
Math. Res. Lett. 20 (2013), no. 3, 591–599 c© International Press 2013

BOUNDEDNESS OF CLASSICAL CALDERÓN–ZYGMUND
CONVOLUTION OPERATORS ON PRODUCT HARDY SPACE

Chaoqiang Tan

Abstract. It is well known that the classical Calderón–Zygmund convolution operators

are bounded on the classical Hardy spaces. In this paper, we prove that these operators
are also bounded on the product Hardy spaces.

1. Introduction

The extensive study of the classical Hardy spacesHp(Rn) began with the fundamental
works of Stein–Weiss [17] and Fefferman–Stein [6]. These spaces played an important
role in harmonic analysis. Especially, as an extension of the Lp(p > 1) boundedness,
the classical Calderón–Zygmund operators are bounded on the classical Hardy spaces
Hp(Rn) and from Hp(Rn) to Lp(Rn) for 0 < p ≤ 1.

The product Hardy space was introduced by Gundy and Stein [9]. However, the
product Hardy space is essentially different from the classical Hardy space. For in-
stance; see [1–3]. Nevertheless, the product singular integrals began with convolution
operators studied by R. Fefferman and Stein [8] and continued with non convolu-
tion operators introduced by Journé [13], are bounded on the product Hardy space
Hp(Rn × R

m) and from Hp(Rn × R
m) to Lp(Rn+m); see [4, 10]. It is not difficult to

see that the product Calderón–Zygmund convolution operators in general need not to
be bounded on the classical Hardy spaces. Indeed, let T be the double Hilbert trans-
form on R

2, i.e., T (f) = p.v. 1
x1x2

∗ f. Set a(x1, x2) = χ(0≤x1≤1)(x1)[χ(0≤x2≤1)(x2) −
χ(−1≤x2≤0)(x2)]. Then a is in the classical Hardy space H1(R2). However, T (a) is not
in H1(R2) since T (a) �∈ L1(R2). This is not surprising because the dilations play a
crucial role in both singular integral operator theory and the Hardy space. Note that
by the maximal characterizations of the classical and product Hardy spaces it is not
difficult to see that Hp(Rn × R

m) � Hp(Rn+m), where Hp(Rn+m) is the classical
Hardy space.

A natural question arises: is it possible that the classical singular integral operators
are bounded on the product Hardy spaces? Note that the classical singular integral
operators and the product Hardy spaces satisfy the different dilation properties. We
would like to point out that an extension of the product singular integrals had came to
light when Müller et al. [14] proved the Lp, 1 < p <∞, boundedness of Marcinkiewicz
multipliers on the Heisenberg group. Nagel et al. further introduced a class of singu-
lar integrals with flag kernels on R

n [15] and recently on homogeneous groups [16].
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It was pointed in [15] that singular integrals with flag kernels on R
n × R

m belong
to the product singular integrals, see Remark 2.1.7 and Theorem 2.1.11 [15], where
the characterizations in terms of the corresponding multipliers between the flag and
product singular integrals are given. In this paper, we prove the analog of the one
-parameter case, more precisely, that the classical Calderón–Zygmund convolution
operators are bounded on the product Hardy spaces. To achieve this goal, the crucial
idea is the estimate in Lemma 2.2 below, namely the classical Calderón–Zygmund
convolution operators satisfy the product cancellation conditions. This fact together
with the second-order difference smoothness condition on kernels carries the product
almost orthogonal argument to the one-parameter case. And then applying the dis-
crete Littlewood–Paley square function and Calderón’s reproducing formula together
with the Fefferman–Stein vector valued maximal function estimate gives the desired
result.

In order to describe more precisely our results, we begin with recalling the product
Hardy space on R

n×R
m and the classical Calderón–Zygmund convolution operators

on R
n+m. In this paper, the classical Calderón–Zygmund convolution operator (we

refer reader to [18]) is defined as follows.

Definition 1.1. K ∈ C2(Rn+m \ {0}) is said to be a Calderón–Zygmund convolution
kernel if there are constants C and A such that

|∂αxK(x)| ≤ C

|x|n+m+α

for 0 ≤ |α| ≤ 2 and x ∈ R
n+m \ {0}, and∫

ε<|x|<N
K(x)dx ≤ A,

whenever 0 < ε < N <∞.
We say that an operator T is a classical Calderón–Zygmund convolution operator

if Tf(x) = p.v.K ∗ f(x) for a Calderón–Zygmund convolution kernel K.

It is well known that the classical Calderón–Zygmund convolution operators are
bounded on Lp(Rn+m) for 1 < p <∞, the classical Hardy space Hp(Rn+m) and from
Hp(Rn+m) to Lp(Rn+m) for p ≤ 1 but p is close to 1. See [18] for more details.

To study the boundedness of these operators on the product Hardy space, we first
recall the definition of the product Hardy space Hp(Rn×R

m)(see [9] and [4] for more
details).

Given p ≤ 1 but p is close to 1 and a function ψ ∈ S(Rn+m) with the support con-
tained in the unit ball and satisfying

∫
Rn ψ(x1, x2)xα1 dx1 =

∫
Rm ψ(x1, x2)x

β
2dx2 = 0

for all 0 ≤ |α|, |β| ≤Mp where Mp is an integer depending on p, and
∑
j,k∈Z

|ψ̂(2−jξ1,
2−kξ2)|2 = 1 for all ξ = (ξ1, ξ2) ∈ R

n × R
m with ξ1 �= 0 and ξ2 �= 0. The product

Littlewood–Paley square function of f is defined by

gψ(f)(x) =

⎧⎨
⎩
∑
j,k∈Z

|ψj,k ∗ f(x)|2
⎫⎬
⎭

1
2

,

where ψj,k(x) = 2jn+kmψ(2jx1, 2kx2).
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And the discrete product Littlewood–Paley square function is defined by

gdψ(f)(x) =

⎧⎨
⎩
∑
j,k∈Z

∑
I,J

|ψj,k ∗ f(cI , cJ)|2χI(x1)χI(x2)

⎫⎬
⎭

1
2

,

where I and J are dyadic cubes in R
n and R

m with the side lengths l(I) = 2−j−N ,
l(J) = 2−k−N for some fixed large integer N and the centers cI and cJ , respectively.

It is well known that ‖gψ(f)‖Lp(Rn+m) ≈ ‖gdψ(f)‖Lp(Rn+m) and for different ψ, φ
satisfying the same conditions, ‖gψ(f)‖Lp(Rn+m) ≈ ‖gφ(f)‖Lp(Rn+m). Moreover, the
Hp(Rn×R

m) norm of f denoted by ‖f‖Hp(Rn×Rm) is equivalent to ‖gdψ(f)‖Lp(Rn+m).
See [11] for more details.

The main results in this paper are the following

Theorem 1.2. If T is a classical Caderón–Zygmund convolution operator, then T is
bounded on Hp(Rn×R

m) and from Hp(Rn×R
m) to Lp(Rn+m), for max( n

n+1 ,
m
m+1 ) <

p ≤ 1.

As a consequence of Theorem 1.2, we obtain

Corollary 1.3. If T is a classical Caderón–Zygmund convolution operator, then T
is bounded on the product BMO(Rn × R

m).

We remark that the range of p in Theorem 1.2 can be smaller if the smoothness
conditions of K are required to be higher. See [18] and we leave the details to the
reader.

Throughout this paper, we do the following conventions:
(a) The notation A ≈ B means C1A ≤ B ≤ C2A for some positive constants

C1, C2.
(b) If Q is a cube, then cQ is its center and l(Q) is its side length.
(c) Q(Rn) and Q(Rm) are sets of all dyadic cubes in R

n and R
m, respectively.

(d) j ∧ j′ means the minimum of j and j′.

2. Proof of Theorem 1.2

The main tool in the proof of Theorem 1.2, as mentioned, is to apply the following
discrete Calderón reproducing formula (See [11] for more details).

Lemma 2.1. Given 0 < p ≤ 1. Suppose that φ(x) ∈ C∞
0 (Rn+m) with supp(φ) ∈ {x :

|x| ≤ 1}, ∫
Rn φ(x1, x2)xα1 dx1 =

∫
Rm φ(x1, x2)x

β
2dx2 = 0 for 0 ≤ |α|, |β| ≤ Mp,Mp is

a fixed large integer depending on p and
∑
j,k∈Z

|φ̂(2−jξ1, 2−kξ2)|2 = 1, for all ξ1 �= 0
and ξ2 �= 0. For a given f ∈ L2(Rn+m) ∩ Hp(Rn × R

m), there exists a function
h ∈ L2(Rn+m) ∩ Hp(Rn × R

m) and a large integer N > 0 such that f(x1, x2) =∑
j,k∈Z

∑
I∈Q(Rn),J∈Q(Rm)

l(I)=2−j−N ,l(J)=2−k−N
2−(j+N)n−(k+N)mφj,k(x1− cI , x2− cJ )(φj,k ∗h)(cI , cJ),

where the series converges in both L2(Rn+m) and Hp(Rn × R
m). Moreover,

‖f‖L2(Rn+m) ≈ ‖h‖L2(Rn+m)

and
‖f‖Hp(Rn×Rm) ≈ ‖h‖Hp(Rn×Rm).
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For the proof, we refer to [11].
To prove Theorem 1.2, the crucial estimate is the following

Lemma 2.2. Suppose that φ(x) ∈ C∞
0 (Rn+m) with

∫
Rn φ(x1, x2)dx1 =

∫
Rm

φ(x1, x2)dx2 = 0. If K is a Calderón–Zygmund convolution kernel given in Defi-
nition 1.1, then

|K ∗ φj,k(x)| ≤ Cφ
2jn

1 + |2jx1|n+1

2km

1 + |2kx2|m+1

for all x = (x1, x2) ∈ R
n × R

m, where Cφ is a constant depending only on φ.

Proof. Without loss of generality, we may assume that supp(φ) ⊂ {x : |x| ≤ 1}. We
prove the required estimate in four cases: (I): |x1| ≥ 2−j+1, |x2| ≥ 2−k+1; (II): |x1| ≥
2−j+1, |x2| < 2−k+1; (III): |x1| < 2−j+1, |x2| ≥ 2−k+1; (IV): |x1| < 2−j+1, |x2| <
2−k+1.

For case (I), by the cancellation condition on φ, we have

|K ∗ φj,k(x)| = 2jn+km

∣∣∣∣
∫

Rm

∫
Rn

{(K(x1 − y1, x2 − y2) −K(x1, x2 − y2))

− (K(x1 − y1, x2) −K(x1, x2))}φ(2jy1, 2ky2)dy1dy2
∣∣ .

Note that (K(x1 − y1, x2 − y2) −K(x1, x2 − y2)) − (K(x1 − y1, x2) −K(x1, x2)) =∫ 1

0

∫ 1

0
∂1
s∂

1
t

[K(x1 − sy1, x2 − ty2)
]
dsdt =

∫ 1

0

∫ 1

0

∑n
i=1

∑m
j=1 y1iy2j∂

1
x1i
∂1
x2j
K(x1 − sy1,

x2 − ty2)
]
dsdt, where y1 = (y11, y12, . . . , y1n), y2 = (y21, y22, . . . , y2m). Applying the

hypothesis on K, that is, the second-order difference smoothness condition, yields

|K ∗ φj,k(x)| ≤ C2jn+km

∫
Rm

∫
Rn

|y1‖y2|
(|x1| + |x2|)m+n+2

|φ(2jy1, 2ky2)|dy1dy2

≤ Cφ
2jn

1 + |2jx1|n+1

2km
1 + |2kx2|m+1

.

For case (II), by the hypothesis that
∫

Rn φ(x1, x2)dx1 = 0, we write

|K ∗ φj,k(x)| = 2jn+km

∣∣∣∣
∫

Rm

∫
Rn

(K(x1 − y1, x2 − y2)

− K(x1, x2 − y2))φ(2jy1, 2ky2)dy1dy2

∣∣∣∣ .
Applying the mean value theorem and the hypothesis on K implies

|K ∗ φj,k(x)| ≤ C2jn+km

∫
|y2|≤2−k

∫
|y1|≤2−j

|y1|
(|x1| + |x2 − y2|)n+m+1

dy2dy1

≤ Cφ2km
2jn

1 + |2jx1|n+1
≤ Cφ

2jn

1 + |2jx1|n+1

2km

1 + |2kx2|m+1
.

Since the cases (II) and (III) are symmetric, so the proof for case (III) follows from
the proof for case (II).
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For the last case (IV), let η1 ∈ C∞
0 (Rn) with 0 ≤ η1(x1) ≤ 1 and η1(x1) = 1 when

|x1| ≤ 4, and η1(x1) = 0 when |x1| ≥ 8. Set η2(x2) similarly. Then

|K ∗ φj,k(x)|

= 2jn+km

∣∣∣∣
∫

Rm

∫
Rn

K(y1, y2)φ(2j(x1 − y1), 2k(x2 − y2))η1(2jy1)η2(2ky2)dy1dy2

∣∣∣∣
≤ 2jn+km

∣∣∣∣
∫

Rm

∫
Rn

K(y1, y2)
(
φ(2j(x1 − y1), 2k(x2 − y2))

− φ(2jx1, 2kx2)
)
η1(2jy1)η2(2ky2)dy1dy2

∣∣∣∣
+ 2jn+km

∣∣∣∣
∫

Rm

∫
Rn

K(y1, y2)η1(2jy1)η2(2ky2)φ(2jx1, 2kx2))dy1dy2

∣∣∣∣ .
Using the size condition on K and smoothness condition on φ for the first term

and the fact that K̂ is bounded for the second term above gives

|K ∗ φj,k(x)|

≤ Cφ2jn+km

∫
|y2|≤2−k+3

∫
|y1|≤2−j+3

1
(|y1| + |y2|)n+m

(|2jy1| + |2ky2|
)
dy1dy2

+ Cφ

∣∣∣∣
∫

Rm

∫
Rn

K̂(ξ1, ξ2)η̂1(2−jξ1)η̂2(2−kξ2)dξ1dξ2

∣∣∣∣
≤ Cφ2jn+km ≤ Cφ

2jn

1 + |2jx1|n+1

2km

1 + |2kx2|m+1
.

The proof of Lemma 2.2 is concluded. �

We remark that it is a well-known estimate in Lemma 2.2 if K is a product singular
integral kernel, see [8]. As mentioned in section 1, however, the above proof indeed
implies that if K is a classical Calderón–Zygmund convolution kernel then∣∣∣∣

∫
Rm

∫
Rn

K(y1, y2)η1(2jy1)η2(2ky2)dy1dy2

∣∣∣∣ ≤ C

uniformly for all bump functions η1, η2 and j, k. This crucial estimate means that
classical Calderón–Zygmund convolution kernels K satisfy the product cancellation
conditions.

As a consequence of Lemma 2.2, we get the following product almost orthogonal
estimates for the classical Calderón–Zygmund convolution kernels.

Lemma 2.3. Under the hypothesis of Lemma 2.2,

|φj,k ∗ K ∗ φj′,k′(x)| ≤ Cφ2−|j−j′|2−|k−k′| 2(j∧j′)n

1 + |2j∧j′x1|n+1

2(k∧k′)m

1 + |2k∧k′x2|m+1

for all x = (x1, x2) ∈ R
n × R

m.

The proof of the Lemma 2.3 is based on the following two observations:
(1) convolution operation is commutative, i.e., φj,k ∗ K ∗ φj′,k′(x) = K ∗ (φj,k ∗
φj′,k′)(x); (2) φj,k ∗ φj′,k′ satisfies the same estimates as φj∧j′,k∧k′ with the bound
C2−|j−j′|2−|k−k′|. The detail is left to readers.
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To prove Theorem 1.2, we also need the following strong maximal function esti-
mates:

Lemma 2.4. Suppose that max( n
n+1 ,

m
m+1 ) < δ ≤ 1, F ∈ L2(Rn+m) and N is an

integer. If I ′ ∈ Q(Rn), J ′ ∈ Q(Rm) with l(I ′) = 2−j
′
, l(J ′) = 2−k

′
, respectively. Then

for any u = (u1, u2), v = (v1, v2) ∈ I ′ × J ′,
∑

I∈Q(Rn),J∈Q(Rm)
l(I)=2−j−N ,l(J)=2−k−N

2(j∧j′)n

(1 + 2j∧j′ |u1 − cI |)n+1

2(k∧k′)m

(1 + 2k∧k′ |u2 − cJ |)m+1
|F (cI , cJ)|

≤ C2n(j∧j′)(1−1/δ)+nj/δ2m(k∧k′)(1−1/δ)+mk/δ

×

⎧⎪⎪⎨
⎪⎪⎩
MS

⎡
⎢⎢⎣
⎛
⎜⎝ ∑

I∈Q(Rn),J∈Q(Rm)
l(I)=2−j−N ,l(J)=2−k−N

|F (cI , cJ)|2χIχJ

⎞
⎟⎠
δ/2
⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

1/δ

(v)

where Ms is the strong maximal function.

For the proof, we refer readers to [5].

Proof of Theorem 1.2. Since L2(Rn+m)∩Hp(Rn×R
m) is dense in Hp(Rn×R

m), we
just need to show that

‖Tf‖Hp(Rn×Rm) ≤ C‖f‖Hp(Rn×Rm)

for all f ∈ L2(Rn+m) ∩Hp(Rn × R
m).

Let I ′ ∈ Q(Rn), J ′ ∈ Q(Rm) with l(I ′) = 2−j
′
, l(J ′) = 2−k

′
, respectively. By the

discrete product Littlewood–Paley square function we write

|gdψ(Tf)(x)|2 =
∑

j′,k′∈Z

∑
I′∈Q(Rn),J′∈Q(Rm)

l(I′)=2−j′ ,l(J′)=2−k′

|ψj′,k′ ∗ K ∗ f(cI′ , cJ′)|2χI′(x1)χJ′(x2).

For any u = (u1, u2), x = (x1, x2) ∈ I ′ × J ′, applying Lemma 2.1 gives

|ψj′,k′ ∗ K ∗ f(u)| =

∣∣∣∣∣∣∣
∑
j,k∈Z

∑
I∈Q(Rn),J∈Q(Rm)

l(I)=2−j−N ,l(J)=2−k−N

2−(j+N)n−(k+N)mψj′,k′ ∗ K

∗ψj,k(u1 − cI , u2 − cJ)(ψj,k ∗ h)(cI , cJ)

∣∣∣∣∣∣∣
.

By Lemma 2.3, we have

|ψj′,k′ ∗ K ∗ f(u)|
≤ C

∑
j,k∈Z

∑
I∈Q(Rn),J∈Q(Rm)

l(I)=2−j−N ,l(J)=2−k−N

2−jn−km2−|j−j′|2−|k−k′|

2(j∧j′)n

1 + |2j∧j′(u1 − cI)|n+1

2(k∧k′)m

1 + |2k∧k′(u2 − cJ )|m+1
|ψj,k ∗ h|(cI , cJ).
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Applying Lemma 2.4 with F = ψj,k ∗ h and max( n
n+1 ,

m
m+1 ) < δ < p implies

|ψj′,k′ ∗ K ∗ f(u)|
≤ C

∑
j,k∈Z

2−jn−km2−|j−j′|2−|k−k′|2n(j∧j′)(1−1/δ)+nj/δ2m(k∧k′)(1−1/δ)+mk/δ

×

⎧⎪⎪⎨
⎪⎪⎩
MS

⎡
⎢⎢⎣
⎛
⎜⎝ ∑

I∈Q(Rn),J∈Q(Rm)
l(I)=2−j−N ,l(J)=2−k−N

|ψj,k ∗ h(cI , cJ)|2χIχJ

⎞
⎟⎠
δ/2
⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

1/δ

(x).

Therefore,

|gdψ(Tf)(x)|2

≤ C
∑

j′,k′∈Z

∑
I′∈Q(Rn),J′∈Q(Rm)

l(I′)=2−j′ ,l(J′)=2−k′⎡
⎢⎢⎢⎣
∑
j,k∈Z

2−jn−mk2−|j−j′|2−|k−k′|2n(j∧j′)(1−1/δ)+nj/δ2m(k∧k′)(1−1/δ)+mk/δ

⎧⎪⎪⎨
⎪⎪⎩
MS

⎡
⎢⎢⎣
⎛
⎜⎝ ∑

I∈Q(Rn),J∈Q(Rm)
l(I)=2−j−N ,l(J)=2−k−N

|ψj,k ∗ h(cI , cJ)|2χIχJ

⎞
⎟⎠
δ/2
⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

1/δ

(x)

⎤
⎥⎥⎥⎦

2

χI′(x1)χJ′(x2).

Summing up I ′, J ′ and applying the Cauchy–Schwartz inequality, we get

|gdψ(Tf)(x)|2

≤ C
∑

j′,k′∈Z

⎛
⎝∑
j,k∈Z

2−nj−mk2−|j−j′|2−|k−k′|2n(j∧j′)(1−1/δ)+nj/δ2m(k∧k′)(1−1/δ)+mk/δ

⎞
⎠

⎛
⎝∑
j,k∈Z

2−nj−mk2−|j−j′|2−|k−k′|2n(j∧j′)(1−1/δ)+nj/δ2m(k∧k′)(1−1/δ)+mk/δ

⎧⎪⎪⎨
⎪⎪⎩
MS

⎡
⎢⎢⎣
⎛
⎜⎝ ∑

I∈Q(Rn),J∈Q(Rm)
l(I)=2−j−N ,l(J)=2−k−N

|ψj,k ∗ h(cI , cJ)|2χIχJ

⎞
⎟⎠
δ/2
⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

2/δ

(x)

⎞
⎟⎟⎟⎠
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≤ C
∑

j′,k′∈Z

∑
j,k∈Z

2−nj−mk2−|j−j′|2−|k−k′|2n(j∧j′)(1−1/δ)+nj/δ2m(k∧k′)(1−1/δ)+mk/δ

⎧⎪⎪⎨
⎪⎪⎩
MS

⎡
⎢⎢⎣
⎛
⎜⎝ ∑

I∈Q(Rn),J∈Q(Rm)
l(I)=2−j−N ,l(J)=2−k−N

|ψj,k ∗ h(cI , cJ)|2χIχJ

⎞
⎟⎠
δ/2
⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

2/δ

(x).

Changing the order of the series implies

|gdψ(Tf)|2 ≤ C
∑
j,k∈Z

⎧⎪⎪⎨
⎪⎪⎩
MS

⎡
⎢⎢⎣
⎛
⎜⎝ ∑

I∈Q(Rn),J∈Q(Rm)
l(I)=2−j−N ,l(J)=2−k−N

|ψj,k ∗ h(cI , cJ)|2χIχJ

⎞
⎟⎠
δ/2
⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

2/δ

.

Applying the Fefferman–Stein vector-valued strong maximal inequality (see [7]
and [18] for more details) on Lp/δ(�2/δ) yields

‖T (f)‖Hp(Rn×Rm) = ‖gdψ(Tf)‖Lp(Rn+m)

≤ C

∥∥∥∥∥∥∥∥∥∥

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∑
j,k∈Z

⎧⎪⎪⎨
⎪⎪⎩
MS

⎡
⎢⎢⎣
⎛
⎜⎝ ∑

I∈Q(Rn),J∈Q(Rm)
l(I)=2−j−N ,l(J)=2−k−N

|ψj,k ∗ h(cI , cJ)|2χIχJ

⎞
⎟⎠
δ/2
⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

2/δ
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

1
2

∥∥∥∥∥∥∥∥∥∥
Lp

≤ C

∣∣∣∣∣
∣∣∣∣∣
{ ∑
j,k∈Z

∑
I∈Q(Rn),J∈Q(Rm)

l(I)=2−j−N ,l(J)=2−k−N

|ψj,k ∗ h(cI , cJ)|2χI(x1)χJ (x2)

} 1
2
∣∣∣∣∣
∣∣∣∣∣
Lp

= C‖h‖Hp(Rn×Rm) ≤ C‖f‖Hp(Rn×Rm).

By a general result, that is, if an operator is bounded on both L2 and Hp, then
T extends to a bounded operator from Hp to Lp. Here Hp are both the classical
and product Hardy spaces. See [12] for more details. The proof of Theorem 1.2 is
concluded.

By the duality, Corollary 1.3 follows directly from Theorem 1.2. �
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