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MONODROMY OF GALOIS REPRESENTATIONS
AND EQUAL-RANK SUBALGEBRA EQUIVALENCE

Chun Yin Hui

Abstract. Let K be a number field, P the set of prime numbers, and {ρ�}�∈P a

compatible system (in the sense of Serre [19]) of semisimple, n-dimensional �-adic repre-

sentations of Gal(K/K). Denote the Zariski closure of ρ�(Gal(K/K)) in GLn,Q�
by G�

and its Lie algebra by g�. It is known that the identity component G◦
� is reductive and

the formal character of the tautological representation G◦
� ↪→ GLn,Q�

is independent of
� (Serre). We use the theory of abelian �-adic representations to prove that the formal
character of the tautological representation of the derived group (G◦

� )der ↪→ GLn,Q�

is likewise independent of �. By investigating the geometry of weights of this faithful

representation, we prove that the semisimple parts of g� ⊗C satisfy an equal-rank subal-
gebra equivalence for all �, which is equivalent to the number of An := sln+1,C factors for
n ∈ {6, 9, 10, 11, . . .} and the parity of the number of A4 factors in g�⊗C are independent

of �.

1. Introduction

Let K be a number field, K its algebraic closure and GK := Gal(K/K) the abso-
lute Galois group of K. Let P be the set of prime numbers. A compatible system
(Definition 3.4) of �-adic representations {ρ�}�∈P of GK is a collection of continuous
representations

ρ� : GK −→ GLn(Q�),
indexed by P, such that for any � ∈ P, ρ� is unramified at all but finitely many
non-Archimedean places of K, and for any �, �′ ∈ P, the characteristic polynomials
of ρ�(Frobw) and ρ�′(Frobw) (well-defined if ρ� and ρ�′ are unramified at v, and w is
a valuation of K extending v) are equal with rational coefficients for all but finitely
many non-Archimedean places v of K. Such a compatible system arises, for example,
from the Galois action of GK on the �-adic Tate modules T�(A) ⊗ Q� of an abelian
variety A defined over K (see [19, Chap. 1]) or more generally, on the �-adic étale
cohomology groups Hk

et(XK , Q�) of a complete non-singular variety X defined over
K (Deligne [3]). We may assume that our representations ρ� are semisimple for all
� by semi-simplification since the characteristic polynomials of matrices only carry
information from the semisimple parts.

For a compatible system {ρ�}�∈P of semisimple �-adic representations of GK , the
Zariski closure of ρ�(GK) in the algebraic group GLn,Q�

is a reductive algebraic group
and is called the algebraic monodromy group at �. Denote it by G�, its connected
component by G◦� , and its Lie algebra by g�. Let Φ� : G� ↪→ GLn,Q�

be the tautological
representation. Consider the following conjectures:
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Conjecture 1.1. There exists a faithful representation Φ : G ↪→ GLn,Q of a reductive
group G over Q, such that for all � ∈ P, (G�, Φ�) ∼= (G, Φ)×Q Q�.

Conjecture 1.2. There exists a faithful representation Φ : G ↪→ GLn,Q of a connected
reductive group G over Q, such that for all � ∈ P, (G◦� , Φ�) ∼= (G, Φ)×Q Q�.

Conjecture 1.1 is true if ρ�(GK) is abelian for one �; see chapter 3 of [19]. Weaker
variants of this conjecture have appeared many times in the literature. For example, if
our compatible system {ρ�}�∈P comes from the Galois action on the Tate modules of
an abelian variety, then Conjecture 1.2 follows immediately from the semisimplicity
of ρ� (Faltings [4]) and the Mumford–Tate conjecture (see Mumford [15], Serre [18,
Section 9]). If {ρ�}�∈P comes from the Galois action on the étale cohomology groups
of a complete non-singular variety, then Conjecture 1.2 is implied (see [12, Section 5])
by the well-known semisimplicity conjecture [18, Section 9] and the general Tate
conjecture [22]. By the method of Frobenius tori, Serre [16, p. 6, Section 17],[17,
Section 2.2.3] has proved the following �-independence results.

Theorem 1.3. The open subgroup of finite index ρ−1
� (G◦� (Q�)) ⊂ GK is independent

of �.

Theorem 1.4. The pair (T�, Φ�) consisting of a maximal torus T� of G◦� and the
tautological representation Φ� : T� ↪→ GLn,Q�

is independent of �. Therefore, the
formal character of G◦� ↪→ GLn,Q�

and hence the rank of G◦� are independent of �.

Remark 1.5. Serre originally stated these results for representations associated to
abelian varieties, but his proofs work for arbitrary compatible systems.

Remark 1.6. Theorem 1.3 implies there is a smallest finite extension Kconn of K
such that the Zariski closure of ρ�(GKconn) in GLn,Q�

is equal to G◦� for all �. For more
results about Kconn; see Silverberg and Zarhin [20, 21] and Larsen and Pink [13].

We study �-independence of compatible systems of �-adic representations of GK ,
assuming semisimplicity. We are not able to prove Conjectures 1.1 and 1.2, but using
the theory of abelian �-adic representations, we extend Theorem 1.4 by proving that
the formal character of the representation of the derived group (G◦� )

der ↪→ GLn,Q�
is

independent of �. Using these data, we prove that the semisimple parts of the com-
plexified Lie algebras g� ⊗C satisfy an equal-rank subalgebra equivalence (Definition
2.18). The results of this paper are summarized as follows.

(1) (Proposition 3.18) The dimension of the center of G◦� is bounded by dKconn ,
the common dimension of the Serre groups Sm associated to the number field
Kconn.

(2) (Theorem 3.19) The triple (((G◦� )
der ∩T�)◦, T�, Φ�) is independent of �, where

T� is a maximal torus of G◦� and Φ� is the embedding of T� into GLn,Q�
.

Therefore, the formal character of the tautological representation (G◦� )
der ↪→

GLn,Q�
and hence the semisimple rank of G◦� are independent of �.

(3) (Theorem 3.21) Consider the free abelian group of virtual complex simple
Lie algebras which contains semisimple Lie algebras naturally. We divide by
the subgroup generated by all expressions g − h where h ⊂ g are equal rank
semisimple Lie algebras. The semisimple parts of the complexified Lie alge-
bras g� ⊗ C have the same image in this quotient group (satisfy equal-rank
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subalgebra equivalence in Definition 2.18) for all �. This is equivalent to the
number of An := sln+1,C factors for n ∈ {6, 9, 10, 11, . . .} and the parity of
the number of A4 factors in g� ⊗ C are independent of �.

(4) (Theorem 4.1) Let K be a field, finitely generated over Q and GK its absolute
Galois group. If the system {ρ�}�∈P arises from the Galois action of GK on
the Tate modules of an abelian variety X defined over a field K, then (3)
holds for g� ⊗ C.

Remark 1.7. Larsen and Pink [11] studied compatible systems of representations of
profinite groups that are endowed with a dense subset of “Frobenius” elements. They
gave an example in [11, Section 10] that the semisimple rank of G� (the algebraic
monodromy group at �) depends on �, contrary to (2).

Remark 1.8. (1), (2), (3) above also hold for any semisimple compatible system of
λ-adic [19, Chap. 1, Section 2.3] representations. This will be explained at the end of
Section 3.

Remark 1.9. We study �-independence of mod � Galois representations that arise
from étale cohomology in a subsequent paper [9] and obtain “mod �” versions of (2)
and (3) when �� 0.

Let us sketch the proofs of our results. We may assume that K = Kconn so that
G� = G◦� . Since the Lie algebra of [G�, G�] is the semisimple part of g�. Hence, we
could study the dimension of the center of g� by considering the dimension of the
image of following semisimple �-adic representation

GK
ρ�−→ G�(Q�) → G�/[G�, G�](Q�) ↪→ GLm(Q�).

This map factors through the quotient GK → Gab
K , so we get Ψ� : Gab

K → GLm(Q�).
Let

∑
K be the set of finite places of K. Since Ψ� is unramified at all except finitely

many places S of K, if Fw is a Frobenius element of a valuation w of K extending a
place v ∈ ∑

K \S, then the eigenvalues of Ψ�(Fw) are algebraic numbers. This is the
key observation, which leads to result (1). By imitating the proof of Theorem 1.10,
we can find an integer N such that ΨN

� : Gab
K → GLm(Q�) is locally algebraic.

Theorem 1.10. (See Serre [19, Chap. 3, Section 3], Waldschmidt [23], Henniart [7,
Section 5])
If ρ : Gab

K → GLm(Q�) is a rational, semisimple, �-adic abelian representation of K,
then ρ is locally algebraic.

Therefore, by the theory of abelian �-adic representation, ΨN
� arises from some

abelian �-adic representation attached to some Serre group Sm. In other words, Sm(Q�)
surjects onto ΨN

� (Gab
K ). Since the dimension of ΨN

� (Gab
K ), Ψ�(Gab

K ) and the center of g�

are the same, we get (1). By the above techniques, the upper bound of the dimension
of center in (1) and Theorem 1.4, we construct an auxiliary compatible system of
representations of GK to prove (2). The restriction of the formal character to the
derived group of G◦� are independent of � by (2). Therefore, we only need to study
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the semisimple part of g�. We have for each � a faithful representation of (g�)ss ⊗ C,
which gives the same formal character. So, we need to answer the question below.

Q: To what extent is a complex semisimple Lie algebra g determined if the formal
character of a faithful representation of g is given?

Larsen and Pink have answered this question in the case that the representation is
irreducible [10, Section 4]. The difficulty of the question can be illustrated by the
following example. We know that E7 × A1 and A4 × A4 are subalgebras of maximal
rank in E8, so if we restrict a representation of E8 to E7×A1 and A4×A4, the formal
characters of these two representations are the same. We address this question by
investigating the geometry of the roots and weights in the formal characters. Actually,
we will first prove that the number of An factors for n ∈ {6, 9, 10, 11, . . .} and the
parity of the number of A4 factors in g are invariants (Theorems 2.14 and 2.17).
Then, it follows easily that the image of g in the quotient group in (3) is invariant
(Theorem 2.19). This together with Proposition 2.20 imply (3). Finally, (4) is a direct
consequence of (3) and a result on �-independence of specialization of monodromy
groups of abelian varieties (Hui [8, Theorem 2.5]).

The structure of this paper is as follows. Section 2 is devoted to answering question
Q, which is purely representation theoretic; we only use the representation theory of
complex semisimple Lie algebras. We will prove (1), (2), and (3) in Section 3. This
section relies heavily on the theory of abelian �-adic representation (Serre [19]). In
Section 4, we consider systems {ρ�}�∈P coming from abelian varieties and prove (4).

2. Geometry of weights in formal characters

This section is purely representation theoretic and self-contained. It is devoted to
answering the question below.

Q: To what extent is a complex semisimple Lie algebra g determined if the formal
character of a faithful representation of g is given?

(2.1) Let g be a complex semisimple Lie algebra and tg some Cartan subalgebra of
g. Denote the roots, the weight lattice and the Weyl group by Φg, Λg and Wg, re-
spectively. If Θ : g → gl(V ) is a representation of g on some n-dimensional complex
vector space V , then the action of tg on V can be diagonalized and then we have
n weight vectors α1, . . . , αn ∈ t∗g. Let Z[Λg] be the group ring over Z generated by
the free abelian group Λg. We define the formal character of Θ to be CharΘ(V ) :=
α1 + · · · + αn ∈ Z[Λg]. We know that CharΘ(V ) is invariant under the Weyl group
Wg. Let Ψ : h → gl(V ′) be a representation of another complex semisimple h on an
n-dimensional complex vector space V ′. We say h and g have the same formal char-
acter if there is an isomorphism F between t∗h and t∗g such that F (CharΨ(V ))(defined
in an obvious way) is equal to CharΘ(V ). We can now state our main theorems of
this section.

Theorem 2.14. If faithful representations of two complex semisimple Lie algebras g
and h have the same formal character, then the number of An factors of g and h are
the same when n ∈ {6, 9, 10, . . .}.
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Theorem 2.17. If faithful representations of two complex semisimple Lie algebras g
and h have the same formal character, then the parities of the numbers of A4 factors
of g and h are the same.

Theorem 2.19. If faithful representations of two complex semisimple Lie algebras
g and h have the same formal character, then g and h satisfy equal-rank subalgebra
equivalence (Definition 2.18).

(2.2) If Θ : g → gl(V ) is a faithful representation, then g is embedded as a subspace
in End(V ) = V ⊗ V ∗ through Θ. It is easy to check the representation of g on this
subspace g ⊂ End(V ) = V ⊗ V ∗ is the adjoint representation [5, Chapter 13.1].
Therefore, the representation of g on V ⊗ V ∗ contains the adjoint representation of g
as a subrepresentation and is also faithful. The formal character of V ⊗ V ∗ depends
only on the formal character of V and is just the sum of all the differences of weights in
CharΘ(V ). All the roots of g appear in the formal character Char(V ⊗V ∗) because the
adjoint representation is a subrepresentation. So from now on, we may further assume
that CharΘ(V ) contains all the roots of g. The advantage of this assumption is that
there are strong geometric connections among roots and weights once we introduce a
suitable Euclidean metric on Λg ⊗ R.

(2.3) Suppose CharΘ(V ) = α1 + · · · + αn, we define an inner product on (Λg ⊗ R)∗

in terms of the formal character by setting

(x1, x2) =
n∑

i=1

αi(x1)αi(x2).

We denote the dual inner product on Λg ⊗R by 〈 , 〉. Since Θ is faithful, {αi} spans
Λg ⊗ R, so ( , ) and 〈 , 〉 are positive definite. Since CharΘ(V ) is Wg invariant, so is
〈 , 〉. This determines 〈 , 〉 up to a positive scalar factor on each simple root system
of g. Wg is then a subgroup of the orthogonal group O(Λg ⊗R) under this Euclidean
inner product. Note that 〈 , 〉 is defined solely by the formal character CharΘ(V ).

(2.4) Now if V and V ′ are faithful representations of g and h with the same formal
character, then we could assume that the roots of g and h appear in the formal
character by (2.2). We can define an Euclidean inner product (which depends only
on the formal character) on Λg ⊗ R and on Λh ⊗ R respectively by (2.3). Since the
formal characters are the same, Λg ⊗ R and Λh ⊗ R are isometric.

Let v ∈ Φg and u ∈ Φh. We claim that the angle θ between them with respect to
the Euclidean metric above belongs to the set {0◦, 30◦, 45◦, 60◦, 90◦, 120◦, 135◦, 150◦,
180◦}. Indeed, since u (a root of h) is also a weight of g while v (a root of g) is also a
weight of h, we still have the following relations [5, Section 14.1]:

2
‖u‖ cos θ

‖v‖ = 2
〈u, v〉
〈v, v〉 ∈ Z,

2
‖v‖ cos θ

‖u‖ = 2
〈u, v〉
〈u, u〉 ∈ Z.

The product of the left-hand side is 4 cos2 θ ∈ Z and we obtain our claim.
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Now, we can determine the ratio ‖u‖
‖v‖ .

If θ = 0◦ or 180◦, then ‖u‖
‖v‖ ,

‖v‖
‖u‖ ∈ Z

2 . We conclude that ‖v‖
‖u‖ ∈ {1

2 , 1, 2};
If θ = 30◦ or 150◦, then ‖u‖

‖v‖ ,
‖v‖
‖u‖ ∈ Z√

3
. We conclude that ‖v‖

‖u‖ ∈ { 1√
3
,
√

3};
If θ = 45◦ or 135◦, then ‖u‖

‖v‖ ,
‖v‖
‖u‖ ∈ Z√

2
. We conclude that ‖v‖

‖u‖ ∈ { 1√
2
,
√

2};
If θ = 60◦ or 120◦, then ‖u‖

‖v‖ ,
‖v‖
‖u‖ ∈ Z. We conclude that ‖v‖

‖u‖ = 1.

Lemma 2.5. Every semisimple Lie algebra g contains a semisimple subalgebra g′ of
maximal rank such that every simple factor of g′ is of type An and the number of An

factors of g and g′ are the same for n ∈ {4, 6, 9, 10, 11, 12, . . .}.
Proof. By Table 1 [6, Table 5] at the end of this section and the following facts [5,
Chap. 18, 19]:

so(3) = A1,

so(4) = A1 ×A1,

so(6) = A3,

sp(2) = A1,

so(4) ⊂ so(5) = sp(4),

one can choose a subalgebra g′ of g of maximal rank such that every simple factor
of g′ is of type An and that the number of An factors of g and g′ are the same for
n ∈ {4, 6, 9, 10, 11, 12, . . .}. �
Since g′ ⊂ g are of same rank, one may assume that they have the same Cartan
subalgebra. If Θ : g→ gl(V ) is a representation of g and we take the restriction to g′,
then CharΘ(V ) = CharΘ|g′ (V ). To prove Theorems 2.14 and 2.17, we can reduce to
the case that every simple factor of our Lie algebras g, h is of type An.

Lemma 2.6. Suppose q is a simple factor of g of type An, n ≥ 2. Let u be a root of
h such that u /∈ (Λq ⊗R)∪ (Λq ⊗R)⊥ ⊂ Λg ⊗R. Then the angle θ between u and any
root of g can only be 45◦, 60◦, 90◦, 120◦, 135◦.

Proof. We decompose the semisimple Lie algebra g into simple factors with q1 = q.

Λg ⊗ R = (Λq1 ⊗ R)⊥(Λq2 ⊗ R)⊥ · · ·⊥(Λqm ⊗ R).

Since u /∈ (Λq ⊗ R) ∪ (Λq ⊗ R)⊥, u /∈ Λqi ⊗ R for all i. Thus, the angle cannot be
0◦ or 180◦. Assume that v is a root of g such that the angle θ between u and v is
30◦ (if θ = 150◦, then choose root −v). Since q = q1 is of type An (n ≥ 2), we can
always choose some root w ∈ Φq1 such that {u, v, w} are linearly independent and
the angle between u and w is not 90◦. Now, consider the group G generated by Ru,
Rv, and Rw, the three reflections of hyperplanes corresponding to roots u, v, and w.
Since each reflection is either in the Weyl group of g or in the Weyl group of h, the
formal character CharΘ(V ) is invariant under G. It follows that G is finite because
G permutes weights in CharΘ(V ) and those weights span Λg ⊗ R. So, we conclude
that G is a finite subgroup of O(Λg⊗R), the orthogonal group of Λg⊗R. Also note that
the three-dimensional space spanned by {u, v, w} is actually invariant under G.
Denote the determinant 1 subgroup of G by G+, it is a finite subgroup of SO(3).
By the classification of finite subgroups of SO(3) [1, Chap. 5 Thm. 9.1], G+ is one of
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the following:
Ck : The cyclic group of rotations by multiples of 360◦/k about a line;
Dk : The dihedral group of symmetries of regular k-gon;
T : The tetrahedral group of 12 rotations carrying a regular tetrahedron to itself;
O : The octahedral group of 24 rotations carrying a cube to itself;
I : The icosahedral group of 60 rotations carrying a regular icosahedron to itself.

Note that both the angle between u, v and the angle between u, w are not 90◦,
and this means G+ can only be T , O or I. But the angle between u, v is 30◦. This
implies G+ contains Ru ◦Rv, a rotation of order 6 which is impossible. This finishes
the proof. �
(2.7) Let q be a complex semisimple Lie algebra of type An, n ≥ 1, then Λq⊗Z R has
dimension n. There exist weights e1, . . . , en, en+1 ∈ Λq such that (see [6, Table 1])

Λq ⊗ R = spanR{e1, . . . , en, en+1},
e1 + e2 + · · ·+ en + en+1 = 0,

Λq = Ze1 ⊕ · · · ⊕ Zen.

If we normalize so that the length of roots is
√

2, then

〈ei, ej〉 =

⎧⎪⎨
⎪⎩

n

n + 1
if 1 ≤ i = j ≤ n,

−1
n + 1

if 1 ≤ i �= j ≤ n.

The roots Φq comprise the set {ei− ej : 1 ≤ i �= j ≤ n + 1}. We can take {e1, . . . , en}
as a basis of Λq ⊗ R. The picture for A2 looks like

e1

e1 − e2

e1 − e3

e2 − e3

e3 − e2

A2

e2

e3e3 − e1

e2 − e1
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The square of the length of a weight w = a1e1 + · · ·+ anen is

〈a1e1 + · · ·+ anen, a1e1 + · · ·+ anen〉 =

∑n
i=1 na2

i − 2
∑

i<j aiaj

n + 1

=

∑n
i=1 a2

i +
∑

i<j(ai − aj)2

n + 1
≥ (n− k) + k(n− k)

n + 1
,(Ω)

if k is the number of zero ai. Thus, if w �= 0 satisfies ‖w‖ < 1, then

1 >
(n− k) + k(n− k)

n + 1
,

so

1 > k(n− k − 1),

which implies k = 0 or n − 1. Thus, one sees easily that the shortest weight is of
length

√
n

n+1 . Since n (the“numerator”) is the biggest integer smaller than n + 1

(the“denominator”), it is easy to check that
√

n
n+1 is the only length of weight that

is less than 1.
If ‖w‖ = 1, then it is not hard to see by investigating inequality (Ω) that

‖w‖ =
(n− k) + k(n− k)

n + 1
.

So

1 = k(n− k − 1),

which implies k = 1 and n = 3.

Proposition 2.8. Suppose q is a simple factor of g of type An, normalized as in
(2.7). Let u be a root of h. The orthogonal projection of u to Λq ⊗R, denoted by u′,
belongs to Λq. We write u′ = a1e1 + · · ·+anen. If u /∈ (Λq⊗R)∪ (Λq⊗R)⊥ ⊂ Λg⊗R,
then the following are true.

(1) If the angle θ between u and some root of q is 60◦, then either all ai ∈ {0, 1}
or all ai ∈ {0,−1}.

(2) If the angle θ between u and some root of q is 45◦, then all ai ∈ {0, 1}, or all
ai ∈ {0,−1}, or all ai ∈ {0, 2}, or all ai ∈ {0,−2}.

Proof. Suppose g = q1⊕· · ·⊕qm is the decomposition of g into a direct sum of simple
factors with q1 = q. We know that the representation ring of g is the tensor product
over Z of the representation rings of qi for all i [5, Exercise 23.42]. In other words, any
representation of g is given by the direct sum of some tensor products of irreducible
representation of qi. Therefore, if u is a weight of g appearing in CharΘ(V ), then u′

is some weight appearing in some irreducible representation of q, so u′ belongs to Λq.
Since u /∈ (Λq ⊗ R) ∪ (Λq ⊗ R)⊥ and the roots Φq span Λq ⊗ R, there exist some

root of q such that θ ∈ {30◦, 45◦, 60◦, 120◦, 135◦, 150◦} by (2.4). I claim that if the
angle θ between u and some root of q is 60◦, then the angle between u and any root
of q belongs to {60◦, 90◦, 120◦}, and if θ = 45◦, then the angle between u and any
root of q belongs to {45◦, 90◦, 135◦}. Suppose not, let v1, v2 ∈ Φq such that the angle
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between u and v1 is 45◦, while the angle between u and v2 is 60◦ (WLOG). Since q is
of type An, we have

‖u‖
‖v1‖ =

‖u‖
‖v2‖ .

By (2.4), the right-hand number and the left-hand number belong to Z − {0} and
Z√
2
− {0} respectively but the two sets are disjoint. So this is impossible.
Let v be a root of q and θ the angle between u and v, and write u′ = a1e1+· · ·+anen.

First consider v = ei − ej , where i, j ≤ n. By (2.7), we have

〈u′, v〉 = 〈a1e1 + · · ·+ anen, ei − ej〉

=
ai(n + 1)−∑n

k=1 ak

n + 1
− aj(n + 1)−∑n

k=1 ak

n + 1
= ai − aj .

Then consider v = ei− en+1 where i ≤ n. By (2.7), we have v = e1 + e2 + · · ·+ ei−1 +
2ei + ei+1 + · · ·+ en, so

〈u′, v〉 = 〈a1e1 + · · ·+ anen, e1 + e2 + · · ·+ ei−1 + 2ei + ei+1 + · · ·+ en〉

=
ai(n + 1)−∑n

k=1 ak

n + 1
+

n∑
j=1

aj(n + 1)−∑n
k=1 ak

n + 1
= ai.

If we are in the 60◦ case, then ‖u‖ = ‖v‖ =
√

2. Therefore, |ai| and |ai − aj | are both
of the form

| 〈u′, v〉 | =
∣∣∣∣2 〈u′, v〉〈v, v〉

∣∣∣∣ =
∣∣∣∣2 〈u, v〉
〈v, v〉

∣∣∣∣ = |2 cos θ| =
{

1 if θ = 60◦, 120◦,
0 if θ = 90◦.

From this, it is easy to see that either all ai ∈ {0, 1} or all ai ∈ {0,−1}.
If we are in the 45◦ case, then ‖u‖ is either 2 or 1. If ‖u‖ = 2, then

|ai|, |ai−aj | = | 〈u′, v〉 | =
∣∣∣∣2 〈u′, v〉〈v, v〉

∣∣∣∣ =
∣∣∣∣2 〈u, v〉
〈v, v〉

∣∣∣∣ = |2
√

2 cos θ| =
{

2 if θ = 45◦, 135◦,
0 if θ = 90◦.

When ‖u‖ = 1, then

|ai|, |ai − aj | = | 〈u′, v〉 | =
∣∣∣∣2 〈u′, v〉〈v, v〉

∣∣∣∣ =
∣∣∣∣2 〈u, v〉
〈v, v〉

∣∣∣∣ = |
√

2 cos θ| =
{

1 if θ = 45◦, 135◦,
0 if θ = 90◦.

From this, it is easy to see either all ai ∈ {0, 1} or all ai ∈ {0,−1} or all ai ∈ {0, 2}
or all ai ∈ {0,−2}. �
(2.9) Again, suppose q is a simple factor of g of type An. Let u be a root of h such that
u /∈ (Λq⊗R)∪ (Λq⊗R)⊥ ⊂ Λg⊗R. Let q′ be a simple factor of g of rank n′ such that
the orthogonal projection u′ of u to Λq′⊗R is non-zero. Write u′ = a1e1 + · · ·+an′en′

as in (2.7). Let k′ be the number of zero coefficients. Normalize so that ‖u‖2 = 2. We
can use Proposition 2.8 (coordinates computation) to compute ‖u′‖2. Consider the
following three cases:

(1) If the angle between u and some root of q′ is 60◦, then by (2.4) the length of
roots of q′ is

√
2. By using (2.7) and Proposition 2.8, we have

‖u′‖2 = ‖a1e1+ · · ·+an′en′‖2 =

∑n′

i=1 a2
i +

∑
1≤i<j≤n′(ai − aj)2

n′ + 1
=

(n′ − k′)(k′ + 1)
n′ + 1

.
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(2) If the angle between u and some root of q′ is 45◦ and assuming the length of
roots of q′ is 2 (see (2.4)), then we multiply by 2 and use (2.7) and Proposition
2.8 to get

‖u′‖2 = 2‖a1e1 + · · ·+ an′en′‖2 =
2(

∑n′

i=1 a2
i +

∑
1≤i<j≤n′(ai − aj)2)

n′ + 1

=
2(n′ − k′)(k′ + 1)

n′ + 1
.

(3) If the angle between u and some root of q′ is 45◦ and assuming the length of
roots of q′ is 1, then we multiply 1/2 and use (2.7) and Proposition 2.8 to get

‖u′‖2 =
‖a1e1 + · · ·+ an′en′‖2

2
=

∑n′

i=1 a2
i +

∑
1≤i<j≤n′(ai − aj)2

2(n′ + 1)

=
4(n′ − k′)(k′ + 1)

2(n′ + 1)
=

2(n′ − k′)(k′ + 1)
n′ + 1

.

Note that (n′ − k′) + (k′ + 1) = n′ + 1, so it is easy to see ‖u′‖2 ≥ 1
2 for the 60◦ case

and ‖u′‖2 ≥ 1 for the 45◦ case.

(2.10) The computations in (2.9) imply strong restrictions on the lengths of various
projections of the root u. Suppose that we are in the situation of (2.9) and q = q1 is
of type An, n ≥ 4. Consider the situation that there exists another simple factor q2

of rank n2 of g such that the projection u2 of u to Λq2 ⊗ R is non-zero.
Let us first show that the angle between u and any root of q2 cannot be 30◦ or 150◦.

Suppose not, choose root v2 of q2 that makes angle 30◦ with u. Choose a root v1 of
q1, so that the angle θ between v1 and u is less than 90◦ by u /∈ (Λq⊗R)∪ (Λq⊗R)⊥.
(2.4) implies θ is 30◦ or 45◦ or 60◦. By considering the Euclidean space spanned by
u, v1, v2, one sees easily that the first two cases are impossible because v1 and v2 are
perpendicular. For the case θ = 60◦, one observes that u lies on the plane spanned by
roots v1, v2. Since n ≥ 2 and u /∈ (Λq ⊗ R) ∪ (Λq ⊗ R)⊥, the angle between any root
of g1 and u belongs to {60◦, 90◦, 120◦} by (2.4) and one can choose a root v′1 of q1

making an angle of 60◦ with u by the second paragraph of the proof of Proposition
2.8. This is also absurd if one consider the Euclidean three-space spanned by v1, v

′
1,

and v2. Therefore, we can apply the results in (2.9).
Let u1 be the projection of u to Λq1 ⊗ R. Then we have

2 = ‖u‖2 ≥ ‖u1‖2 + ‖u2‖2.
If the angle between u and some root of q1 is 45◦, then by (2.9) and above

2 ≥ ‖u1‖2 + ‖u2‖2 ≥ 2n

n + 1
+

n2

n2 + 1
≥ 2n

n + 1
+

1
2
,

which is impossible when n ≥ 4.
If the angle between u and some root of q1 is 60◦ and the angle between u and some
root of q2 is 45◦, then by the calculations above,

2 ≥ ‖u1‖2 + ‖u2‖2 ≥ ‖u1‖2 +
2n2

n2 + 1
≥ ‖u1‖2 + 1.
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By (2.7) and n ≥ 4, the only length of weight that is less than or equal to 1 is
√

n
n+1 .

Therefore, ‖u1‖2 = n
n+1 . But then

2 ≥ ‖u1‖2 + ‖u2‖2 ≥ n

n + 1
+

2n2

n2 + 1
≥ n

n + 1
+ 1.

This implies

‖u‖2 − (‖u1‖2 + ‖u2‖2) ≤ 2−
(

n

n + 1
+ 1

)
=

1
n + 1

.

Note that 1
n+1 < 1

2 when n ≥ 2. Therefore, by the last line of (2.9), we conclude that

‖u‖2 = ‖u1‖2 + ‖u2‖2,
and hence,

2 =
n

n + 1
+

2(n2 − k2)(k2 + 1)
n2 + 1

.

It is easy to check that this is not solvable for n ≥ 1. Therefore, there does not exist
a root v ∈ Φg such that the angle between v and u is 45◦. Using similar arguments,
we see if n is big (at least ≥ 4), then u can only have two components, i.e.,

2 = ‖u‖2 = ‖u1‖2 + ‖u2‖2.
Since no weight of An has length 1 for n ≥ 4, one of the ‖u1‖2, ‖u2‖2 is smaller than
1 and the other is bigger than 1. Since

√
m

m+1 is the only length of weight smaller

than 1 in Am, together with (2.9), this gives the following Diophantine equation for
positive integers m, l, k:

(D) 2 =
m

m + 1
+

(l − k)(k + 1)
l + 1

.

Proposition 2.11. The solutions of Diophantine equation (D) are (m, l, k) = (1, 5, 2),
(1, 7, 1), (1, 7, 5), (2, 5, 1), (2, 5, 3), (4, 4, 1), and (4, 4, 2).

Proof. Write a = l − k and b = k + 1. Since m is positive, thus we have
ab

a + b
< 2,

which is equivalent to
(a− 2)(b− 2) ≤ 3.

If a− 2 and b− 2 are non-zero, then there are only finitely many possible pairs (a, b).
In this case, there exists only one solution (m, l, k) = (1, 5, 2), which corresponds to
(a, b) = (3, 3).

If a− 2 = 0, then the equation becomes

2 =
m

m + 1
+

2b

b + 2
,

which is equivalent to
m(b− 2) = 4.

Therefore, we see (m, b) = (1, 6), (2, 4), (4, 3) and we deduce easily that (m, l, k) =
(1, 7, 1), (1, 7, 5), (2, 5, 1), (2, 5, 3), (4, 4, 1), (4, 4, 2). �
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(2.12) From Proposition 2.11, we see that the m, l coordinates of solutions of (D) do
not belong to {6, 8, 9, 10, 11, . . .}. Therefore, there does not exist a root u ∈ Φh such
that u /∈ (Λq ⊗R)∪ (Λq⊗R)⊥ for any An factor q of g where n ∈ {6, 8, 9, 10, 11, . . .}.
In other words, any root u ∈ Φh must either be contained in or perpendicular to
Λq ⊗ R ⊂ Λg ⊗ R. On the other hand, since any simple root system is irreducible,
there exist simple factors p1, . . . , ps of h such that Λq⊗R = (Λp1⊗R)⊕· · ·⊕(Λps⊗R).
If we consider the sum of all the weights in the formal character sitting in this subspace
of t∗g, then it is actually a formal character coming from some faithful representations
of q and p1 ⊕ · · · ⊕ ps [5, Exercise 23.42]. Thus, we reduce our problem to the case
that g is a simple complex Lie algebra of type An, n ∈ {6, 8, 9, 10, 11, . . .}. If we
can prove that s = 1, then p1 = q and the number of An factors of g and h for
n ∈ {6, 8, 9, 10, 11, . . .} are the same.

(2.13) Suppose g is simple of type An, n ∈ {4, 5, 6, 9, 10, 11, . . .} and h = p1⊕· · ·⊕ ps

is a direct sum of simple factors of type An. Assume that the length of roots of g is√
2. Let u be a root of h and θ the angle between u and some root v ∈ Φg. Consider

the following three cases:
θ = 30◦ This is impossible because we can always choose some root v′ (since n ≥ 3)

of g that makes an angle of 30◦ with u such that {u, v, v′} spans a three-
dimensional space and then use the argument in Lemma 2.6.

θ = 45◦ Then u is either of length 1 or 2 by (2.4). It is impossible for u and some
root of g to be parallel because θ = 45◦. Hence, the angle between u and any
root of g belongs to {45◦, 90◦, 135◦}. By Proposition 2.8 and computations in
(2.9), we deduce that

4 = ‖u‖2 =
4(n− k)(k + 1)

n + 1
or 1 = ‖u‖2 =

(n− k)(k + 1)
n + 1

.

Hence, we for both cases obtain the equation

k(n− k − 1) = 1,

which implies (n, k) = (3, 1). This is impossible since 3 /∈ {4, 5, 6, 9, 10, 11, . . .}.
θ = 60◦ Length of u is

√
2 by (2.4). If u is not equal to any root of g, then the angle

between u and any root of g belongs to {60◦, 90◦, 120◦}. By Proposition 2.8
and computations in (2.9),

2 = ‖u‖2 =
(n− k)(k + 1)

n + 1
.

2(n + 1) = (n− k)(k + 1).

Let N = n + 1 and K = k + 1, we have

K2 −NK + 2N = 0.

Since N2 − 8N , the discriminant of the left-hand side is a perfect square Δ2,
thus we have

(N −Δ)(N + Δ) = 8N.

Assume that Δ is non-negative, we have 1 ≤ (N −Δ) ≤ 8. So, we only have
eight cases to consider: (N −Δ) ∈ {1, 2, . . . , 8}. We find that N can only be
8, 9, thus n can only be 7, 8, which do not belong to {4, 5, 6, 9, 10, . . .}.
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So θ = 0◦ or 180◦ and we conclude that any root u of h lies on the line spanned
by a root g. If we can prove that h is simple, then g = h and we are done. Write
h = p1 ⊕ p2 ⊕ · · · ⊕ ps and let ni be the rank of pi. If we take a base Si of pi for all
1 ≤ i ≤ s, then Si is a subset of Φg for all i and S1 is orthogonal to Si for i ≥ 2. Note
that the union of all Si forms a basis of Λg⊗R, therefore S2∪· · ·∪Ss spans a space of
dimension n−n1. By (2.7), the set of roots of g is given by {ei−ej : 1 ≤ i �= j ≤ n+1}.
Without loss of generality, we may assume that

S1 = {c(e1 − e2), c(e2 − e3), . . . , c(en1 − en1+1)}
for some constant c ∈ {1/2, 1, 2} by (2.4). If a1e1 + · · · + anen is orthogonal to S1,
then a1 = a2 = · · · = an1 = an1+1 by (2.7). Therefore, the set of roots of g that are
orthogonal to S1 is

{ei − ej : n1 + 1 ≤ i �= j ≤ n + 1},
which spans a space of dimension n−n1− 1. It contradicts that S2 ∪ · · · ∪Ss spans a
space of dimension n−n1. So, we conclude that h is simple and is equal to g = An if n ∈
{4, 5, 6, 9, 10, 11, . . .}. If we consider the intersection of the two sets {6, 8, 9, 10, 11, . . .}
and {4, 5, 6, 9, 10, 11, . . .} in (2.12) and (2.13), then we can get the following theorem.

Theorem 2.14. If faithful representations of two complex semisimple Lie algebras g
and h have the same formal character, then the number of An factors of g and h are
the same when n ∈ {6, 9, 10, . . .}.
Proof. First, we may assume that each faithful representation contains the adjoint
representation as a subrepresentation by (2.2). Hence the roots Φg, Φh really appear
in the formal character. Since we only care about the number of An factors for n ∈
{6, 9, 10, . . .}, we assume that g and h only have simple factors of type An by Lemma
2.5. Now if q is a simple factor of g with rank n ∈ {6, 9, 10, . . .} and u ∈ Φh (2.12)
says that u is either contained in or perpendicular to Λq ⊗ R. So, we may reduce to
the case that g is q and if we can prove that h is also simple, then we are done. Finally,
(2.13) finishes that part. �

(2.15) We are going to prove that the parities of the number of A4 factors of g and
h are equal. Again we may assume that our Lie algebras only have simple factors of
type An by Lemma 2.5 and the roots of h appear in the formal character by (2.2).
Therefore, the roots of h belong to Λg. Suppose

g = g1 ⊕ g2,

h = h1 ⊕ h2

are decompositions into a direct sum of proper ideals such that Λg1 ⊗ R = Λh1 ⊗ R.
Then we also have Λg2 ⊗ R = Λh2 ⊗ R by orthogonality. If this is the case, then we
say the pair (g � V, h � V ′) of representations is reducible. It is because the weights
of the original formal character sitting inside Λgi ⊗ R = Λhi ⊗ R come from some
faithful representations of gi and hi, i = 1, 2. We can reduce our problem to some
pairs (gi � Vi, hi � V ′i ) for i = 1, 2. Now we assume that (g � V, h � V ′) is not
reducible. If v ∈ Φg and u ∈ Φh, then by (2.4) we have

〈v, v〉
〈u, u〉 ∈ 2a3b
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for some integers a, b.

(2.16) Assume that the pair (g � V, h � V ′) is not reducible. Let n be their common
rank and write

g = q1 ⊕ · · · ⊕ qm,

h = p1 ⊕ · · · ⊕ ps

as direct sums of simple factors. Let the rank of qi, pj be ni, rj , respectively. The
standard basis for the weight lattice of qi, Λqi , 1 ≤ i ≤ m is given by

{ei
1, e

i
2, . . . ., e

i
ni
}.

So a basis for the weight lattice of g, Λg is given by

B = {e1
1, e

1
2, . . . ., e

1
n1

, e2
1, e

2
2, . . . ., e

2
n2

, . . . ., em
1 , em

2 , . . . ., em
nm
}.

If we normalize the inner product 〈 , 〉, so that the length of roots of q1 is
√

2, then
by (2.15) the positive-definite n×n matrix Q defining 〈 , 〉 on Λg⊗R under the basis
B is

Q =

⎛
⎜⎜⎜⎝

Q1 0 . . . 0
0 γ2Q2 . . . 0
...

...
. . .

...
0 0 . . . γmQm

⎞
⎟⎟⎟⎠ ,

where γi ∈ 2Z3Z by (2.15) and Qi is an ni×ni matrix in the following form by (2.7)
for 1 ≤ i ≤ m:

Qi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ni

ni + 1
−1

ni + 1
. . .

−1
ni + 1

−1
ni + 1

ni

ni + 1
. . .

−1
ni + 1

...
...

. . .
...

−1
ni + 1

−1
ni + 1

. . .
ni

ni + 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

If we take a base S = {u1, . . . , un} of root system of h, then it defines an n×n matrix
A whose ith column is ui in terms of the basis B. Since all ui belong to the weight
lattice of g, A is a matrix of integral entries. If we enumerate S in a proper way, then
we have the following equation:

AtQA =

⎛
⎜⎜⎜⎝

μ1C1 0 . . . 0
0 μ2C2 . . . 0
...

...
. . .

...
0 0 . . . μsCs

⎞
⎟⎟⎟⎠ ,

where μj ∈ 2Z3Z by (2.15) and Cj is the Cartan matrix of pj for 1 ≤ j ≤ s. We know
that the determinant of the Cartan matrix Cj is rj +1 and it is easy to check that the
determinant of Qi is 1

ni+1 . Therefore, by taking determinant of the matrix equation,
we get

γ2 . . . .γmdet(A)2

(n1 + 1) . . . .(nm + 1)
= μ1 · · ·μs(r1 + 1) · · · (rs + 1).
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We see det(A) is an integer and γi, μj ∈ 2Z3Z. If we reduce this equation modulo (Q∗)2,
then by the unique factorization of primes we see the parities of ord5(n1+1) · · · (nm+1)
and ord5(r1 +1) · · · (rs +1) are the same. By Theorem 2.14, the number of An factors
for n ≥ 9 is invariant, so this implies the parity of number of A4 factors is an invariant
because 4 + 1 = 5. Thus, we have just proved the following theorem.

Theorem 2.17. If faithful representations of two complex semisimple Lie algebras g
and h have the same formal character, then the parities of the numbers of A4 factors
of g and h are the same.

Definition 2.18. Consider the free abelian group F of virtual complex simple Lie
algebras. Semisimple Lie algebras are subset F in a natural way. We divide by the sub-
group D generated by all expressions g−h, where h ⊂ g are semisimple of same rank.
We say that two complex semisimple Lie algebras g and h satisfy equal-rank subalgebra
equivalence, denoted by g ≈ h, if they have same image in F/D.

Theorem 2.19 follows easily from the results above.

Theorem 2.19. If faithful representations of two complex semisimple Lie algebras
g and h have the same formal character, then g and h satisfy equal-rank subalgebra
equivalence.

Proof. By Lemma 2.5 we may assume that our Lie algebras consist of simple factors
of type An. By Theorem 2.14, we further assume that the simple factors are of types
An, n ∈ {1, 2, 3, 4, 5, 7, 8}. From Table 1, the following Lie algebras are equivalent:

(1) A4 ×A4 ≈ A8 ≈ A2 ×A2 ×A2 ×A2;
(2) A7 ≈ A2 ×A5;
(3) A1 ×A5 ≈ A2 ×A2 ×A2;
(4) A2 ≈ A1 ×A1.

Hence by Theorem 2.17 and the list above, we may assume that n ∈ {1, 3} and it
suffices to prove that A3 ≈ A1 ×A1 ×A1. But we know that

A3 ×A1 ≈ so(6)× so(3) ≈ so(4)× so(5) ≈ so(4)× so(4) ≈ A1 ×A1 ×A1 ×A1.

So we are done. �
Proposition 2.20. Two semisimple Lie algebras g and h satisfy equal-rank subalge-
bra equivalence iff the number of An factors when n ∈ {6, 9, 10, 11, . . .} and the parity
of the number of A4 factors of them are the same.

Proof. We have seen that equal-rank subalgebra equivalence is implied by the condi-
tions on An factors in the proof of the above theorem. Suppose two complex semisim-
ple Lie algebras g and h of the same rank satisfy equal-rank subalgebra equivalence,
then in the free group F we have

g− h = h1 − g1 + h2 − g2 + · · ·+ hk − gk,

where hi ⊂ gi or gi ⊂ hi and are of the same rank for all i. Thus, we obtain

g + g1 + · · ·+ gk = h + h1 + · · ·+ hk.

By Theorems 2.14 and 2.17, one sees easily by taking a faithful representation of gi or
hi that for each i, gi and hi have the the number of An factors for n ∈ {6, 9, 10, . . .}
and the parity of the numbers of A4 factors. So do g and h by the equation above. �
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Table 1. [6, Table 5]. The table lists some semisimple maximal sub-
algebras f of maximal rank in simple complex Lie algebra g (up to
conjugacy in g)

g f

so2l+1(C) so2k(C)⊕ so2(l−k)+1(C)
l ≥ 2 2 ≤ k ≤ l
sp2l(C) sp2k(C)⊕ sp2(l−k)(C)

l ≥ 3 1 ≤ k ≤
[

l

2

]
so2l(C) so2k(C)⊕ so2(l−k)(C)

l ≥ 4 2 ≤ k ≤ l + 1
2

E6 sl2(C)⊕ sl6(C)
sl3(C)⊕ sl3(C)⊕ sl3(C)

sl2(C)⊕ so12(C)
E7 sl3(C)⊕ sl6(C)

sl8(C)
sl2(C)⊕ E7

sl3(C)⊕ E6

E8 sl5(C)⊕ sl5(C)
so16(C)
sl9(C)

sl2(C)⊕ sp6(C)
F4 sl3(C)⊕ sl3(C)

so9(C)
G2 sl3(C)

so4(C)

3. Compatible system of �-adic representations and �-independence

(3.1) We follow the terminology and notations of Serre [19]. Let K be a number field,
GK its absolute Galois group,

∑
K the set of all finite places of K and � a prime

number. An �-adic representation of K is a continuous homomorphism ρ : GK →
GLn(Q�) for some n. Here GK is equipped with the profinite topology and GLn(Q�)
is an �-adic Lie group. An abelian �-adic representation of K is an �-adic representation
of GK that factors through Gab

K .

(3.2) Let v ∈ ∑
K and pv the characteristic of the residue field kv of the place v. If

w is a valuation of K extending v, we denote the decomposition group, inertia group
and Frobenius element of w by Dw, Iw and Fw, respectively. Dw and Iw are closed
subgroups of GK . We say that ρ is unramified at v if ρ(Iw) is trivial for any valuation
w of K extending v. If the representation ρ is unramified at v, then the restriction of
ρ to Dw factors through Dw/Iw and ρ(Fw) is defined for any w|v. We denote it by
Fw,ρ and the conjugacy class of Fw,ρ in GLn(Q�) by Fv,ρ.
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Definition 3.3. An �-adic representation ρ is said to be rational if there exists a
finite subset S of

∑
K such that:

(a) Any element of
∑

K \S is unramified with respect to ρ.
(b) If v /∈ S, the coefficients of Pv,ρ(T ) := det(1− Fv,ρT ) belongs to Q.

Definition 3.4. Let �′ be a prime, ρ′ an �′-adic representation of K, and assume that
ρ, ρ′ are rational. Then ρ, ρ′ are said to be compatible if there exists a finite subset
S of

∑
K such that ρ and ρ′ are unramified outside of S and Pv,ρ(T ) = Pv,ρ′(T ) for

v ∈ ∑
K \S.

Definition 3.5. Let P be the set of prime numbers. For each prime � let ρ� be a
rational �-adic representation of K. The system {ρ�}�∈P is said to be compatible if ρ�,
ρ�′ are compatible for any two primes �, �′. The system {ρ�}�∈P is said to be strictly
compatible if there exists a finite subset S of

∑
K such that:

(a) Let S� = {v : pv = �}. Then, for every v /∈ S ∪ S�, ρ� is unramified at v and
Pv,ρ�

(T ) has rational coefficients.
(b) Pv,ρ�

(T ) = Pv,ρ�′ (T ) if v /∈ S ∪ S� ∪ S�′ .

(3.6) Serre associates to every number field K a projective family {Sm} of commuta-
tive algebraic groups over Q and shows that each Sm gives rise to a compatible system
of rational �-adic representation of K ([19, Chap. 2, Section 1, 2]). We give a brief
introduction to the algebraic groups Sm associated to the number field K. Let S be a
finite subset of

∑
K . Then by a modulus of support S we mean a family m = (mv)v∈S

where the mv are integers ≥ 1. If E is the group of units of K,

Em := {u ∈ E : v(1− u) ≥ mv for all v ∈ S}.
Then Sm is an algebraic group over Q whose connected component is

Tm := ResK/Q(Gm/K)/Em,

where ResK/Q(Gm/K) is obtained from the multiplicative group Gm by restriction
of scalars from K to Q and Em is the Zariski closure of Em in the algebraic torus
ResK/Q(Gm/K). Sm are called the Serre groups associated to K.

Definition 3.7. Let H be a linear algebraic group over Q, and let K be a number
field. A continuous homomorphism ρ : GK → H(Q�) is called an �-adic representation
of K with values in H.

One defines in an analogous way what it means for ρ to be unramified at a place
or rational and for a system {ρ�} to be compatible or strictly compatible. Using
class field theory, Serre defines for each prime � and for each modulus m an �-adic
representations ε� with values in Sm (Definition 3.7)

ε� : Gab
K −→ Sm(Q�).

Theorem 3.8. (1) The dimensions of the Serre groups associated to K only
depend on K. Denote the common dimension by dK .

(2) [19, Chap. 2.2.3] The image of ε� is an open subgroup of Sm(Q�) and is Zariski
dense in Sm.
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(3) [19, Chap. 2.2.5] Let φ : Sm → GLn,Q be a Q-morphism, then the representa-
tion

φ ◦ ε� : Gab
K → GLn(Q�)

is semisimple and {ε�}�∈P is strictly compatible.
(4) The dimension of Sm(Q�) as an �-adic Lie group is equal to dK for all �.

Proof. We have provided references for (2) and (3), so we just need to prove (1) and
(4). Since Em is of finite index in E [19, Chap. 2.2.1], Serre groups have the same
dimension. By taking an Q-embedding φ of Sm to some GLn,Q, one obtains (4) by
the algebraicity of the Lie algebra of φ ◦ ε�(GK) [7, Thm. 4], (2) and (3) of this
theorem. �
(3.9) We are going to define local algebraicity for an abelian �-adic representation of
a number field K. We first need to define local algebraicity for K, a finite extension of
Q�. Let T = ResK/Q�

(Gm/K) be the algebraic torus over Q� and V a finite dimensional
vector space over Q�. If i : K∗ → Gab

K is the canonical homomorphism of local class
field theory and ρ : Gab

K → Aut(V ) is an abelian �-adic representation of K, we then
get a continuous homomorphism ρ ◦ i of K∗ = T (Q�) into Aut(V ).

Definition 3.10. The representation ρ is said to be locally algebraic if there is an
algebraic morphism r : T → GLV such that ρ ◦ i(x) = r(x−1), for all x ∈ K∗ close
enough to 1.

(3.11) Now if K is a number field and V� is a finite-dimensional vector space over Q�.
Let

ρ : Gab
K −→ Aut(V�)

be an abelian �-adic representation of K. Let v ∈ ∑
K be a place of K of residue

characteristic � and let Dv ⊂ Gab
K be the corresponding decomposition group, which

is isomorphic to Gal(Kv/Kv)ab. Hence, we get an �-adic representation of Kv by
composition

ρv : Gal(Kv/Kv)ab → Dv → Aut(V�).

Definition 3.12. The representation ρ is said to be locally algebraic if all the local
representations ρv, with pv = �, are locally algebraic in the sense of Definition 3.10.

The following two theorems are crucial for this section. Let ρ : Gab
K → Aut(V�) be an

abelian �-adic representation of the number field K.

Theorem 3.13. [19, Chap. 3, Thm. 2] If ρ is locally algebraic, then there exists a
modulus m, an abelian �-adic representation ε� : Gab

K → Sm(Q�) (3.8) and a morphism
of algebraic groups φ : Sm ×Q Q� → GLV�

over Q�, such that ρ = φ ◦ ε�.

Theorem 3.14. [19, Chap. 3 Section 3], [23], [7, Section 5] If ρ is rational and
semisimple, then ρ is locally algebraic.

Remark 3.15. An abelian �-adic representation ρ of K is always unramified at all
v ∈ ∑

K \S, for some finite set S ([19, Chap. 3, Section 2.2]). The proof of Theorem
3.14 [7, Section 5] consists of two parts. Part one proves that ρ is almost locally
algebraic, i.e., there exists an integer N such that ρN is locally algebraic. Part two
proves that if ρ is almost locally algebraic, then ρ is locally algebraic. The crucial
observation is that part one does not use the full rational condition, it only needs
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ρ(Fw)’s eigenvalues are algebraic for all w|v when v /∈ S. We will use this in the proof
of Proposition 3.18.

(3.16) Suppose ρ : GK → GLn(Q�) is a semisimple, rational �-adic representation of
K. Let G� be the Zariski closure of ρ(GK) in GLn,Q�

. It is defined over Q�. Semisim-
plicity of ρ implies G� is a reductive group. Indeed, G� acts on an n-dimensional
vector space V over Q�. Semisimplicity implies V decomposes into a direct sum of
irreducibles V1⊕V2⊕· · ·⊕Vm. If U is the unipotent radical of G◦� , then the eigenspace
W (of eigenvalue 1, the only eigenvalue) of U decomposes as W1 ⊕W2 ⊕ · · · ⊕Wm

such that Wi ⊂ Vi and Wi is non-trivial for all 1 ≤ i ≤ m. Since U is normal in G�,
W is an invariant subspace of V . Therefore, W = V , and G� is a reductive algebraic
group.

(3.17) We may now assume that G� is connected, reductive which corresponds to
restricting ρ to the open subgroup GKconn of GK . The quotient group G�/[G�, G�] is
a Q�-torus. Let

j : G�/[G�, G�] → GLm,Q�

be an embedding defined over Q� and introduce the map

θ : G� → G�/[G�, G�]
j→ GLm,Q�

.

If ρ is unramified outside a finite subset S of
∑

K and w is a valuation extending
v ∈ ∑

K \S, then ρ(Fw) is well defined. Since θ is algebraic, the eigenvalues of θ(ρ(Fw))
in GLm(Q�) are also algebraic numbers. Indeed, if we write ρ(Fw) = gssgu by Jordan
decomposition, then the eigenvalues of ρ(Fw) are the same as the eigenvalues of gss and
θ(ρ(Fw)) = θ(gss) because G�/[G�, G�] is a torus. gss is contained in some maximal
torus in G� and we see that the eigenvalues of θ(gss) are products of integral powers
of eigenvalues of gss; therefore the eigenvalues of θ(ρ(Fw)) are algebraic.

Proposition 3.18. Let ρ : GK → GLn(Q�) be a semisimple, rational �-adic rep-
resentation of K, G� the Zariski closure of ρ(GK) in GLn,Q�

and Kconn the field
corresponding to G◦� . Then G� is reductive, the dimension of the center of G◦� is less
than or equal to dKconn .

Proof. The algebraic group G� is reductive with Lie algebra g�. We just need to
estimate the dimension of the center of G◦� . We may assume that G� is connected by
Theorem 1.3. Consider the composition of maps where θ is defined above,

θ ◦ ρ : GK → G�(Q�) → G�/[G�, G�](Q�) → GLm(Q�).

The quotient map GK → Gab
K factors through the composition, hence induces an

abelian �-adic representation

Ψ : Gab
K −→ GLm(Q�).

The discussion above implies the eigenvalues of Ψ(Fw) are algebraic. Therefore, there
exists some integer N such that (Ψ)N is locally algebraic by Remark 3.15.

Apply Theorem 3.13 to (Ψ)N : Gab
K → GLm(Q�), we have

(Ψ)N = φ ◦ ε�.

We see that φ(Sm(Q�)) contains the image of (Ψ)N . Since Ψ(Gab
K ) is abelian, the

dimensions of (Ψ)N (Gab
K ) and Ψ(Gab

K ) as �-adic Lie groups are the same. This implies
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that (Ψ)N (Gab
K ) is also Zariski dense in j(G�/[G�, G�]). Since Sm(Q�) is Zariski dense

in Sm by Theorem 3.8(2), we obtain

j(G�/[G�, G�]) ⊂ φ(Sm)

and conclude that the dimension of the center of G� is less than or equal to the
dimension of Sm, which is dK by Theorem 3.8(4). �

Theorem 3.19. Let {ρ�}�∈P be a semisimple, compatible system of �-adic represen-
tations of a number field K.

ρ� : GK −→ GLn(Q�).

Let T� be a maximal torus of G◦� and denote the embedding of T� into GLn,Q�
by

Φ�. Then the triple (([G◦� , G
◦
� ] ∩ (T�))◦, T�, Φ�) is independent of �. Therefore, the

formal character of the tautological representation (G◦� )
der ↪→ GLn,Q�

and hence the
semisimple rank of G◦� are independent of �.

Proof. Assume that K = Kconn. Choose some Serre group Sm associated to K, then it
induces an abelian, semisimple, compatible system {ε�}�∈P of �-adic representations
with values in Sm.

ε� : Gab
K −→ Sm(Q�).

The image of ε� is an open subgroup of Sm(Q�). Now, we choose some faithful rep-
resentation i : Sm → GLm,Q over Q, then by base change with Q� and composing ε�

with i we get an abelian, semisimple, compatible system of �-adic representations of
K. Still denote it by {ε�}�∈P :

ε� : Gab
K −→ GLm(Q�).

Now consider the system of �-adic representations {β� := ρ� ⊕ ε�}�∈P ,

β� : GK −→ GLn+m(Q�),

which is semisimple and compatible and denote the Zariski closure of the image
by B�. Since [β�(GK), β�(GK)] = [ρ�(GK), ρ�(GK)] × {Idm}, the Zariski closure of
[β�(GK), β�(GK)] is isomorphic to the Zariski closure of [ρ�(GK), ρ�(GK)] in G�. On
the other hand, ρ�(GK)×ρ�(GK) is dense in G�×G� and the image of the commutator
morphism

[ , ] : G� ×G� → G�

is closed because G� is connected [2, Chap. 1, Section 2.3]. We conclude that the Zariski
closure of [β�(GK), β�(GK)] is [G�, G�]×{Idm}. The group [G�, G�] is embedded as a
closed normal subgroup of B� ⊂ G� × Sm. So we have

B�/[G�, G�] ⊂ G�/[G�, G�]× Sm.

Choose an embedding G�/[G�, G�] ↪→ GLn′,Q�
. Denote the following map by α�,

α� : GK → B�(Q�)→ (B�/[G�, G�])(Q�) ↪→ GLn′(Q�)×GLm(Q�) ⊂ GLn′+m(Q�).

This map is semisimple and factors through Gab
K . Denote the Zariski closure of α�(GK)

by C� which is diagonalizable. The eigenvalues of the Frobenius elements whenever
defined are algebraic. Therefore, α� is almost locally algebraic by Remark 3.15, i.e.,
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αN
� is locally algebraic for some positive integer N . Since the dimensions of the abelian

image of α� and αN
� are equal, we have

dim(C�) ≤ dK

by the same argument in the last paragraph of the proof of Proposition 3.18. Observe
that the projection of C� to the second factor is i(Sm), we obtain

dim(C�) ≥ dim(Sm) = dK .

We conclude that dim(C�) = dK is independent of � by Theorem 3.8(4). Since C� is
isomorphic to B�/[G�, G�], we have an exact sequence of reductive algebraic groups
for each �

0 → [G�, G�]→ B� → C� → 0.

Finally, since {β�}�∈P is a semisimple, compatible system of �-adic representations of
K, the rank of B� is independent of � by Theorem 1.4. Together with the
�-independence of dim(C�) and the exact sequence above, we obtain �-independence of
the rank of [G�, G�]. Therefore, the dimension of the center of G� is also independent
of � by Theorem 1.4 again.

Let π1 and π2 be the projection to the first n coordinates and the last m coordinates
respectively. By base change with C, we assume that T� and ε�(GK) are diagonalized.
Also denote the Zariski closure of β�(GK) in GLm+n,C by B�. We know that the
semisimple ranks of G� and B◦� are equal by the previous paragraph. Let Dn+m be
the group of diagonal matrices in GLn+m,C. Let D� be the connected component
of B� ∩ Dn+m. It is a maximal torus of B�. Indeed, π2(D�) has dimension equal to
dim(Sm) and D� contains the connected component of [B◦� , B◦� ] ∩ Dn+m, which is
equal to the connected component of ([G�, G�] × {Idm}) ∩ Dn+m having dimension
equal to the dimension of [G�, G�]∩T�. Since π2(([G�, G�]×{Idm})∩Dn+m) is trivial,
this implies the dimension of D� is equal to the rank of B�. In other words, we could
pick for each � a diagonalized maximal torus D� of B� such that π1(D�) = T�. Since
the systems {ρ�}�∈P and {ε�}�∈P are both compatible, every D� is conjugate by
a permutation which permutes the first n coordinates and the last m coordinates.
Therefore, we may assume that Θ� : D� ↪→ GLn+m,C is independent of � and write
Θ� := Θ.

Θ := (φ1, . . . , φn, φn+1, . . . , φn+m).

Since [B◦� , B◦� ] ∩D� = ([G�, G�]× {Idm}) ∩D� ⊂ Ker(π2) and π2 is an isogeny of the
center of B◦� to its image, we have

([B◦� , B◦� ] ∩D�)◦ = Ker(π2|D�
)◦,

which is independent of �. By projecting on the first n-coordinates, we have

([G�, G�] ∩ T�)◦ = π1(([B◦� , B◦� ] ∩D�)◦) = π1(Ker(π2|D�
)◦)

is also independent of �. Hence, if we denote (φ1, . . . , φn) by Φ�, then the triple

(([G�, G�] ∩ T�)◦, T�, Φ�)

is independent of �. It follows that the formal character of (G◦� )
der ↪→ GLn,Q�

is
independent of �, where (G◦� )

der := [G◦� , G
◦
� ]. �
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(3.20) Let us focus on the level of Lie algebra. By Theorem 3.19, we have a pair
((g�)ss ⊗C, Φ�) for each �, where (g�)ss ⊗C is a complex semisimple Lie algebra and
Φ� is a faithful representation of (g�)ss⊗C to an n-dimensional complex vector space
such that

(1) The rank of (g�)ss ⊗ C is independent of �.
(2) The formal character of Φ� is independent of � (see (2.1)).

By Theorem 2.14, 2.17, 2.19, and Proposition 2.20, we obtain the following theorem.

Theorem 3.21. Let {ρ�}�∈P be a semisimple, compatible system of �-adic represen-
tations of a number field K.

ρ� : GK −→ GLn(Q�).

Then the semisimple parts of g�⊗C satisfy equal-rank subalgebra equivalence (Defini-
tion 2.18) for all � which is equivalent to the number of An factors for n ∈ {6, 9, 10, . . .}
and the parity of A4 factors of g� ⊗ C are independent of �.

Remark 3.22. Let {ρλ} be a compatible system of semisimple, Eλ-adic representa-
tions of GK [19, Chap. 1, Section 2.3]. Locally algebraicity is also defined for abelian
λ-adic representation [7, Section 2]. Since Theorem 1.3, 1.4, 3.13, 3.14 (see [7, Thm.
2]), and Remark 3.15 still hold analogously for Eλ-adic representations (the mor-
phisms are then defined over Eλ), one can prove that Proposition 3.18, Theorem
3.19, and Theorem 3.21 are also true in Eλ-adic case using identical arguments.

4. Abelian varieties and Galois representations

Let A be an abelian variety of dimension g over a field K, finitely generated over Q.
Let ρ� denote the action of GK on

V�(A) := (lim← A[�n])⊗Q�
∼= Q

2g
� .

The image of ρ� is an �-adic Lie group; denote its Lie algebra by g�.
There exists an abelian scheme E over a smooth variety X defined over a number

field k such that the function field of X is K and Eη = A where η is the generic point
of X (see, e.g., Milne [14, Section 20]). Every closed point x of X induces an �-adic
representation of k(x) given by the Galois action of Gk(x) on the �-adic Tate module
of Ex, here k(x) is the residue field of x which is a finite extension of k.

(ρ�)x : Gk(x) −→ GL(V�(Ex)).

Denote the Lie algebra of the image of (ρ�)x by (g�)x, we have (g�)x ⊂ g� by special-
ization (see Hui [8, Section 1]). By [16, Section 1], there always exists a closed point
x ∈ X such that (g�)x = g�. Therefore, we have (g�)x = g� for any prime � by [8,
Thm. 2.5]. Since the system {(ρ�)x}�∈P of �-adic representation of k(x) is compat-
ible (k(x) is a number field) and semisimple (Faltings [4]), the semisimple parts of
(g�)x ⊗ C = g� ⊗ C satisfy equal-rank subalgebra equivalence in Definition 2.18 by
Theorem 3.21. Thus, we obtain the following result.

Theorem 4.1. Let A be an abelian variety of dimension g over a field K, finitely
generated over Q. Then we have the following system {ρ�}�∈P of �-adic representation
of K

ρ� : GK −→ GL(V�(A)).
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Then the semisimple parts of g�⊗C satisfy equal-rank subalgebra equivalence (Defini-
tion 2.18) for all � which is equivalent to the number of An factors for n ∈ {6, 9, 10, . . .}
and the parity of A4 factors of g� ⊗ C are independent of �.
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