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THE TOPOLOGY OF TORIC ORIGAMI MANIFOLDS

Tara S. Holm and Ana Rita Pires

Abstract. A folded symplectic form on a manifold is a closed 2-form with the mildest
possible degeneracy along a hypersurface. A special class of folded symplectic manifolds
are the origami symplectic manifolds, studied by Cannas da Silva, Guillemin and Pires,

who classified toric origami manifolds by combinatorial origami templates. In this paper,
we examine the topology of toric origami manifolds that have acyclic origami template
and coörientable folding hypersurface. We prove that the cohomology is concentrated in

even degrees, and that the equivariant cohomology satisfies the Goresky, Kottwitz and
MacPherson description. Finally, we show that toric origami manifolds with coörientable
folding hypersurface provide a class of examples of Masuda and Panov’s torus manifolds.
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1. Introduction

Toric symplectic manifolds are a very useful class of examples for testing general
theories and for making explicit computations. Statements and proofs of important
theorems often simplify in the case of toric manifolds. Delzant’s classification of toric
symplectic manifolds in terms of convex polytopes allows the translation of geometric
and topological questions into combinatorial ones. In this paper, we study toric actions
in the category of folded symplectic manifolds. Relaxing the requirement that the
manifold be symplectic broadens the class of manifolds with toric actions. The mildest
degeneracy is to allow the 2-form to be zero along a hypersurface. In this instance,
there remains enough geometric structure to be able to classify such toric origami
manifolds combinatorially.
In this paper, we study the topology of a particular class of toric origami manifolds,

those with acyclic template and coörientable fold. For such manifolds, we prove that
the ordinary cohomology is concentrated in even degrees (Theorem 3.6). This allows
us to deduce a variety of facts about the equivariant cohomology of these manifolds,
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and in particular to describe the equivariant cohomology ring combinatorially (The-
orem 4.12). Our class of toric origami manifolds does fit into the framework of torus
manifolds (Theorem 5.3). The origami structure allows us to give explicit inductive
proofs. We plan to use similar geometric techniques to study the non-coörientable
and non-acyclic cases. We hope that this approach will also generalize to a class of
torus manifolds that arise from combinatorial origami templates, in the same way
that some torus manifolds arise from combinatorial polytopes.
The remainder of this paper is organized as follows. In Section 2, we review the

symplectic and folded symplectic geometry underlying our work. We then provide a
framework for computing the ordinary and equivariant cohomology of origami man-
ifolds with coörientable folding hypersurface and acyclic template in Sections 3 and
4. In Section 5, we describe the relationship of our work with the toric topology
literature.

2. Origami manifolds

2.1. Symplectic manifolds. We begin with a very quick review of symplectic ge-
ometry, following [4]. Let M be a manifold equipped with a symplectic form: that
is, a differential 2-form ω ∈ Ω2(M) that is closed (dω = 0) and non-degenerate. The
non-degeneracy condition implies that M must be an even-dimensional manifold. The
simplest examples include

(1) M = S2 = CP1 with ωp(X,Y) = signed area of the parallelogram spanned by
X and Y;

(2) M any compact orientable surface with ω the area form; and
(3) M = R2d with ω =

∑
dxi ∧ dyi. The Darboux Theorem says that every

symplectic manifold has local coördinates so that ω is of this standard form.
Suppose that a compact connected abelian Lie group T = (S1)n acts on M pre-

serving ω. The action is weakly Hamiltonian if for every vector ξ ∈ t in the Lie
algebra t of T, the vector field

Xξ(p) =
d

dt

[
exp(tξ) · p

]∣∣∣∣
t=0

is a Hamiltonian vector field. That is, we require ω(Xξ, ·) to be an exact one-form1:

(2.1) ω(Xξ, ·) = dφξ.

Thus, each φξ is a smooth function on M defined by the differential equation (2.1), so
determined up to a constant. Taking them together, we may define a moment map

Φ : M −→ t∗,

p �→
(

t −→ R

ξ �→ φξ(p)

)
.

The action isHamiltonian if the moment map Φ can be chosen to be a T-invariant
map. Atiyah and Guillemin–Sternberg have shown that when M is a compact Hamil-
tonian T-manifold, the image Φ(M) is a convex polytope, and is the convex hull of
the images of the fixed points Φ(MT) [1, 14].

1The one-form ω(Xξ, ·) is automatically closed because the action preserves ω.
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For an effective2 Hamiltonian T action on M , dim(T) ≤ 1
2 dim(M). We say that

the action is toric if this inequality is in fact an equality. A symplectic manifold M
with a toric Hamiltonian T action is called a symplectic toric manifold. Delzant
used the moment polytope to classify symplectic toric manifolds.
A polytope Δ in Rn is simple if there are n edges incident to each vertex, and it is

rational if each edge vector has rational slope: it lies in Qn ⊂ Rn. A simple polytope
is smooth at a vertex if the n primitive vectors parallel to the edges at the vertex
span the lattice Zn ⊆ Rn over Z. It is smooth if it is smooth at each vertex. A simple
rational smooth convex polytope is called a Delzant polytope. We may now state
Delzant’s result.

Theorem 2.2 (Delzant [9]). There is a one-to-one correspondence{
compact toric

symplectic manifolds

}
�

{
Delzant polytopes

}
,

up to equivariant symplectomorphism on the left-hand side and affine equivalence on
the right-hand side.

2.2. Origami manifolds. We now relax the non-degeneracy condition on ω, fol-
lowing [5]. A folded symplectic form on a 2n-dimensional manifold M is a 2-form
ω ∈ Ω2(M) that is closed (dω = 0), whose top power ωn intersects the zero section
transversely on a subset Z and whose restriction to points in Z has maximal rank.
The transversality forces Z to be a codimension 1 embedded submanifold of M . We
call Z the folding hypersurface or fold.
The simplest examples of folded symplectic manifolds include the following.
(1) Euclidean space M = R2d has folded symplectic form

ω = x1dx1 ∧ dy1 +
d∑

i=2

dxi ∧ dyi.

The Folded Darboux Theorem says that at points in Z = {x1 = 0}, every
folded symplectic manifold has local coördinates so that ω is of this standard
form [22, IIIA.4.2.2].

(2) Any even-dimensional sphere M = S2n ⊂ Cn ⊕ R may be equipped with the
form ωCn ⊕0. The folding hypersurface is the equator Z = S2n−1 ⊂ Cn⊕{0}.

(3) Any compact surface M can be equipped with a folded symplectic form with
Z a union of circles. See, for instance, Example 3.19 of [5], and use Remark
2.33 of the same paper together with the classification of closed surfaces. This
includes non-orientable surfaces. For example, RP 2 can be equipped with a
folded symplectic form so that Z is a single circle.

Let i : Z ↪→ M be the inclusion of Z as a submanifold of M . Our assumptions
imply that i∗ω has a 1-dimensional kernel on Z. This line field is called the null
foliation on Z. An origami manifold is a folded symplectic manifold (M, ω) whose
null foliation is fibrating: Z

π−→ B is a fiber bundle with orientable circle fibers over
a compact base B. The form ω is called an origami form and the bundle π is
called the null fibration. A diffeomorphism between two origami manifolds which
intertwines the origami forms is called an origami-symplectomorphism. In the

2An action is effective if no non-trivial subgroup acts trivially.
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Figure 2.3. The moment map image for the T2 action on S4. The
image consists of two overlapping copies of a triangle, which we have
slightly unfolded. The hypotenuse is the image of the equator S3. Ev-
ery other point in the image has two connected components mapping
to it, one from the northern hemisphere and the other from the south-
ern

examples above, the first is not origami because the fibers are R rather than S1, but
the second and third are origami. In the second example, the null fibration is the Hopf
bundle S2n−1 −→ CPn−1, and in the third example, the base B consists of isolated
points.
The definition of a Hamiltonian action only depends on ω being closed. Thus, in

the folded framework, we may define moment maps and toric actions exactly as in
Section 2.1. For example, the action T2 � S4 ⊂ C2 ⊕ R given by rotation on the C2

coördinates is Hamiltonian with moment map

Φ(z1, z1, t) =
(|z1|2, |z2|2

)
.

The image of this map is shown in Figure 2.3 below.
An oriented origami manifold M with fold Z may be unfolded into a symplectic

manifold as follows. Consider the closures of the connected components of M \ Z, a
manifold with boundary which consists of two copies of Z. We collapse the fibers of
the null fibration by identifying the boundary points that are in the same fiber of the
null fibration of each individual copy of Z. The result, M0 := (M \ Z) ∪ B1 ∪ B2, is
a (disconnected) smooth manifold that can be naturally endowed with a symplectic
form which on M0 \ (B1 ∪ B2) coincides with the origami form on M \ Z. Because
this can be achieved using symplectic cutting techniques, the resulting manifold M0

is called the symplectic cut space (and its connected components the symplectic
cut pieces), and the process is also called cutting. An example of cutting a 2-torus
is shown in Figure 2.4. The symplectic cut space of a non-orientable origami manifold
is the Z2-quotient of the symplectic cut space of its orientable double cover.
In the example shown in Figure 2.3, unfolding the origami S4 yields CP2 � CP2.

This is suggested by the image of the moment map: the moment image of each toric
CP2 (regardless of orientation) is a triangle. The cut space M0 of an oriented origami
manifold (M, ω) inherits a natural orientation. It is the orientation on M0 induced
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Figure 2.4. On the left, the torus, with fold Z = S1 ∪ S1 indicated;
in the center, the middle step before collapsing, with two copies of
Z, one in each connected component; and on the right, the final cut
space M0 = S2 ∪ S2 with B1 and B2 each two points

from the orientation on M that matches the symplectic orientation on the symplectic
cut pieces corresponding to the subset of M \ Z where ωn > 0 and the opposite
orientation on those pieces where ωn < 0. In this way, we can associate a + or − sign
to each of the symplectic cut pieces of an oriented origami manifold, as well as to the
corresponding connected components of M \ Z.

Remark 2.5. In this paper, we restrict our attention to origami manifolds whose fold
is coörientable: that is, the fold has an orientable neighborhood. Note that this not
imply that the manifold is orientable. Indeed, for an orientable M , the condition that
ωn intersects the zero section transversally implies that the connected components of
M \Z, which are adjacent in M have opposite signs. Since M is connected, picking a
sign for one connected component of M \Z determines the signs for all other compo-
nents. As a consequence, an origami manifold M with coörientable fold is orientable
if and only if it is possible to make such a global choice of signs for the connected
components of M \ Z. The moment image of a non-orientable origami manifold that
nevertheless has coörientable fold is given in Figure 3.1.

Proposition 2.6 ([5, Props. 2.5 & 2.7]). Let M be a (possibly disconnected) sym-
plectic manifold with a codimension two symplectic submanifold B and a symplectic
involution γ of a tubular neighborhood U of B which preserves B3. Then there is an
origami manifold M̃ such that M is the symplectic cut space of M̃ . Moreover, this
manifold is unique up to origami-symplectomorphism.

This newly-created fold Z ⊂ M̃ involves the radial projectivized normal bundle
of B ⊂ M , so we call the origami manifold M̃ the radial blow-up of M through
(γ, B). The cutting operation and the radial blow-up operation are in the following
sense inverse to each other.

Proposition 2.7 ([5, Prop. 2.37]). Let M be an origami manifold with cut space M0.
The radial blow-up M̃0 is origami-symplectomorphic to M .

There exist Hamiltonian versions of these two operations, which may be used to
see that the moment map Φ for an origami manifold M coincides, on each connected
component of M \ Z with the induced moment map Φi on the corresponding sym-
plectic cut piece Mi. As a result, the moment image Φ(M) is the union of convex
polytopes Δi.

3In the non-coörientable case, the involution must satisfy additional conditions; see [5, Def. 2.23].

In the coörientable case, we have B = B1 ∪ B2 and the involution γ maps a tubular neighborhood
of B1 to one of B2 and vice versa.
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Furthermore, if the circle fibers of the null fibration for a connected component Z

of the fold Z are orbits for a circle subgroup S1 ⊂ T, then Φ(Z) is a facet of each of
the two polytopes corresponding to neighboring components of M \Z. Let us denote
these two polytopes Δ1 and Δ2. We note that they must agree near Φ(Z): there is
a neighborhood V of Φ(Z) in Rn such that Δ1 ∩ V = Δ2 ∩ V. The condition that the
circle fibers are orbits is automatically satisfied when the action is toric, and in that
case there is a classification theorem in terms of the moment data.
The moment data of a toric origami manifold can be encoded in the form of an

origami template, originally defined in [5, Def. 3.12]. Definition 2.8 below is a re-
finement of that original definition. The reasons for this refinement are explained in
Remark 2.9.
Following [13, p. 5], a graph G consists of a nonempty set V of vertices and a set

E of edges together with an incidence relation that associates an edge with its two
end vertices, which need not be distinct. Note that this allows for the existence of
(distinguishable) multiple edges with the same two end vertices, and of loops whose
two end vertices are equal. We introduce some additional notation: let Dn be the set
of all Delzant polytopes in Rn and En the set of all subsets of Rn which are facets of
elements of Dn.

Definition 2.8. An n-dimensional origami template consists of a graph G, called
the template graph, and a pair of maps ΨV : V −→ Dn and ΨE : E −→ En such
that:

(1) if e is an edge of G with end vertices u and v, then ΨE(e) is a facet of each of
the polytopes ΨV (u) and ΨV (v), and these polytopes agree near ΨE(e); and

(2) if v is an end vertex of each of the two distinct edges e and f , then the facets
do not intersect: ΨE(e) ∩ΨE(f) = ∅.

The polytopes in the image of the map ΨV are the Delzant polytopes of the sym-
plectic cut pieces. For each edge e, the set ΨE(e) is a facet of the polytope(s) corre-
sponding to the end vertices of e. We refer to such a set as a fold facet, as it is the
image of the connected components of the folding hypersurface4.
In the example of Figure 2.3, the template graph G has two vertices and one edge

joining them. Both vertices are mapped to the same isosceles right angle triangle
under ΨV , and the edge is mapped to the hypotenuse of that triangle under ΨE .

Remark 2.9. In the original definition of origami template, Definition 3.12 in [5], a
template consisted of a pair (P, F). The set P was a collection of Delzant polytopes
and F was a collection of pairs or singletons of facets of polytopes in P, satisfying
certain conditions. Roughly speaking, P is the image of ΨV and the sets in F assigned
identifications of facets of polytopes in P in a way similar to that of the map ΨE .
To understand the problem with this old definition we turn again to the example of
Figure 2.3: the collection P would contain two identical triangles, and F would contain
one pair, consisting of the hypotenuses of each of the triangles. However, P is a set,
and therefore if it consists of two identical elements it actually consists of only one
such element. The same issue exists with the pairs in F and in other examples, with

4A non-coörientable connected component of the folding hypersurface corresponds to a loop
edge e.
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F itself. Simply replacing the word set by the word multiset to allow for multiple
instances of the same element gives rise to a different type of problem.
We thank an anonymous referee for bringing this problem to our attention.

With these combinatorial data in place, we may now state the classification theorem.

Theorem 2.10 ([5, Theorem 3.13]). There is a one-to-one correspondence{
compact toric

origami manifolds

}
�

{
origami templates

}
,

up to equivariant origami-symplectomorphism on the left-hand side, and affine equiv-
alence of the image of the template in Rn on the right-hand side.

The orbit space M/T of a toric origami manifold is closely related to the origami
template. When M is a toric symplectic manifold, then the orbit space may be iden-
tified with the corresponding Delzant polytope; this identification is achieved by the
moment map. For a toric origami manifold, the orbit space is realized as the topologi-
cal space obtained by gluing the polytopes in ΨV (V ) along the fold facets as specified
by the map ΨE . More precisely, the orbit space is the quotient

(2.11) M/T =
⊔

v∈V

(v,ΨV (v))
/

∼,

where we identify (u, x) ∼ (v, y) if there exists an edge e with endpoints u and v
and the points x = y ∈ ΨE(e) ⊂ Rn. Again, this identification is achieved by the
moment map. In simple low-dimensional examples, we can visualize the orbit space
by superimposing the polytopes ΨV (v) in Rn and indicating which of their facets to
identify; see for instance Figures 2.3, 3.1, 3.15 and 4.11. We will see in Section 5 that
there is a deformation retraction from orbit space M/T to the template graph.
There is a natural description of the faces of M/T. The facets of a polytope are

well-understood. The set of facets of M/T is⊔
v∈V

F facet of ΨV (v)
F not a fold facet

(v, F )
/

∼ ,

where the equivalence relation is induced by the one in (2.11). The faces of M/T

are non-empty intersections of facets in M/T, together with M/T itself. This notion
of face of the orbit space agrees with Masuda and Panov’s definition mentioned in
Section 5.

3. Cohomology concentrated in even degrees

We say that the origami template is acyclic if the template graph is acyclic, and
therefore a tree. In this case, the leaves of the origami template are the polytopes
which are images under ΨV of the leaves of the template graph.
In light of Remark 2.5, a toric origami manifold with coörientable folding hypersur-

face is orientable exactly when the template graph has no odd cycles. In particular,
if M has an acyclic origami template, then M is automatically orientable. Two non-
acyclic origami templates are shown in Figure 3.1, one corresponding to an orientable
origami manifold and the other to a non-orientable one.
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Figure 3.1. The orbit spaces corresponding to two non-acyclic tem-
plates of origami manifolds with coörientable fold. Such manifolds are
orientable exactly when there exists a consistent choice of signs for
the polytopes such that the sign changes whenever we traverse a fold
facet. The one on the left corresponds to a non-orientable manifold
and the one on the right to an orientable manifold

Figure 3.2. From left to right, the spaces M , M+ �M−, C+ � C− and C

The proof of the main theorem in this section will involve induction on the number
of vertices of the template graph. To prove the inductive hypothesis, we need some
auxiliary spaces. We focus on a connected component Z of the fold Z such that M �Z

is the union of one open symplectic manifold W− and one open origami manifold
W+. The corresponding closed manifolds with boundary are M− = W− ∪ Z and
M+ = W+ ∪ Z. Combinatorially, M− corresponds to a leaf of the origami template
for M .
Collapsing the fibers of the null-foliation on Z results in a toric symplectic manifold

B = Z/S1 of dimension dim(B) = dim(M) − 2. Cutting M along Z yields one toric
symplectic manifold C− and one toric origami manifold C+ with one fewer connected
component of the fold Z �Z. Finally, we use the space C = C+∪B C−, which is not a
manifold. This notation is illustrated in the Figure 3.2 and summarized in Table 3.3.

Lemma 3.4. Suppose that M is a compact symplectic toric manifold with moment
polytope ΔM . Let B be a codimension k T-invariant symplectic submanifold whose
moment map image ΔB is a k-dimensional face of ΔM . Then the inclusion i : B ↪→ M
induces a surjection

i∗ : H∗(M ;Z) � H∗(B;Z).

Remark 3.5. Though it holds in more generality, we will only use this Lemma when
the submanifold B is of codimension 2. Just as [24, Lemma 2.3] allows Masuda and
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Table 3.3. Summary of notation

Notation Description
M Toric origami manifold, T � M
Z ⊂ Z Connected component Z of the fold Z
B ⊂ B Toric symplectic manifold B = Z/S1 and union of such B = Z/S1

W+ Connected component of M \ Z that is an open origami manifold
M+ W+ ∪ Z, an origami manifold with boundary
C+ W+ ∪B, an origami manifold with one fewer vertex in its

template graph
W− Connected component of M \ Z that is an open symplectic manifold
M− W− ∪ Z, a symplectic manifold with boundary
C− W− ∪B, a toric symplectic manifold
C W+ ∪B ∪W− = C+ ∪B C− (a T-space, but not a manifold)

Panov to make inductive arguments, our Lemma 3.4 will be the crucial ingredient
when we build the cohomology of M from its related toric pieces.

Proof. The manifold B is itself a symplectic toric manifold. Its cohomology is gen-
erated in degree 2, with one class for each facet F of ΔB. Such a facet F is the
intersection of a facet F̃ of ΔM with ΔB. Under the restriction map i∗, the gen-
erator corresponding to F̃ maps to the generator corresponding to F . Thus, i∗ is
surjective. �
Theorem 3.6. Let T � M be a compact toric origami with acyclic origami template
and coörientable folding hypersurface. Then the cohomology H∗(M ;Z) is concentrated
in even degrees.

Proof. We proceed by induction on the number n of vertices of the template graph, or
equivalently, of connected components of M \Z. The base case is when n = 1 and M
is a compact toric symplectic manifold. In this case, the fact that H∗(M) is generated
in degree 2, and hence concentrated in even degrees is well-known. For example, see
[7, 21]. The case of a connected folding hypersurface is when n = 2, and concentration
in even degrees is proven in [5, Corollary 5.1].
For the inductive step, we assume that every compact toric origami manifold with

coörientable folding hypersurface and acyclic origami template with at most (n − 1)
vertices has cohomology concentrated in even degrees. Let M be a compact toric
origami manifold with coörientable folding hypersurface and acyclic origami template
with n vertices.
Choose a leaf of the origami template, and let Z be the connected component

of the folding hypersurface that corresponds to the facet separating the leaf from
the rest of the origami template. We use the notation M−, M+, C−, C+, C and B

as listed in Table 3.3. In particular, we note that C− is actually a compact toric
symplectic manifold and C+ is a compact toric origami manifold with coörientable
folding hypersurface and acyclic origami template with (n− 1) vertices.
Let Z

π−→ B be the quotient by the null-fibration. Then π induces maps

M
p−→ C and M−

p−−→ C−.

We begin by studying the cohomology of C.
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Claim 3.7. The cohomology ring H∗(C;Z) is concentrated in even degrees.

Proof of Claim 3.7. We may choose T-invariant collar neighborhoods of C− and
C+ in C that deformation retract to C− and C+ respectively. This is analogous to
choosing a collar neighborhood of Z in M , as described in the remarks just before
Proposition 2.6 above.
The intersection of these neighborhoods is a collar neighborhood of B and defor-

mation retracts onto B. The Mayer–Vietoris sequence for these collar neighborhoods
induces a long exact sequence, in cohomology with integer coefficients

· · · �� H∗(C) �� H∗(C+)⊕H∗(C−) �� H∗(B) �� · · · .(3.8)

Since C− is a compact toric symplectic manifold, Lemma 3.4 implies that the map
H∗(C−) → H∗(B) is a surjection. Thus, the long exact (3.8) splits into short exact
sequences (again with integer coefficients)

0 �� H∗(C) �� H∗(C+)⊕H∗(C−) �� H∗(B) �� 0 .(3.9)

Note that the cohomology of C− and B is concentrated in even degrees because
C− and B are compact toric symplectic manifolds. By the induction hypothesis, the
cohomology of C+ is concentrated in even degrees. We conclude from (3.9) in odd
degrees that H∗(C;Z) must be zero in odd degrees. ✔

We now look at the relationship between the cohomology of C− and that of M−.

Claim 3.10. The quotient map p− : M− −→ C− induces a surjection in cohomology

p∗− : H∗(C−;Z) � H∗(M−;Z).

In particular, H∗(C−;Z) is concentrated in even degrees, and so H∗(M−;Z) is as
well.

Proof of Claim 3.10. This is an argument based on [19, Proof of Proposition 1.3],
with corrections following [18] and adjustments for integer coefficients. Consider long
exact sequence in homology with integer coefficients of the pair (C−, B)

· · · �� H∗(B)
i∗ �� H∗(C−)

j∗ �� H∗(C−, B) �� · · · ,(3.11)

where i : B ↪→ C− is inclusion and j : (C−, ∅) −→ (C−, B) is inclusion of the pair.
We may apply Poincaré duality to Lemma 3.4 to establish that i∗ is an injection in
homology with integer coefficients. Thus, the long exact sequence (3.11) splits into
short exact sequences. We then have a commutative diagram, with integer coefficients,

H∗−2(B)

∼= ①

��

i! �� H∗(C−)

∼= ②

��

p∗−
�� H∗(M−)

∼= ③
��

Hd−∗(M−, Z)

∼= ④
��

0 �� Hd−∗(B)
i∗ �� Hd−∗(C−)

j∗ �� Hd−∗(C−, B) �� 0.

(3.12)

In this diagram, the manifold C− has dimension d, and B has dimension d − 2. The
maps ① and ② are Poincaré duality for the manifolds B and C−, respectively, and
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③ is Poincaré duality for the manifold M− with boundary Z. Finally, the map ④ is
(p−)∗ and is an isomorphism by excision. The left square commutes because it is the
definition of the push-forward map i!.
We now check that the right square commutes. We use the fact that the Poincaré

duality isomorphism is the cap product with the fundamental class. So we need to
show that for any a ∈ H∗(C−),

(p−)∗
(
p∗−(a) � [M−]

)
= j∗

(
a � [C−]

)
.

But now, using the properties of the cap product as developed in [17, Section 3.3], we
have

(p−)∗
(
p∗−(a) � [M−]

)
= a � (p−)∗

(
[M−]

)
by naturality of the cap product

= a � j∗
(
[C−]

)
because (p−)∗

(
[M−]

)
= j∗

(
[C−]

)
= j∗

(
a � [C−]

)
by relative naturality of the cap product,

and j∗(a) = a.

Thus, the diagram commutes and we may now conclude that p∗− is a surjection. ✔

Finally, we turn to the relationship between the cohomology of C and that of M .

Claim 3.13. The quotient map p : M −→ C induces a surjection in cohomology

p∗ : H∗(C;Z) � H∗(M ;Z).

Proof of Claim 3.13. We have long exact sequences in cohomology with integer
coefficients for the pairs (M, M−) and (C, C−) that fit into a commutative diagram

· · · �� H∗(C, C−)

∼= ①
��

�� H∗(C)

②p∗

��

�� H∗(C−)

③p∗−
����

�� H∗+1(C, C−)

∼= ④
��

�� · · ·

· · · �� H∗(M, M−) �� H∗(M) �� H∗(M−) �� H∗+1(M, M−) �� · · · .

Note that the maps ① and ④ are isomorphisms by excision, and the map ③ is onto
by Claim 3.10. The Four Lemma (the “onto” half of the Five Lemma) states that if
① and ③ are onto and ④ is one-to-one, then ② must be onto. We have this for each
degree, completing the proof. ✔

Claim 3.7 guarantees that the cohomology of C is concentrated in even degrees.

Claim 3.13 tells us that H∗(C;Z)
p∗−→ H∗(M ;Z) is surjective, and so H∗(M ;Z) is

necessarily concentrated in even degrees. �

Next we see how the conclusion of Theorem 3.6 can fail in the non-acyclic case.

Nonexample 3.14. The torus T2 is a toric origami manifold. The (toric) circle action
is rotation along one of the coordinate circles. The folding hypersurface consists of two
disjoint circles, as shown in Figure 3.15. The orbit space consists of two superimposed
identical intervals, glued to one another at each end. The template graph has two
vertices (one for each of the intervals) connected to one another by two edges (one
for the top fold facet and one for the bottom fold facet), and therefore the template
is not acyclic.
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Figure 3.15. The moment map for S1 acting on T2.

It is not hard to compute that

Hk(T2;Z) =

⎧⎨
⎩

Z k = 0, 2,
Z⊕ Z k = 1,
0 else

and so the conclusion of Theorem 3.6 fails.

4. Equivariant cohomology

Equivariant cohomology is a generalized cohomology theory in the equivariant cate-
gory. We use the Borel model to compute equivariant cohomology. For the torus T,
we let ET be a contractible space on which T acts freely. Explicitly, for a circle, we
may choose ES1 to be the unit sphere S∞ in a Banach space. This is well-known to
be contractible. Since T = S1 × · · · × S1 is a product, we may let ET be a product of
infinite-dimensional spheres.
For any T-space X, the diagonal action of T on X × ET is free, and

XT = (X × ET)/T

is the Borel mixing space or homotopy quotient of X. We define the (Borel)
equivariant cohomology ring to be

H∗
T(X;R) := H∗(XT;R),

where H∗(−;R) denotes singular cohomology with coefficients in the commutative
ring R. Thus, when X is a free T-space, we may identify

H∗
T(X;R) ∼= H∗(X/T;R).

At the other extreme, if T acts trivially on X, then

H∗
T(X;R) ∼= H∗(X ×BT;R),
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where BT = ET/T is the classifying space of T. Note that the cohomology of the
classifying space, H∗(BT;R) ∼= H∗

T
(pt;R), is the equivariant cohomology ring of a

point.
For any T-space X, we have the fibration

(4.1) X ↪→ XT −→ BT.

The projectionXT −→ BT induces the mapH∗
T
(pt;R) −→ H∗

T
(X;R), makingH∗

T
(X;R)

an H∗
T
(pt;R)-module. Natural maps in equivariant cohomology preserve this module

structure.
A common tool in the computation of equivariant cohomology is the Serre spectral

sequence applied to the fibration (4.1). This has E2-page

Ep,q
2 = Hp(BT;Hq(X;R)).

This spectral sequence converges to H∗
T
(X;R). When X has cohomology concentrated

in even degrees, then this spectral sequence is 0 in every other row and column, and
automatically collapses. In particular, the equivariant cohomology is also concentrated
in even degrees.
Goresky et al. call a T-space X equivariantly formal if the Serre spectral se-

quence collapses at the E2-page [12]. This spectral sequence does collapse for a com-
pact toric origami manifold with acyclic origami template and coörientable folding
hypersurface, because the cohomology is concentrated in even degrees (Theorem 3.6).
Historically, the term “formal” has been used in rational homotopy theory, and so
equivariantly formal has multiple interpretations. Scull describes the relationships
between these interpretations [25]. To avoid further confusion, we will not use this
term in the remainder of this paper.
Suppose that a torus T acts on a compact manifold M . Then the inclusion of the

fixed points I : MT −→ M induces a map in equivariant cohomology,

(4.2) I∗ : H∗
T(M ;R) −→ H∗

T(M
T;R).

A classical result of Borel establishes that the kernel and cokernel of I∗ are torsion
submodules [2]. Our first step is to prove that in our set-up, I∗ is injective. We can
deduce this in a variety of ways. We supply a constructive proof here that we hope
adds geometric intuition in the origami setting.

Theorem 4.3. Let T � M be a compact toric origami with acyclic origami template
and coörientable folding hypersurface. Then the inclusion I : MT ↪→ M induces an
injection in equivariant cohomology

I∗ : H∗
T(M ;Z) −→ H∗

T(M
T;Z).

Proof. We proceed by induction on the number of vertices in the template graph.

Base Case: Suppose the template graph has a single vertex. Then M is a toric
symplectic manifold. In particular, M is Kähler and has isolated fixed points. Frankel
showed that H∗(M ;Z) is torsion free in this situation [10, Corollary 2]. The Serre
spectral sequence then has no torsion at the E2 page, where it collapses, so we may
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conclude that H∗
T
(M ;Z) is torsion free. As the fixed points are isolated, H∗

T
(MT;Z)

is also torsion free, and so Borel’s classical result now implies injectivity.

Inductive Step: We assume that the statement holds for any acyclic toric origami
manifold with coörientable fold with at most (n− 1) vertices in its template graph.
As in the previous section, we choose a leaf of the origami template, and let Z be

the connected component of the folding hypersurface that corresponds to the facet
separating the leaf from the rest of the origami template. We continue to use the
auxiliary spaces M−, M+, C−, C+, C and B as listed in Table 3.3.

Claim 4.4. The inclusion CT −→ C induces an injection

H∗
T(C;Z) −→ H∗

T(C
T;Z).

Proof of Claim 4.4. We note that C− is a toric symplectic manifold, and C+ is a
toric origami manifold with fewer vertices in its template graph. Thus, in equivariant
cohomology with integer coefficients,

H∗
T(C−)

I∗−−→ H∗
T(C

T

−) and H∗
T(C+)

I∗+−→ H∗
T(C

T

+)

are both injective.
Next consider the equivariant Mayer–Vietoris long exact sequence for T-invariant

neighborhoods of C = C+ ∪ C−. The spaces C, C+, C− and B each have ordinary
cohomology only in even degrees, and hence equivariant cohomology only in even
degrees. Thus, the equivariant Mayer–Vietoris long exact sequence splits into short
exact sequences. We then have a commutative diagram, with integer coefficients,

0 �� H∗
T
(C) ② ��

①
��

H∗
T
(C+)⊕H∗

T
(C−) ��

③
��

H∗
T
(B) ��

��

0

0 �� H∗
T
(CT) ��

④
�� H∗

T
(CT

+)⊕H∗
T
(CT
−) �� H∗

T
(BT) �� 0

.

The map ② is injective because the top row is short exact. The map ③ is I∗− ⊕ I∗+,
and is thus injective. Therefore, ③ ◦② is injective. But ③ ◦② = ④ ◦①. Hence, ① must
be injective. ✔

Claim 4.5. In even degrees, the map

H2∗
T (C, C−) −→ H2∗

T (CT, CT

−)

is injective.

Proof of Claim 4.5. The pair (C, C−) is T-invariant, so we consider the long exact
sequence of the pair in equivariant cohomology. By Claim 3.7, the cohomology of C
is concentrated in even degrees. The space C− is a toric symplectic manifold, so its
cohomology is also concentrated in even degrees. Thus, the long exact sequence splits



THE TOPOLOGY OF TORIC ORIGAMI MANIFOLDS 899

into a 4-term short exact sequence. This induces a commutative diagram

0 �� H2∗
T
(C, C−)

② ��

①
��

H2∗
T
(C) ��

③
��

H2∗
T
(C−) ��

��

H2∗+1
T

(C, C−) ��

��

0

0 �� H2∗
T
(CT, CT

−)
④ �� H2∗

T
(CT) �� H2∗

T
(CT
−) �� H2∗+1

T
(CT, CT

−) �� 0.

The map ② is injective because the top row is exact. The map ③ is injective by
Claim 4.4. Therefore, ③ ◦ ② is injective. But ③ ◦ ② = ④ ◦ ①. Hence, ① must be
injective. ✔

Claim 4.6. The inclusion MT
− ↪→ M− induces an injection H∗

T
(M−) ↪→ H∗

T
(MT

−).

Proof of Claim 4.6. Recall that C− is a toric symplectic manifold. Let f : C− → R

be the component of its moment map that attains its maximum value on B. Let that
value be f(B) = b ∈ R. Let g : M− −→ R be the composition M−

p−−→ C−
f−→ R.

Choose ε > 0 such that there is no critical value in between b− ε and b, and so that
g−1((b − ε, b]) is contained in the intersection of M− with a Moser neighborhood of
Z in M .
The fact that f is a Morse-Bott function on C− with no critical values between b−ε

and b guarantees that f−1((−∞, b)) and f−1((−∞, b− ε
2 ]) are homotopy equivalent.

In addition, the fact that g−1((b − ε, b]) is contained in the intersection of M− with
a Moser neighborhood of Z in M guarantees that f−1((−∞, b − ε

2 ]) is homotopy
equivalent to M−.
We now appeal to a standard argument from equivariant symplectic geometry to

conclude that

MT

− = f−1
((
−∞, b− ε

2

])T

↪→ f−1
((
−∞, b− ε

2

])
� M−

induces an injection in equivariant cohomology. This is an inductive argument on the
critical set of f , and can be copied verbatim from the proof of [26, Theorem 2].

✔

We now consider the long exact sequence in equivariant cohomology for the pair
(M, M−). We have shown that M− and M have cohomology and thus equivariant
cohomology concentrated in even degrees. Thus the long exact sequence splits into a
4-term short exact sequence. This induces a commutative diagram

0 ��

①
��

H2∗
T
(M, M−)

②
��

�� H2∗
T
(M)

③
��

�� H2∗
T
(M−)

④
��

�� H2∗+1
T

(M, M−) −→ 0

��

0 �� H2∗
T
(MT, MT

−) �� H2∗
T
(MT) �� H2∗

T
(MT

−) �� H2∗+1
T

(M, M−) −→ 0.

We want to show that ③ is injective. The Four Lemma (the “injectivity” half of the
Five Lemma) states that if ② and ④ are injective and ① is surjective, then ③ must
be injective.
We first note that H∗

T
(M, M−) ∼= H∗

T
(C, C−), and H∗

T
(MT, MT

−) = H∗
T
(CT, CT

−).
Thus, the map ② is injective (in even degrees) by Claim 4.5. The map ④ is injective
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by Claim 4.6. The map ① is obviously surjective. Thus, by the Four Lemma, the map
③ must be injective, as desired. �

Remark 4.7. We may also derive Theorem 4.3 from work of Franz and Puppe [11].
We describe this approach, and its further applications, in the proof of Theorem 4.12
below.

We now identify the image of I∗. Goresky et al. proved that the equivariant coho-
mology of certain spaces may be described combinatorially as n-tuples of polynomials
with divisibility conditions on pairs of the polynomials [12, Theorem 1.22]. The de-
scription applies, for example, to toric varieties [3, Section 2.2], hypertoric varieties
[16, Proposition 3.2], and coadjoint orbits [12, Section 7.8]. In this section, we prove
that the description also applies to any compact toric origami manifold with acyclic
origami template and coörientable folding hypersurface. We begin by recalling the
assumptions and results from [12]. The two key assumptions are

(A) The fixed point set MT consists of isolated points; and
(B) The one-skeleton M1 = {p ∈M | dim(T · p) ≤ 1} is 2-dimensional.
The first assumption simplifies what H∗

T
(MT;Z) can be. When the fixed point set

consists of isolated points, this ring is a direct product of copies of

H∗
T(pt;Z) ∼= Z[x1, . . . , xn],

one for each fixed point. Thus, every class can be represented as a tuple of polynomials,
and the ring structure is the component-wise product of polynomials.
When M is a compact Hamiltonian T-space, the second assumption ensures that

the one-skeleton must consist of 2-spheres intersecting one another at the isolated fixed
points. Moreover, the T-action preserves M1, and the action rotates each S2 about an
axis. The image of M1 under the moment map is an immersed graph Φ(M1) = Γ called
the moment graph5 whose vertices correspond to the fixed points MT and whose
edges correspond to the embedded S2’s. Each edge e in Γ is labeled by the weight 6

αe ∈ t∗ by which T acts on e. Indeed, the moment map sends the corresponding S2

to a line segment parallel to the weight αe. The embedding of the graph Γ encodes
in this way the isotropy data, denoted α. In this framework, we have the following
description of H∗

T
(M ;Q).

Theorem 4.8 (Goresky–Kottwitz–MacPherson [12]). Suppose M is a compact Hamil-
tonian T-space satisfying conditions (A) and (B) above. Then I∗ is injective

I∗ : H∗
T(M ;Q) ↪→ H∗

T(M
T;Q) ∼=

⊕
p∈MT

H∗
T(pt;Q),

and its image consists of

(4.9)
{
(fp) ∈

⊕
p∈MT

H∗
T(pt;Q)

∣∣∣ αe

∣∣(fp − fq) for each edge e = (p, q) in Γ
}

.

We will refer to these divisibility conditions as the Goresky, Kottwitz and
MacPherson (GKM) description.

5The moment graph Γ is sometimes called the GKM graph. It is not the template graph.
6This is well-defined up to a sign, which is sufficient for our purposes.
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Figure 4.11. The orbit space and the GKM graph for a toric
origami structure on the Hirzebruch surface. The GKM graph has
four vertices and four edges, two of which are folded

Remark 4.10. For a Hamiltonian T-space, assumption (A) guarantees that I∗ is
injective in equivariant cohomology with integer coefficients. We may strengthen as-
sumption (B) to guarantee that the GKM description holds over Z. A stronger set
of assumptions are described in [15, Section 3]; they include the existence of a cell
decomposition of the manifold. In particular, for Hamiltonian T-spaces with isolated
points, Morse theory can be applied to a generic component of the moment map to
establish that these stronger assumptions boil down to local topological properties
that must be checked at the fixed points. These can then be verified for symplectic
toric manifolds and for coadjoint orbits.
As we have seen, the moment map for a toric origami manifold M does not neces-

sarily produce Morse functions on M . We do not know if there is a cell decomposition
of a toric origami manifold that would allow us to apply techniques from [15].

A key technical tool in the proof of Theorem 4.8 is the Chang–Skjelbred Lemma [6,
Lemma 2.3]. Let J : MT −→ M1 denote the inclusion of the fixed points into the one-
skeleton. The Chang–Skjelbred Lemma states that I∗(H∗

T
(M)) = J∗(H∗

T
(M1)). Since

the one-skeleton consists of S2’s, we must understandH∗
T
(S2). It is a simple calculation

to check that each S2 contributes one of the divisibility conditions in (4.9).
Now let T � M be a compact toric origami manifold with acyclic origami template

and coörientable folding hypersurface. The fixed points MT correspond to all of the
0-dimensional faces of the orbit space M/T. Just as for toric symplectic manifolds,
these are isolated fixed points. The one-skeleton corresponds to the (possibly folded)
edges (1-dimensional faces) of the orbit space. These are the 1-dimensional faces of
the polytopes of the symplectic cut pieces that are not entirely contained in a fold.
The corresponding subsets of M are symplectic and origami 2-spheres. Therefore, the
one-skeleton is 2-dimensional. An example is shown in Figure 4.11.
Thus, assumptions (A) and (B) are satisfied in the case of toric origami manifolds,

and indeed the GKM theorem generalizes to our set-up.

Theorem 4.12. Let T � M be a compact toric origami with acyclic origami template
and coörientable folding hypersurface. Then I∗ is injective

I∗ : H∗
T(M ;Z) ↪→ H∗

T(M
T;Z) ∼=

⊕
p∈MT

H∗
T(pt;Z),



902 TARA S. HOLM AND ANA RITA PIRES

and the image consists of

(4.13)
{
(fp) ∈

⊕
p∈MT

H∗
T(pt;Z)

∣∣∣ αe

∣∣(fp − fq) for each edge e = (p, q) in Γ
}

,

where αe is the weight of the action T � S2
e on the 2-sphere corresponding to e.

Proof. In Theorem 4.3, we have established that I∗ is injective (over Z). This can also
be derived from an algebraic result of Franz and Puppe. In [11, Theorem 1.1], for a
T-space X with connected stabilizers, they show that five conditions are equivalent.
Their condition (ii) is that the Serre spectral sequence collapses at the E2-page. Their
condition (v) gives a long exact sequence.
A consequence of the origami template classification of toric origami manifolds is

that the stabilizer of a point is a connected subtorus of T. Thus, we may appeal to
Franz and Puppe’s theorem. Our Theorem 3.6 implies that the Serre spectral sequence
collapses at the E2-page, assertion (ii) in [11, Theorem 1.1]. This is then equivalent
to assertion (v) which gives a long exact sequence, the first few terms of which are

0 −→ H∗
T(M ;Z) ①−→ H∗

T(M0;Z)
②−→ H∗+1

T
(M1, M0;Z).

The content of our Theorem 4.3 is that ① (which is I∗) is injective. That the sequence
is exact then means that the image of ① is equal to the kernel of ②. The map ② is
the boundary map in the long exact sequence of the pair (M1, M0). Thus, we have

· · · −→ H∗
T(M

∗
1 ;Z)

③−→ H∗
T(M0;Z)

②−→ H∗+1
T

(M1, M0;Z) −→ · · · .
The kernel of ② is then equal to the image of ③, which is the image of the equivariant
cohomology of the one-skeleton in H∗

T
(M0;Z). The fact that the one-skeleton con-

sists of symplectic and origami 2-spheres means that each S2 contributes one of the
divisibility conditions in (4.13). �

In Section 3, we proved that H∗(M ;Z) is concentrated in even degrees. We do not
have a Morse function on M that would allow us to compute the ranks of these coho-
mology groups. With our explicit description of H∗

T
(M ;Z), it is possible in examples

to determine the ranks and ring structure of H∗(M ;Z). This is a consequence of the
collapse of the Serre spectral sequence, which implies that

H∗(M ;Z) ∼= H∗
T(M ;Z)⊗H∗

T
(pt;Z) Z.

Example 4.14. The 2n-sphere S2n may be endowed with toric origami structure
whose template graph has two vertices and a single edge between them. Each of
the two vertices maps to a the n-simplex in Rn with an orthogonal corner at the
origin; that is, a simplex with vertices the origin and the standard basis vectors
ei = (0, . . . , 1, . . . , 0) with a single 1 in the ith coördinate and 0s elsewhere. The edge
maps to the fold facet by which these two polytopes are glued together: the (n− 1)-
simplex with vertices the ei, opposite the origin. The orbit space for S4 is shown in
Figure 2.3.
Thus the toric action has 2 fixed points, which we denote N and S (for the north

and south poles). There are n edges in the GKM graph, each joining Φ(N) and Φ(S).
We can identify H∗

T
(pt;Z) = Z[x1, . . . , xn]. From the representation of the orbit space
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in Rn we can see that the T-action on the sphere mapping to the ith coördinate line
in Rn has weight xi. Theorem 4.12 states that

I∗(H∗
T(S

2n;Z)) =
{
(fN , fS) ∈ Z[x1, . . . , xn]⊕ Z[x1, . . . , xn]

∣∣∣xi

∣∣(fN − fS)

for i = 1, . . . , n
}

.

From this, we can find a module basis (for H∗
T
(S2n;Z) as an H∗

T
(pt;Z)-module) with

two elements
I∗(1) = (1, 1) and I∗(π) = (x1 · · ·xn, 0),

where 1 ∈ H0
T
(S2n;Z) and π ∈ H2n

T
(S2n;Z).

Nonexample 4.15. We revisit Nonexample 3.14, of a toric circle action on a torus.
The circle action is free, and so has no fixed points. Nevertheless, we may compute

Hk
S1(T2;Z) = Hk(T2/S1;Z) = Hk(S1) =

{
Z k = 0, 1,
0 else.

In particular, the conclusion of Theorem 4.3 cannot hold.

5. Toric origami manifolds are locally standard

Toric topology is the study of topological analogues of toric symplectic manifolds and
toric varieties. The symplectic or algebraic structure is dropped, and the focus is the
existence of an effective smooth action of a torus half the dimension of the manifold.
Examples of such topological analogues, from most restrictive to most general, are
toric manifolds [8] (referred to by some authors as quasitoric manifolds), topological
toric manifolds [20] and torus manifolds [23].
We now show that acyclic toric origami manifolds fit into the framework of torus

manifolds, and that Theorem 3.6 also follows from the work of Masuda and Panov on
the cohomology of torus manifolds [24]. Their theory is more general and their proofs
algebraic.
A torus manifold is a 2n-dimensional closed connected orientable smooth mani-

fold M with an effective smooth action of an n-dimensional torus Tn with non-empty
fixed set. A torus manifold M is said to be locally standard if every point in M has
an invariant neighborhood U weakly equivariantly diffeomorphic to an open subset
W ⊂ Cn invariant under the standard Tn-action on Cn. The adverb ‘weakly’ means
that there is an automorphism ρ : T −→ T and a diffeomorphism f : U −→ W such
that

f(ty) = ρ(t)f(y)

for all t ∈ T, y ∈ U .
Compact symplectic toric manifolds are locally standard [9, Proof of Lemme 2.4].

Next we will prove that toric origami manifolds with coörientable folding hypersurface
are also locally standard. Toric origami manifolds with non-coörientable components
of the fold are not locally standard. Indeed, an invariant neighborhood of a point
on a non-coörientable component of the fold is a bundle of Möbius bands over the
corresponding connected component of B [5, Rmk. 2.26], which is not equivariantly
diffeomorphic to an invariant open subset of Tn � Cn.
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Lemma 5.1. Suppose that (M, Z, ω,Φ, T) is a toric origami manifold with coörientable
folding hypersurface. Then M is locally standard.

Proof. The argument used in [9, Proof of Lemme 2.4] to prove that compact sym-
plectic toric manifolds are locally standard does not use compactness of the manifold,
and therefore applies directly to the manifold M \ Z.
Next, we check the ‘locally standard’ condition on a point p ∈ Z on the fold. We

use a Moser model, as defined in [5, Def. 2.12], for a neighborhood of p. As remarked
in [5], such Moser models exist for orientable origami manifolds. What is necessary for
the local existence of the Moser model near a single component of the fold is simply
the coörientability of that piece of the fold. Thus, we may assume that p ∈ Z has a
neighborhood with a Moser model.
Let Zp denote the connected component of Z containing p. The local Moser model

is an equivariant diffeomorphism

ϕ : Zp × (−ε, ε) −→ U,

where ε > 0 and U is a tubular neighborhood of Zp, such that ϕ(x, 0) = x for all
x ∈ Zp. The symplectic form can be written in these coördinates, but we do not need
that here.
We now consider the null-fibration S1 ↪→ Zp

π−→ Bp. It is a principal S1-bundle,
and the base space is a compact symplectic toric manifold of dimension (2n − 2).
Let b = π(p). Compact toric symplectic manifolds are locally standard. Choose a
neighborhood V of b ∈ Bp that is weakly equivariantly diffeomorphic to an open
subset W ⊂ Cn−1 that is invariant with respect to the standard Tn−1-action on
Cn−1. By possibly passing to a smaller neighborhood of b, we may assume that the
bundle over V is trivial, V × S1 π−→ V . Thus, we have an equivariant neighborhood

V × S1 × (−ε, ε)

of p ∈ Zp. Under this identification, the action of Tn splits into the Tn−1 action on
V , and S1 acting on itself by multiplication on the S1. We may embed S1 × (−ε, ε)
as an open annulus A ⊂ C by equivariant diffeomorphism. Therefore V ×S1× (−ε, ε)
is weakly equivariantly diffeomorphic to an open subset W × A ⊂ Cn−1 × C that is
invariant with respect to the coördinate Tn-action on the vector space Cn.7 �
A key player in Masuda and Panov’s work on torus manifolds is the orbit space

Q = M/T, which in the origami framework is closely related to the origami template,
as explained at the end of Section 2. Masuda and Panov define the faces of the orbit
space using their notion of characteristic submanifold. The orbit space is then called
face-acyclic if every face F (including Q itself) is acyclic: that is, it has H̃∗(F ) = 0.
Note that the orbit space M/T deformation retracts onto the template graph: each

polytope ΨV (v) deformation retracts onto a point in its center and rays from that
point to each of the fold facets of that polytope. This can be done so that when two
polytopes are glued along a fold facet, the rays from the center points of the two
polytopes join at the fold facet: the two rays now form a line between the center
points of the two polytopes. Viewing the center points of the polytopes as vertices

7An alternative proof for this Lemma was pointed out to us by one of the referees: it uses the

fact that any submanifold of M consisting of points with the same isotropy subgroup is transverse
to the folding hypersurface Z. This fact relies strongly on the coörientability hypothesis.
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Figure 5.2. Each polytope deformation retracts onto a central point
and rays towards the fold facets. The orbit space M/T deformation
retracts onto the template graph

of a graph and the lines joining them as edges, we recover the template graph. An
example is provided in Figure 5.2.

Theorem 5.3. Suppose that (M, Z, ω,Φ, T) is a toric origami manifold such that
each connected component of the folding hypersurface is coörientable. Then M/T is
face-acyclic if and only if the origami template is acyclic.

Proof. The orbit space M/T deformation retracts onto the template graph, and any
face F of M/T deformation retracts onto a subgraph: the vertices of this subgraph
correspond to the polytopes ΨV (v) which have non-empty intersection with F , its
edges are the fold facets ΨE(e), which have non-empty intersection with F .
Being homotopy equivalent to a (sub)graph, a face of M/T will be acyclic if and

only if that (sub)graph has no cycles, and therefore M/T is face-acyclic exactly when
the template graph has no cycles. �

We now can derive our Theorem 3.6 from Masuda and Panov’s work: they prove
that face-acyclic locally standard torus manifolds have no odd-degree cohomology [24,
Theorem 9.3]. While our proofs have very different flavors, it is interesting to note
that a crucial ingredient in their proof is their [24, Lemma 2.3], which is closely related
to our Lemma 3.4, as described in Remark 3.5.
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