assume that g defines a regular morphism from X to P1. Let h : X → P1

be the Stein factorization of g. Of course the target is still P1 as we are
assuming h1(X,C) = 0.

We want to show that the monodromy representation factors through
h. To that end suppose first that all the residues of ∇ are integers. In this
case, we can choose a pair of rational 1-forms ω0, η0 in a Zariski open subset
U such that η0 = h∗β0 for some rational 1-form β0 on P1. The equation
dω0 = ω0 ∧ h∗β0 implies that ω0 is closed when restricted to the general fiber
of h. To prove the factorization of the monodromy it suffices the restriction
of ω0 to a general fiber of h is not only closed, but exact.

Let p be a non-logarithmic pole of β0 and let us suppose that U intersects
the fiber over p, otherwise we can start with a different U . Replacing U by
a smaller open subset we can suppose that h restricted to U∗ = U \ h−1(p)
is a locally trivial C∞-fibration over T ∗ = h(U∗). The 1-form ω0 can be
interpreted as a family ω0,t of closed rational 1-forms on the quasi-projective
manifolds Ut = U ∩ h−1(t) parametrized by t ∈ T ∗. We want to prove that
for a general t ∈ T ∗ and any δt ∈ H1(Ut,Z) the integral

∫
δt
ω0,t is equal to

zero.
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The multi-valued function

F : T ∗ −→ C,

t 	−→
∫

δt

ω0,t

obtained by continuous deformation of δt ∈ H1(Ut,Z) satisfies the so-called
Picard–Fuchs equation, see [2, Chapters 10 and 12] specially Sections 10.2.4
and 12.2.1. Let us fix an arbitrary point t0 ∈ T ∗. For t sufficiently close to t0,
let γt be a real curve in T ∗ joining t0 to t, let Δt be a real two-dimensional
surface on U which projects to γt, intersects fibers of h over a point s in the
path γt at the cycle δs, and consequently has boundary equal to δt − δt0 .
Then

dF =
∂

∂t

(∫
δt

ω0,t

)
dt =

∂

∂t

(∫
Δt

dω0 +
∫

δt0

ω0,t0

)
dt

=
∂

∂t

(∫
Δt

ω0 ∧ h∗β0

)
dt

=
∂

∂t

(∫
γt

(∫
δt

ω0

)
· β0

)
dt = F · β0,

where we have used Stokes Theorem in the first line, and Fubini Theorem to
pass from the second to the third line. Thus in our setting, the Picard–Fuchs
equation is nothing but

dF

F
= β0.

Therefore, if one of the periods of ω0,t is not zero then the function F (t) does
not have moderate growth when we approach p. But this contradicts [14,
Théorème 1.8, page 125] (see also [2, Theorem 12.3]) which roughly says
that the periods of holomorphic families of rational 1-forms are functions
with moderate growth at infinity. We conclude that periods of ω0,t are zero
for any t ∈ T ∗, i.e., ω0 is exact on the general fiber of h and therefore the
monodromy factors through h. We apply Proposition 2.15 to conclude that
F is a pull-back of a Riccati foliation over a rational surface.

If the residues of ∇ are not integers in general, they must be rational and
we can apply the above arguments to the pull-back of F under a generically
finite rational map p : Y → X to conclude that p∗F is the pull-back of a
Riccati foliation on a surface. Proposition 2.16 allows us to conclude. �
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5.3. Multiplicative monodromy

Theorem 5.3. Let X be a projective manifold with h1(X,C) = 0 and let
(F ,∇) be a transversely affine codimension one foliation on X. If the mon-
odromy of (F ,∇) is contained in (C∗, ·) ⊂ Aff(C) then either there exists a
generically finite Galois morphism p : Y → X such that p∗F is defined by a
closed rational 1-form or there exists a transversely affine Ricatti foliation
R on a surface S and a rational map p : X ��� S such that p∗R = F .

Proof. Let (P,H, σ) be the transverse projective structure naturally associ-
ated with (F ,∇). Since the monodromy is multiplicative, on the complement
of the singular divisor of ∇ we have two sections Σ1,Σ2 of P invariant by
H. If ∇ is logarithmic then these sections are indeed meromorphic over all
X. If we choose a trivialization of P where these sections are at zero and
at infinity then H is defined by Ω = dz

z − η where η is the pull-back of a
rational 1-form on the basis. Integrability of Ω implies that η is closed and
therefore Ω is also closed. The pull-back of Ω under the section σ gives a
closed rational 1-form on X defining F .

Suppose that ∇ is not logarithmic, and as in the proof of Theorem 5.2
consider the decomposition of ∇ in a logarithmic connection ∇log and a
closed rational 1-form h∗β0 without residues, where h : X → P1 is a mor-
phism with irreducible general fiber. Such a decomposition exists since
h1(X,C) = 0.

If every irreducible component H of the singular divisor of ∇ which
dominates P1 (i.e., h(H) = P1) has integral residues then we claim that
the representation factors through h. To verify this, consider the residue
divisor of ∇. It can be written in the form Res(∇) = V + T where V is
a C-divisor supported on fibers of h and T is a Z-divisor with irreducible
components transverse to h, i.e., not contained in fibers of h. Consider the Q-
vector subspaceW ofH2(X,C) generated by the Chern classes of irreducible
components of the support of V . Notice that WC, the C-vector subspace of
H2(X,C) generated by W , satisfies the identity

WC ∩H2(X,Q) =W

Since both c1(NF) = c1(V ) + c1(T ) and c1(T ) belong to H2(X,Q), the
Chern class of V also belongs to H2(X,Q) and consequently belongs to W .
Therefore there is a Q-divisor V ′ with support contained in the support of
V having the same Chern class as V . Thus we can write V = V ′ + V ′′ where
V ′′ is C-divisor with zero Chern class supported on fibers of h, and V ′ is a
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Q-divisor. Hodge index Theorem implies that V ′′ is a C-linear combination
of fibers of h. Using Proposition 2.2, we deduce that the logarithmic con-
nection ∇log can be written as a sum of a logarithmic connection ∇log,Q

with rational residues and ηlog the pull-back under h of a logarithmic 1-form
on P1. The monodromy representation of the connection ∇log,Q is of finite
order around its poles, and since h1(X,C) = 0, this suffices to conclude that
it is finite. After passing to a finite ramified covering, we can assume that
the monodromy of ∇log,Q is trivial. We can then argue as in the proof of
Theorem 5.2, using Picard–Fuchs equation and Proposition 2.16, to con-
clude that F is the pull-back of a transversely affine Riccati foliation on a
surface.

If there exists an irreducible component H of the singular divisor of ∇
with non integral residue generically transverse to the fibers of h, then we are
going to prove that F is defined by a closed rational 1-form. The proof of [10,
Lemma 9] shows that a codimension one foliation F on a projective manifold
is defined by a rational closed 1-form if and only if the same holds true for
the restriction of F to a sufficiently general hyperplane section. Therefore
it suffices to consider the case where X is a surface. We can further assume
that F is a reduced foliation in the sense of Seidenberg.

Let us consider a general point q at the intersection of H (which is now
a curve) with a non-logarithmic pole of ∇. This point of intersection is a
saddle node singularity for the foliation F which has formal normal form
[5, Section 1.1]

θk,μ = xk+1dy − y(1 + μxk)dx.

If it is not analytically conjugated to its formal normal form then [5, Propo-
sition 5.5] implies that every transverse affine structure for F has inte-
gral residues. Therefore, our assumptions implies that the saddle node is
analytically conjugated to its formal normal form. Hence every transverse
affine structure for the germ of F at q is defined by a pair (θk,μ/yx

k+1,
λθk,μ/yx

k+1), with λ ∈ C. It follows that the sections Σ1,Σ2 defined on the
first paragraph of the proof extend to meromorphic sections over a neighbor-
hood of any component of the singular divisor which is generically transverse
to the fibers of h. Adding to H some reduced and irreducible fibers of h not
contained in the singular divisor of ∇ we obtain a reduced divisor with
ample normal bundle, and a neighborhood of it where the sections Σ1 and
Σ2 extend as meromorphic sections. We can apply [1, Théorème 5] or [18,
Corollary 6.8] to extend these sections to the whole of X. We conclude that
F in this case is defined by a closed rational 1-form. �
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6. Proof of Corollary B

Without loss of generality we can assume that ω has zero set of codimen-
sion at least two. If ω is a polynomial Liouvillian integrable 1-form on Cn

without invariant algebraic hypersurfaces then dω = dQ ∧ ω for some poly-
nomial Q ∈ C[x1, . . . , xn]. Let F be the extension to Pn = Cn ∪H∞ of the
codimension one foliation of Cn defined by ω.

According to Theorem A there exists a rational map F : Pn ��� S, where
S is a P1-bundle over P1, and a transversely affine Riccati foliation R on S
such that F = F ∗R. We will denote by π : S → P1 the reference fibration of
the Riccati foliation R, i.e., R is everywhere transverse to the general fiber
of π.

By Stein factorization, we can that suppose the composition π ◦ F has
irreducible general fiber. With a suitable choice of coordinates we can iden-
tify the restriction to Cn of π ◦ F with a polynomial P such that P − c is
irreducible for a general c ∈ C and Q = A ◦ P for some polynomial A in one
variable.

Up to birational transformations on S, we can also assume that S is a
compactification of C2 such that the restriction of R to C2 has no invariant
algebraic curves and such that the divisor at infinity is R invariant and has
no dicritical singularities.

The pre-image under F of the divisor at infinity must be therefore invari-
ant by F . Since F has no algebraic invariant hypersurfaces on Cn, it follows
that this pre-image must be contained in the hyperplane at infinity. Hence F ,
in suitable coordinates, is nothing but a polynomial map F : Cn → C2. �

7. Proof of Theorem C

The statement of Theorem C is about the birational equivalence class of ∇.
Therefore we can assume that ∇ is a meromorphic flat connection on the
trivial rank two vector bundle. Since it takes values in sl(2), the connection
matrix Ω has zero trace; and the reducibility hypothesis allows us to assume
that Ω is an upper triangular matrix. Therefore we can write

Ω =
[
η/2 ω
0 −η/2

]
for suitable rational 1-forms ω and η. Since ∇ is flat, the integrability equa-
tion dΩ+ Ω ∧ Ω = 0 holds true. This equation is equivalent to the pair of
equations dω = ω ∧ η and dη = 0.
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If ω is zero then there is nothing else to prove. Otherwise ω defines a
transversely affine foliation F on X, with transversely affine structure given
by the pair (ω, η).

Assume first that the foliation F has a non constant rational first integral
f ∈ C(X). Then gω = df for some rational functions f, g : X ��� P1. We
can replace f by its Stein factorization, which still takes values in P1 since
h1(X,C) = 0. If we apply the birational gauge transformation

√
g ⊕ 1/

√
g on

Y , the resolution of a double covering ofX determined by
√
g, the connection

matrix becomes[
η/2− 1/2d log g df

0 −η/2 + 1/2d log g

]
=
[
hdf/2 df
0 −hdf/2

]
,

with h ∈ C(X) ⊂ C(Y ) satisfying dh ∧ df = 0. Since the general fiber of f
is irreducible, there exists H ∈ C(P1) such that h = H ◦ f , and it becomes
clear that the induced connection on Y is birationally equivalent to the
pull-back of a meromorphic connection on P1.

From now on we will assume that F does not admit a non constant
rational first integral. In particular, if F is defined by a closed rational 1-
form ω̃ then every other closed rational 1-form defining F is a constant
multiple of ω̃.

If there exists a generically finite Galois morphism p : Y → X such that
p∗F is defined by a closed rational 1-form (case (1) of Theorem A) then
after applying a gauge transformation of the form

√
g ⊕ 1/

√
g, with g ∈

C(Y ), we can assume that ω is closed, and consequently η = λω, for some
λ ∈ C. If λ = 0 there is nothing else to prove, otherwise we apply the gauge
transformation with matrix [

1 1/λ
0 1

]
to obtain a diagonal connection matrix and we have the result.

Now, we suppose we are not in case (1) of Theorem A, in particular F
is a rational pull-back of a Riccati foliation H0 on a surface S (case (2) of
Theorem A). Then there exists f, g, h ∈ C(X) and α, β rational 1-forms on
P1 such that

gω = dh+ f∗α+ (f∗β)h.

After applying the gauge transformation
√
g ⊕ 1/

√
g we can assume that

g = 1, thus by proposition 2.6, η = f∗β. If we apply the gauge transformation
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given by the matrix [
1 h
0 1

]
we obtain the connection form[

f∗β/2 f∗α
0 −f∗β/2

]
which is clearly a pull-back from a curve. �
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