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COXETER GROUPS ARE NOT HIGHER RANK
ARITHMETIC GROUPS

Sandip Singh

Abstract. Let W be an irreducible finitely generated Coxeter group. The geometric
representation of W in GL(V) provides a discrete embedding in the orthogonal group of
the Tits form (the associated bilinear form of the Coxeter group). If the Tits form of the

Coxeter group is non-positive and non-degenerate, the Coxeter group does not contain
any finite index subgroup isomorphic to an irreducible lattice in a semisimple group of
R-rank ≥ 2.

1. Introduction

Let S = {s1, s2, . . . , sn} be a finite set and W be a group generated by S with the
relations

(sisj)mi,j = 1,

where mi,i = 1, ∀ 1 ≤ i ≤ n and mi,j ∈ {2, 3, . . . ,∞}, ∀i �= j. The group W is called
the Coxeter group. The Coxeter system (W, S) is called irreducible if the Coxeter
graph ([4, Section 2.1]) is connected. Now we define a symmetric bilinear form (Tits
form) B on a vector space V of dim n over R, with a basis {e1, e2, . . . , en} in one-to-one
correspondence with S as

B(ei, ej) = − cos
(

π

mi,j

)
, ∀ 1 ≤ i, j ≤ n.

(This expression is interpreted to be −1 in case mi,j = ∞.)
For each si ∈ S, we can now define a reflection σi : V → V by the rule:

σiλ = λ−2B(ei, λ)ei.

Clearly σiei = −ei, while σi fixes Hi = {v ∈ V|B(v, ei) = 0} pointwise. In particular,
we see that σi has order 2 in GL(V). The bilinear form B is preserved by all of the
elements σi, and hence it will be preserved by each element of the subgroup of GL(V)
generated by the σi(1 ≤ i ≤ n).

By defining si �→ σi, we get a unique homomorphism σ : W → GL(V) sending si

to σi, and the group σ(W) preserves the form B on V; and for each pair si, sj ∈ S,
the order of sisj in W is precisely mi,j ([4, Proposition 5.3]). Also, the representation
σ : W → GL(V) is faithful ([4, Corollary 5.4]).

Relative to the basis {e1, e2, . . . , en} of V, we can identify V with R
n and GL(V)

with GL(n, R), the latter in turn being viewed as an open set in R
n2

. It follows from
[4, Proposition 6.2] that σ(W) is a discrete subgroup of GL(V).
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In this paper, we will assume that the Coxeter system (W, S) is irreducible and
the Tits form B is non-degenerate and the Coxeter group W is infinite. By the earlier
observations, it follows that W is a discrete subgroup of the corresponding orthogonal
group G := O(B)(R). Moreover, G is a real Lie group, with a Haar measure, which
provides a notion of volume ν for W\G, the homogeneous space of right cosets of G
with respect to W. If the measure ν on W\G is finite and G-invariant, then W is a
lattice in G.

The goal of this paper is to prove Theorem 1.1 (stated below), which has been
proved in [3] also, by using a different technique. They have proved that an infinite
Coxeter group has a subgroup of finite index which admits a homomorphism onto
Z ([3, Theorem 1.1]) and used it to prove the theorem. I have tried here to give
an elementary proof of the theorem by using a Bourbaki exercise (Para 12, Exercise
Section 4 of Chapter V in [2]) and Margulis superrigidity (Theorem 1.4, below).

Theorem 1.1. If W is an irreducible finitely generated Coxeter group with the non-
positive and non-degenerate Tits form, then it does not contain any finite index sub-
group isomorphic to an irreducible lattice in a connected semisimple Lie group without
non-trivial compact factor groups, of real rank ≥ 2.

In fact more is true:

Theorem 1.2. (a) If W is an irreducible finitely generated Coxeter group with the
non-positive and non-degenerate Tits form, then it does not contain any finite index
subgroup isomorphic to a higher rank S-arithmetic group (i.e., lattice in a product of
Lie groups and p-adic groups).

For example, the Coxeter group W does not contain any finite index subgroup
isomorphic to SL2(Z[ 1p ]) in SL2(R) × SL2(Qp).

(b) More generally, if k1, k2, . . . , kr are local fields and G1, G2, . . ., Gr are semisim-
ple algebraic groups defined over k1, k2, . . . , kr respectively such that each Gi has
ki-rank ≥ 1 and

∑r
i=1 ki-rank (Gi) ≥ 2, then W does not contain any finite index

subgroup isomorphic to an irreducible lattice Γ in
∏r

i=1 Gi(ki).
For example, the Coxeter group W does not contain any finite index subgroup

isomorphic to SL3(Fp[t]) in SL3(Fp((1
t ))).

Theorem 1.2 can be proved by the same method used for the proof of Theorem 1.1
using Theorem 1.3 (stated below) and the superrigidity of lattices in semisimple
groups over local fields of arbitrary characteristic (see [6]; cf. [9]). Therefore, in this
paper we will prove Theorem 1.1; and for the sake of completeness of the proof we
will also prove the following theorem (stated in [2] as an exercise):

Theorem 1.3 (Para 12, Exercise Section 4 of Chapter V in [2]). If W is a lattice
in O(B)(R), then B has signature (n − 1, 1) and B(v, v) < 0, for all v ∈ C, where
C := {v ∈ V|B(v, ei) > 0, ∀ 1 ≤ i ≤ n}.

Note that a Coxeter group W can not be a lattice in O(B)(R) = O(n − 1, 1), for
n > 10 (17, Exercise Section 4 of Chapter V in [2]).

To prove Theorem 1.1 we will use the following theorem of G. A. Margulis:

Theorem 1.4 (Theorem 6.16 of Chapter IX in [6]). Let H be a connected semisim-
ple Lie group without non-trivial compact factor groups. Let Γ ⊂ H be a lattice, k a
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local field, F a connected semisimple k-group, and δ : Γ −→ F(k) a homomorphism
such that the subgroup δ(Γ) is Zariski dense in F. Assume that rank H ≥ 2 and the
lattice Γ is irreducible. Then,

(a) for k isomorphic neither to R nor to C, i.e., for non-archimedean k, the
subgroup δ(Γ) is relatively compact in F(k).

(b) for k = R, if the group F is adjoint and has no non-trivial R− anisotropic
factors, then δ extends, uniquely, to a continuous homomorphism δ̃ : H −→
F(R).

In this paper (Section 4), we will also show that a right-angled Coxeter group W
generated by three elements is isomorphic to a lattice in the group O(B)(R) = O(2, 1)
of real rank 1.

2. Proof of Theorem 1.3

The proof has been sketched in the Bourbaki exercise (Para 12, Exercise Section 4 of
Chapter V in [2]), and for the sake of completeness we fill in the details.

If si ∈ S, denote by Ai, the set of x ∈ V such that B(x, ei) > 0. Clearly C = ∩n
i=1Ai

is an open set in V, if S is finite. The following theorem is from [2]:

Theorem 2.1 (Tits). If w ∈ W and C ∩ wC �= ∅, then w = 1.

Let G be a closed subgroup of GL(V) containing W. Let G be unimodular and D
be a half line of V contained in C, i.e., D = R>0v ⊂ C, for some v ∈ C, and let GD

be the stabilizer of D in G. With these notation, we get the following lemma:

Lemma 2.2. Let Δ be the set of elements g ∈ G such that g(D) ⊂ C. Then Δ is
open, stable under right multiplication by GD, and that the composite map Δ −→
G −→ W\G is injective, where W\G denotes the homogeneous space of right cosets
of G with respect to W.

Proof. First, we show that Δ is open in G. For, Δ = {g ∈ G|g(v) ∈ C}, where v ∈ V
such that D = R>0v ⊂ C. We define a map f : G −→ V by g �→ g(v). It is clear that
f is continuous and C is open in V, hence f−1(C) = Δ is open in G.

Now we show that Δ is stable under right multiplication by GD. For, let h ∈ GD

and g ∈ Δ. Then

gh(v) = g(αv) = αg(v) ∈ C, for some α ∈ R>0,

and this shows that gh ∈ Δ.
Finally, we show that the composite map Δ −→ G −→ W\G is injective. For, let

g1, g2 ∈ Δ such that Wg1 = Wg2, i.e., g1g
−1
2 ∈ W. Since g2(D) ⊂ C, D ⊂ g−1

2 (C).
That is, g1(D) ⊂ g1g

−1
2 (C). Also, g1(D) ⊂ C, therefore g1g

−1
2 (C) ∩ C �= ∅. Hence by

Theorem 2.1, we get g1g
−1
2 = 1. This shows that the composite map Δ −→ G −→

W\G is injective. �

Lemma 2.3. Let μ be a Haar measure on G. If μ(Δ) is finite, the subgroup GD is
compact.
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Proof. Since Δ is an open set containing the identity element of G and the group G
is locally compact, there exists a compact neighbourhood K of the identity element
contained in Δ.

We now claim that there exist finitely many elements hi ∈ GD such that every set
of the form Kh, with h ∈ GD, meets one of the Khi. For, suppose on the contrary that
∀k ∈ N and Hk = {h1, h2, . . . , hk} collection of elements in GD, there exists hk+1 ∈ GD

such that Khk+1 ∩
(∪k

i=1Khi

)
= ∅. It is also clear that Khi ∩ Khj = ∅, ∀i �= j.

Since Δ is stable under right multiplication by any element of GD, we get Kh ⊂
Δ, ∀h ∈ GD. Hence

μ(Δ) ≥ μ(∪∞
i=1Khi) =

∞∑
i=1

μ(Khi) =
∞∑

i=1

μ(K) = ∞

(since G is unimodular and K contains an open subset of G, μ(K) > 0), which is a
contradiction to the given hypothesis. Therefore, ∃ Hr = {h1, h2, . . . , hr} a finite col-
lection of elements in GD such that ∀h ∈ GD, Kh∩Khi �= ∅, for some i ∈ {1, 2, . . . , r},
which shows that GD ⊂ ∪r

i=1K
−1Khi and hence GD is compact (since GD is a closed

subset of G and ∪r
i=1K

−1Khi is compact). �

Lemma 2.4. Let ν be a non-zero positive measure on W\G, invariant under G.
If ν(W\G) < ∞, then GD is compact.

Proof. Recall that G is unimodular with a Haar measure μ and ν is a non-zero positive
measure on W\G, invariant under G. Let ν′ be a Haar measure on W. Since W is
a discrete subgroup of GL(V ), ν′ is actually the counting measure (up to a scalar
multiple) on W. We prove here that μ(Δ) < ∞, which proves that GD is compact,
using the last lemma.

We have a relation in μ, ν and ν′ as

(2.1)
∫

G

f dμ =
∫

W\G

(∫
W

f(wg) dν′(w)
)

dν(Wg), ∀f ∈ Cc(G)

where Cc(G) is the space of all compactly supported continuous functions on G.
Let the symbol f ≺ Δ means that f ∈ Cc(G) with 0 ≤ f ≤ 1 and the support of f

is contained in Δ. Since Δ is open in G, we get

(2.2) μ(Δ) = sup
{∫

G

f dμ : f ≺ Δ
}

.

Let f ≺ Δ. By (2.1), we get
∫

G

f dμ =
∫

W\G

(∫
W

f(wg) dν′(w)
)

dν(Wg)

≤
∫

W\G

(∫
W

χΔ(wg) dν′(w)
)

dν(Wg)(2.3)

where χΔ is the characteristic function of Δ.
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Since wg ∈ Δ ⇔ w ∈ Δg−1, we get∫
W\G

(∫
W

χΔ(wg) dν′(w)
)

dν(Wg) =
∫

W\G
ν′(Δg−1 ∩ W) dν(Wg)

=
∫

W\G
#(Δg−1 ∩ W) dν(Wg),(2.4)

where #(Δg−1 ∩ W) denotes the number of elements in the set Δg−1 ∩ W.
Since x ∈ Δg−1 ∩ W ⇔ xg ∈ Δ and x ∈ W, we get

xg(D) ⊂ C i.e. xg(v) ∈ C, ∀x ∈ Δg−1 ∩ W (∵ D = R>0v).

Now we claim that #(Δg−1 ∩ W) ≤ 1. For, let x1, x2 ∈ Δg−1 ∩ W. Then, we get the
following:

x1g(v) = c1 ∈ C and x2g(v) = c2 ∈ C

⇒ x2x
−1
1 (c1) = x2x

−1
1 (x1(gv)) = x2(gv) = c2

⇒ x2x
−1
1 (C) ∩ C �= ∅

⇒ x2x
−1
1 = 1 (by Theorem 2.1)

⇒ x2 = x1.

Therefore, #(Δg−1 ∩ W) ≤ 1, and we get∫
W\G

#(Δg−1 ∩ W) dν(Wg) ≤
∫

W\G
dν(Wg)

= ν(W\G).(2.5)

By (2.3)–(2.5), we get ∫
G

f dμ ≤ ν(W\G).

As f ≺ Δ was chosen arbitrarily, we get μ(Δ) ≤ ν(W\G) (by using (2.2)), and hence
μ(Δ) < ∞. �

Now we prove Theorem 1.3 using the above lemmas. We have B, a non-degenerate
bilinear form on V. Let G be the group of real points of the orthogonal group of
B and μ be a Haar measure on G. It is clear that the group G is unimodular and
contains W. Since W is infinite, the bilinear form B is not positive definite and it
has the signature (p, q), where p + q = n and p, q ≥ 1. We prove few more lemmas to
prove Theorem 1.3.

Lemma 2.5. B(v, v) �= 0, for some v ∈ C.

Proof. Since for any v ∈ C, C − v is an open subset of V containing the origin 0
(since C is an open subset of V), V is generated by C − v (as an abelian group).
In particular, C − v generates V as a vector space over R, therefore there exists
{v1−v, v2−v, . . . , vn −v} a basis of V over R contained in C−v, where vi ∈ C, ∀ 1 ≤
i ≤ n. Now if possible, let B(v, v) = 0, ∀v ∈ C.

⇒ B(u, v) =
1
2
(B(u + v, u + v) − B(u, u) − B(v, v))

= 0 ∀u, v ∈ C (∵ ∀u, v ∈ C, u + v ∈ C).(2.6)
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Now we show that if B(v, v) = 0, ∀v ∈ C, then B ≡ 0, which gives a contradiction
(since B is non-zero). Since vi, v ∈ C, using the bilinearity of B and (2.6), we get

B(vi − v, vj − v) = 0, ∀ 1 ≤ i, j ≤ n,

i.e., B ≡ 0. Therefore, ∃v ∈ C such that B(v, v) �= 0. �

Let v ∈ C be an element for which B(v, v) �= 0. Let Lv = {u ∈ V|B(u, v) = 0}.
Since B(v, v) �= 0, V = Rv ⊕Lv. Now take D = R>0v ⊂ C, a half line contained in C.
We have a basis {v, u1, u2, . . . , un−1} of V over R, where {u1, u2, . . . , un−1} is a basis
of Lv over R. With respect to this basis of V, B = B1 ⊕ B2, where B1 = B|Rv and
B2 = B|Lv . The symmetric matrix associated to the bilinear form B, with respect to
this basis, is of the form

B =

⎛
⎜⎜⎜⎜⎜⎝

B1(v, v) 0 0 . . . 0
0
0 B2

...
0

⎞
⎟⎟⎟⎟⎟⎠

.

The group G = O(B)(R) ≤ GL(n, R), is unimodular with a Haar measure μ and it
contains the Coxeter group W as a discrete subgroup. Let ν be a G-invariant measure
on the quotient W\G such that ν (W\G) < ∞, i.e., W is a lattice in G.

Let H = O(B2)(R) ≤ GL(Lv) be the orthogonal group of the bilinear form B2 on
Lv. It is clear that

G′ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

1 0 . . . 0
0
... h
0

⎞
⎟⎟⎟⎠ : h ∈ H

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

is a closed subgroup of G and ∀g ∈ G′, g(v) = v, i.e., G′ is a closed subgroup of GD,
therefore it is compact (by Lemma 2.4).

Also, G′ is isomorphic (as a Lie group) to H = O(B2)(R), therefore H is a compact
subgroup of GL(Lv). It shows that the bilinear form B2 is either positive definite or
negative definite. Since the group W is infinite, the bilinear form B cannot be positive
or negative definite. Therefore, B has the signature (n − 1, 1) or (1, n − 1).

Now we show that B can not have the signature (1, n − 1).

Lemma 2.6. If there is a relation (sisj)mi,j = 1, for some i �= j and 2 ≤ mi,j < ∞
in the generators of the Coxeter group W and the bilinear form B as above, then B
has the signature (n − 1, 1).

Proof. For 2 ≤ mi,j < ∞, B(ei, ej) = −cos
(

π
mi,j

)
> −1, and hence

B(λei + δej , λei + δej) = λ2B(ei, ei) + δ2B(ej , ej) + 2λδB(ei, ej)

= λ2 + δ2 + 2λδB(ei, ej)

> λ2 + δ2 − 2λδ = (λ − δ)2 ≥ 0

(since B(ei, ej) > −1). Therefore, ∀λ, δ ∈ R and (λ, δ) �= (0, 0), B(λei + δej , λei

+ δej) > 0.
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Let Vi,j = Rei ⊕ Rej be a subspace of V. The restriction of the bilinear form B
on Vi,j is non-degenerate and positive definite. Therefore, V = Vi,j ⊕ V⊥

i,j , and with
respect to a basis of V which is the union of a basis of Vi,j and a basis of V⊥

i,j , the
matrix of the bilinear form B is⎛

⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0
0 1 0 . . . 0
0 0
...

... B|V⊥
i,j

0 0

⎞
⎟⎟⎟⎟⎟⎠

and B|V⊥
i,j

is non-degenerate.
The above matrix form of the bilinear form B shows that its signature is (p, q),

where p, q ∈ N, p + q = n, and p ≥ 2. Therefore, the possibility for the signature of B
to be (1, n − 1) is excluded, i.e., B has the signature (n − 1, 1). �

Lemma 2.7. If (sisj)∞ = 1, for i �= j and sisi = 1, ∀i, j ∈ {1, 2, . . . , n} are the only
relations in the generators of the Coxeter group W and the bilinear form B as above,
then B has the signature (n − 1, 1).

Proof. These relations mean that all the vertices in the Coxeter graph of the Coxeter
group W are joined by an edge of weight ∞, and B(ei, ei) = 1, and B(ei, ej) = −1,
for i �= j. These relations are not possible in a Coxeter group W with two generators
(∵ B is non-degenerate), therefore to have the possibility stated in the statement of
the lemma, n must be ≥ 3.

Since all the vertices are joined by an edge in the Coxeter graph, the Coxeter graph
contains a triangle. Let s1, s2 and s3 be any three vertices, which are joined to each
other to form a triangle. Let V1 = Re1⊕Re2⊕Re3 be a subspace of V, and B1 = B|V1

be a bilinear form on V1. Now we show that B1 has the signature (2, 1), which shows
that V = V1 ⊕ V⊥

1 and hence the signature of B is (p, q) with p ≥ 2.
The matrix form of B1 with respect to the basis {e1, e2, e3} of V1 over R is

B1 =

⎛
⎝ 1 −1 −1
−1 1 −1
−1 −1 1

⎞
⎠ .

One can check easily that 2, 2,−1 are the eigenvalues of the matrix B1.
Since a symmetric matrix is orthogonally diagonalizable, the signature of the bi-

linear form B1 is (2, 1). It shows that the possibility for the signature of the bilinear
form B to be (1, n− 1) is excluded. Therefore, the signature of the bilinear form B is
(n − 1, 1). �

Since we had V = Rv ⊕ Lv, where v ∈ C is an element for which B(v, v) �= 0, and
Lv = {u ∈ V|B(u, v) = 0}, the condition on the signature of B forces B(v, v) < 0
(since B|Lv is positive definite and B is non-degenerate and non-positive). The above
proof also shows that if B(u, u) �= 0, then B(u, u) < 0, for any u ∈ C.

Now we show that B(u, u) �= 0, for any u ∈ C. Otherwise, ∃u ∈ C such that
B(u, u) = 0. Since the bilinear form B is non-degenerate, ∃u′ ∈ V such that B(u′, u′) =
0 and B(u, u′) = 1 (see [5, Theorem 6.10]). Also, for any α, β > 0 in R, B(αu +
βu′, αu + βu′) = 2αβ > 0. Since u ∈ C, and C is open in V, ∃α, β > 0 in R such
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that αu + βu′ ∈ C and B(αu + βu′, αu + βu′) = 2αβ > 0, which is a contradiction.
Therefore, B(u, u) �= 0, ∀u ∈ C. Hence, B(u, u) < 0, ∀u ∈ C; and it completes the
proof of Theorem 1.3. �

3. Proof of Theorem 1.1

Let O(B) be the orthogonal group of the bilinear form B and O(p, q) be the group of
real points of the group O(B), i.e., O(p, q) = O(B)(R), where (p, q) is the signature of
B with p, q ≥ 1, and p+q = n. Let SO(B) be the connected component of the identity
element of O(B), and SO(p, q) = SO(B)(R). The subgroup SO(p, q) has finite index
(four) in the group O(p, q), therefore any finite index subgroup L′ of the Coxeter group
W contains a finite index subgroup L ≤ SO(p, q), namely L = L′ ∩ SO(p, q). If L′ is
isomorphic to an irreducible lattice Γ′ in a semisimple group H of R-rank ≥ 2, then
L will be isomorphic to a finite index subgroup Γ of Γ′. Also, it can be shown easily
that a finite index subgroup Γ of an irreducible lattice Γ′ is an irreducible lattice in
H. We prove some lemmas that will be used in the proof of Theorem 1.1.

Lemma 3.1. There exists a connected semisimple adjoint group G̃ and an (central)
isogeny π : SO(B) −→ G̃.

For a proof, see [7, Theorem 2.6].
In fact, G̃ is an R-simple group (since the group SO(B) has maximal normal sub-

group {±I} which is the center of SO(B) and π is central therefore the kernel of π is
{±I}).
Lemma 3.2. If L is a discrete subgroup of SO(B)(R) = SO(p, q), then π(L) is a
discrete subgroup of G̃(R).

Proof. The homomorphism π is an open map and its kernel is finite. Now using the
discreteness of L, it can be shown easily that π(L) is a discrete subgroup of G̃(R). �

Lemma 3.3. If L is a Zariski dense subgroup of SO(B), then π(L) is a Zariski dense
subgroup of G̃.

Proof. Since the map π : SO(B) −→ G̃ is continuous with respect to the Zariski
topology, we get π(L) ⊆ π(L). Therefore π(L) = G̃ (since L = SO(B)). �

Lemma 3.4. R-rank (SO(B)) = R-rank (G̃).

Proof. We will show that if T is an R-split torus in SO(B), then π(T) is an R-split
torus in G̃. For, let T be an R-split torus in SO(B), i.e., all the characters χ : T −→ Gm

are defined over R. It is clear that π(T) is a connected, abelian subgroup of G̃. Also,
π(T) is diagonalizable over C (since under a homomorphism of algebraic groups, torus
maps to a torus).

To show that π(T) is R-split, it is enough to show that all the characters χ :
π(T) −→ Gm are defined over R. For, let us define χ′ : T −→ Gm as χ′(t) = χ(π(t)).
It is clear that χ′ is a character of the torus T which is R-split, therefore χ′ is defined
over R. Now we show that χ is fixed under the action of Gal(C/R) on Hom(T, Gm).
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For, let σ ∈ Gal(C/R). We have

χ(π(t)) = χ′(t)

= (σ.χ′)(t)

= σ(χ′(σ−1t))

= σ(χ ◦ π(σ−1t))

= σ(χσ−1(σ.π)(t))

= (σ.χ)(π(t)) (∵ χ′ and π are defined over R).

Since the above equality is true for all t ∈ T and π is surjective, therefore we get
σ.χ = χ, for all σ ∈ Gal(C/R). Hence all the characters χ : π(T) −→ Gm are defined
over R, i.e., π(T) is an R-split torus in G̃. Since π has finite kernel, we get R-rank(G̃)
= R-rank(SO(B)). �

Theorem 3.5. Let L be a discrete subgroup of the group SO(p, q). Let H be a con-
nected semisimple Lie group without non-trivial compact factor groups, of real rank
≥ 2 with trivial center. Let Γ ≤ H be an irreducible lattice and δ : Γ −→ L ≤
SO(B)(R) = SO(p, q) be an isomorphism and δ(Γ) = L is Zariski dense in SO(B). Let
G̃ be a connected semisimple adjoint group with an (central) isogeny π : SO(B) −→ G̃.
Let δ′ : Γ −→ π(L) ≤ G̃(R) be a continuous homomorphism defined as δ′ = π ◦ δ. Let
G̃ has no non-trivial R-anisotropic factors and G̃(R)◦ be the connected component of
the identity element in G̃(R). Then δ′ extends uniquely to an isomorphism δ̃′ : H −→
G̃(R)◦, and the group G̃(R) has R-rank ≥ 2, and π(L) is a lattice in G̃(R).

Proof. The group G̃ is adjoint, and has no non-trivial R-anisotropic factors and π(L)
is a discrete subgroup of G̃(R) (by Lemma 3.2), and it is also Zariski dense in G̃
(by Lemma 3.3). Therefore by Theorem 1.4, we get a continuous homomorphism
δ̃′ : H −→ G̃(R) with δ̃′|Γ = δ′. Since the group δ̃′(H) is a connected semisimple
group which is Zariski dense in G̃ (since δ̃′(Γ) = π(L) is Zariski dense in G̃), it follows
from [6] (Remark 6.17 (ii) of Chapter IX) that δ̃′(H) = G̃(R)◦. Since H has trivial
center and no non-trivial compact factor groups, Γ is an irreducible lattice in H, and
δ′(Γ) = π(L) is a non-trivial discrete subgroup of G̃(R), therefore it follows from [6]
(Remark 6.17 (iii) of Chapter IX) that δ̃′ is an isomorphism of H onto G̃(R)◦, and
hence π(L) is a lattice in G̃(R)◦, and the R-rank of G̃(R) is ≥ 2. Since G̃(R)◦ is a
finite index subgroup of G̃(R), π(L) is a lattice in G̃(R). �

Remark. In the proof of Theorem 3.5, the fact that H has trivial center, has been
used only to show that δ̃′ is an isomorphism. If the group H does not have trivial
center, then the homomorphism δ̃′ has finite kernel, and δ̃′(Γ) = π(L) is still a lattice
in G̃(R) (since under such homomorphism δ̃′, a lattice maps onto a lattice). Therefore
Theorem 3.5 is also true for a connected semisimple Lie group with non-trivial center,
and without non-trivial compact factor groups, of real rank ≥ 2.

Lemma 3.6. Let L be a discrete subgroup of SO(p, q), and G̃, π as in Lemma 3.1. If
π(L) is a lattice in G̃(R), then L is a lattice in SO(p, q).
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Proof. Since L is a discrete subgroup of SO(p, q) and SO(p, q) is unimodular, the
quotient L\SO(p, q) has an SO(p, q)-invariant measure μ. The homomorphism π :
SO(p, q) −→ G̃(R) induces a continuous map π̃ : L\SO(p, q) −→ π(L)\G̃(R), which is
defined as π̃(Lg) = π(L)π(g). It can be checked easily that the pushforward measure
π̃∗(μ) on the quotient π(L)\G̃(R) defined as π̃∗(μ)(Ẽ) = μ(π̃−1(Ẽ)), for all measurable
subsets Ẽ of π(L)\G̃(R), is G̃(R)-invariant (since π̃ is surjective and μ is SO(p, q)-
invariant). Therefore by the uniqueness of a G̃(R)-invariant measure on the quotient
π(L)\G̃(R), we get π̃∗(μ)(π(L)\G̃(R)) < ∞ (since π(L) is a lattice in G̃(R)), and
hence μ(L\SO(p, q)) < ∞, i.e., L is a lattice in SO(p, q). �

Theorem 3.7. The Coxeter group W is Zariski dense in the group O(B).

For a proof, see [1].

Lemma 3.8. Let G be a topological group and L′, L are subgroups of G such that L
has finite index in L′. Then (L̄′)o = (L̄)o, where (L̄)o is the connected component of
the identity element of the closure of L in G.

Proof. Since L has finite index d (say) in L′,

L′ = ∪d
i=1γiL; γi ∈ L′

⇒ L̄′ = ∪d
i=1γiL̄; γi ∈ L′

⇒ [L̄′ : L̄] ≤ d

⇒ L̄ is a finite index subgroup of the group L̄′.

Hence L̄ is closed and open in L̄′ and (L̄′)o ⊃ (L̄)o, therefore (L̄)o is open and closed
in (L̄′)o which is connected. This shows that (L̄′)o = (L̄)o. �

Corollary 3.9. In the above lemma if we take G = O(p, q) = O(B)(R), and L′ = W,
the Coxeter group and L ≤ SO(p, q) ∩ W such that [W : L] < ∞, then L̄ = SO(p, q),
i.e., L is Zariski dense in SO(p, q). Hence L is Zariski dense in SO(B) (∵ SO(B)(R) =
SO(p, q) is Zariski dense in SO(B)).

Proof. The proof follows from Theorem 3.7 and Lemma 3.8. �

Lemma 3.10. If L is a lattice in SO(p, q), then L is also a lattice in O(p, q).

Proof. Since O(p, q) is unimodular and L is a discrete subgroup of O(p, q), we get
L\O(p, q) has a non-zero O(p, q)-invariant measure μ. Since SO(p, q) is open in O(p, q),
its Borel σ-algebra is a subalgebra of the Borel σ-algebra of O(p, q) and the restric-
tion of μ on L\SO(p, q) is a non-zero SO(p, q)-invariant measure. Now we claim that
μ(L\O(p, q)) < ∞. For,

L\O(p, q) = {Lg|g ∈ O(p, q)},
and

O(p, q) = {SO(p, q)gi|gi ∈ O(p, q), 1 ≤ i ≤ 4},
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i.e., ∀g ∈ O(p, q), ∃h ∈ SO(p, q) such that g = hgi, for some 1 ≤ i ≤ 4. Therefore,
Lg = Lhgi ∈ (L\SO(p, q))gi, and

L\O(p, q) = ∪4
i=1(L\SO(p, q))gi.

⇒ μ(L\O(p, q)) ≤
4∑

i=1

μ((L\SO(p, q))gi)

=
4∑

i=1

μ(L\SO(p, q))

< ∞.

It shows that L is a lattice in O(p, q). �

From the remark at the beginning of this section and Corollary 3.9, it follows
that if the Coxeter group W contains a finite index subgroup L ≤ SO(p, q), which is
isomorphic to an irreducible lattice in a connected semisimple Lie group H without
non-trivial compact factor groups, of real rank ≥ 2, then SO(p, q) has real rank ≥ 2
(by Lemma 3.4 and Theorem 3.5), i.e., p, q ≥ 2, and L is a lattice in SO(p, q) (by
Theorem 3.5 and Lemma 3.6). Moreover, Lemma 3.10 shows that L is a lattice in
O(p, q) also, and hence W becomes a lattice in O(p, q) (since a discrete subgroup W
of a Lie group G which contains a lattice L, is a lattice in G). This is a contradiction
to Theorem 1.3, which has been proved in Section 2; and it completes the proof of
Theorem 1.1. �

4. Right-angled Coxeter group with three generators

In this section, we will do some computations and show that a right-angled Cox-
eter group W generated by three elements is isomorphic to a lattice in the group
O(B)(R) = O(2, 1) of real rank 1.

Let W be the right-angled Coxeter group generated by three elements s1, s2 and s3

with the relations: (sisj)mi,j = 1, where mi,i = 1, ∀i ∈ {1, 2, 3}, and m1,2 = m2,3 = ∞,
m1,3 = 2. Let R

3 be a three-dimensional vector space over R with a basis {e1, e2, e3}.
We define a symmetric bilinear form B on R

3 as

B(ei, ej) = − cos
(

π

mi,j

)
, for mi,j �= ∞,

and for mi,j = ∞, we define B(ei, ej) = −1. With respect to the basis {e1, e2, e3},
the matrix of B is

B =

⎛
⎝ 1 −1 0
−1 1 −1
0 −1 1

⎞
⎠ .

One can check that the bilinear form B is non-degenerate.
Now we define a representation ρ : W −→ GL(R3) by defining ρ(si)(ej) = ej −

2B(ej , ei)ei, which is faithful (by [4, Corollary 5.4]). It can be checked easily that
ρ maps the group W inside the orthogonal group O(B)(R) of the bilinear form B.
We will show that the group W is mapped (by ρ) onto a finite index subgroup of
O(B)(Z), the group of integral points of the orthogonal group O(B), and it shows
that the group W is a lattice in O(B)(R).
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With respect to the basis {e1, e2, e3}, the matrices of ρ(s1), ρ(s2) and ρ(s3) are

ρ(s1) =

⎛
⎝−1 2 0

0 1 0
0 0 1

⎞
⎠ , ρ(s2) =

⎛
⎝1 0 0

2 −1 2
0 0 1

⎞
⎠ , ρ(s3) =

⎛
⎝1 0 0

0 1 0
0 2 −1

⎞
⎠ .

If we do some integral change in the basis of R
3 over R, and take {e1 + e2, e2, e2 + e3}

as a basis of R
3, then the corresponding matrices of ρ(s1), ρ(s2), ρ(s3) and B, become

ρ(s1) =

⎛
⎝1 2 2

0 −1 −2
0 0 1

⎞
⎠ , ρ(s2) =

⎛
⎝1 0 0

0 −1 0
0 0 1

⎞
⎠ , ρ(s3) =

⎛
⎝ 1 0 0
−2 −1 0
2 2 1

⎞
⎠

and

B =

⎛
⎝ 0 0 −1

0 1 0
−1 0 0

⎞
⎠ .

It is now clear that the signature of the bilinear form B is (2, 1).
The adjoint representation of SL(2, R) on its Lie algebra sl(2, R), maps the group

PSL(2, R) = SL(2, R)/{±I} isomorphically onto its image and it preserves the killing
form K defined on sl(2, R). The Lie algebra sl(2, R) can be identified with R

3 as a
vector space over R, with the basis{

e1 =
(

0 1
0 0

)
, e2 =

(
1 0
0 −1

)
, e3 =

(
0 0
1 0

)}
.

The killing form K on sl(2, R)) is defined by

K(X, Y ) =
1
2
tr(XY ), ∀ X, Y ∈ sl(2, R).

If we do some integral change in the basis of sl(2, R) over R and take{
ε1 = −2e1 =

(
0 −2
0 0

)
, ε2 = e2 =

(
1 0
0 −1

)
, ε3 = e3 =

(
0 0
1 0

)}

as a basis of sl(2, R) over R, then the matrix of K becomes

K =

⎛
⎝ 0 0 −1

0 1 0
−1 0 0

⎞
⎠ .

Therefore, the bilinear form B associated to the Coxeter group W, is equivalent to the
killing form K on sl(2, R) over Z, and the signature of K is also (2, 1). Hence the group
SL(2, R)/{±I} maps into O(2, 1) ≤ GL(3, R), by the adjoint representation Ad of
SL(2, R) on its Lie algebra, where O(2, 1) = O(B)(R). Since the group SL(2, R)/{±I}
is connected, it is mapped inside SO(2, 1), the connected component of the identity
element in O(2, 1). In fact, Ad(SL(2, R)/{±I})=SO(2, 1) (∵ dim SL(2, R)/{±I}=dim
SO(2, 1)), i.e., SL(2, R)/{±I} ∼= SO(2, 1). Hence SL(2, Z)/{±I} is a lattice in SO(2, 1).
In fact, SL(2, Z)/{±I} is a lattice in O(2, 1) (∵ SO(2, 1) has finite index in O(2, 1)).

The right-angled Coxeter group W is mapped inside O(B)(Z) = O(2, 1)(Z), by the
representation ρ. We construct a finite index subgroup H of SL(2, Z)/{±I} which
preserves a lattice L in sl(2, R) = R

3(as a vector space), i.e., H is also mapped
inside O(2, 1)(Z), by the representation Ad, and being a finite index subgroup of



COXETER GROUPS ARE NOT HIGHER RANK ARITHMETIC GROUPS 579

SL(2, Z)/{±I}, H becomes a lattice in O(2, 1). Also, we construct a finite index sub-
group H′ of W which is mapped onto Ad(H), by the representation ρ, and hence ρ(H′)
becomes a lattice in O(2, 1), and W becomes a finite index subgroup of O(2, 1)(Z),
i.e., a lattice in O(2, 1).

Lemma 4.1. The group SL(2, Z)/{±I} is generated by w =
(

0 −1
1 0

)
and x = ( 1 1

0 1 ),
and it has a presentation as < w, x; w2, (wx)3 >, i.e., it is the free product of the cyclic
group of order 2 generated by w and the cyclic group of order 3 generated by wx.

For a proof, see Theorem 2 and the preceding remark of Chapter VII in [8].
We get x2 = ( 1 2

0 1 ) and wx2w−1 =
(

1 0−2 1

)
= ( 1 0

2 1 )−1
.

Let H be the subgroup of SL(2, Z)/{±I} generated by {x2, wx2w−1}. It can be
shown using the presentation of SL(2, Z)/{±I} as in the above lemma, that the sub-
group H has finite index in SL(2, Z)/{±I}. Also, one can show easily that H preserves
the lattice

L = Z

(
0 −2
0 0

)
⊕ Z

(
1 0
0 −1

)
⊕ Z

(
0 0
1 0

)

in sl(2, R). Hence H is mapped inside O(2, 1)(Z), by the adjoint representation Ad,
and being a lattice (∵ it has finite index in SL(2, Z)/{±I}) in O(2, 1)(R), it has finite
index in O(2, 1)(Z). By an easy computation, we find that the matrices of Ad(x2),
Ad(wx2w−1)−1 in O(2, 1)(R) with respect to the basis{

ε1 = −2e1 =
(

0 −2
0 0

)
, ε2 = e2 =

(
1 0
0 −1

)
, ε3 = e3 =

(
0 0
1 0

)}
,

are

Ad(x2) =

⎛
⎝1 2 2

0 1 2
0 0 1

⎞
⎠ , Ad(wx2w−1)−1 =

⎛
⎝1 0 0

4 1 0
8 4 1

⎞
⎠ .(4.1)

Let H′ be the subgroup of the Coxeter group W generated by the set {s2s1, s2s3}. It
can be shown easily that the subgroup H′ has finite index in the group W.
We find that the matrices of ρ(s2s1) and ρ(s2s3) in O(2, 1)(R) with respect to the
basis {e1 + e2, e2, e2 + e3}, are

ρ(s2s1) =

⎛
⎝1 2 2

0 1 2
0 0 1

⎞
⎠ and ρ(s2s3) =

⎛
⎝1 0 0

2 1 0
2 2 1

⎞
⎠ .(4.2)

Also, ρ(s2s3)2 =

⎛
⎝1 0 0

4 1 0
8 4 1

⎞
⎠ = Ad(wx2w−1)−1, and hence by (4.1) and (4.2), we see

that H is a subgroup of H′. Therefore H′ is a finite index subgroup of O(2, 1)(Z), and
hence the Coxeter group W is also a finite index subgroup of O(2, 1)(Z), i.e., W is a
lattice in O(2, 1).
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