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CYCLIC EXTENSIONS OF FREE PRO-P GROUPS AND
P-ADIC MODULES

Anderson L. P. Porto and Pavel A. Zalesskii

Abstract. We prove a pro-p version of the classical decomposition of a Zp-torsion
free ZpCp-module into indecomposable modules. We also describe some pro-p ZpCpn -

modules obtained from a semidirect product of a free pro-p group F and a cyclic group
Cpn of automorphisms by factoring out the (closed) commutator subgroup [F, F ].

1. Introduction

Let p be a prime number, Cp a group of order p, Zp the ring of p-adic integers
and ZpCp the group ring. Let M be a Zp-torsion free ZpCp-module. If M is finitely
generated, then a classical result that plays a fundamental role in the theory of integral
representations (cf. [2] or [4]) describes M as a finite direct sum of cyclic modules of
the form ZpCp, Zp and J(ZpCp), where J(ZpCp) is the augmentation ideal of ZpCp.

Note that ZpCp is a local pro-p ring, so a ZpCp-module M is finitely generated as a
pro-p ZpCp-module if and only if it is finitely generated as an abstract ZpCp-module
(see pp. 126–127 in Wilson [11]). If M is infinitely generated then this is no longer the
case, since an abstract infinitely generated ZpCp-module is not necessarily compact
so need not be pro-p. For infinitely generated abstract ZpCp-modules the above result
is not valid; Qp considered as a trivial ZpCp-module is not decomposable (since Qp is
not decomposable as a Zp-module).

We prove in this paper that surprisingly the classical result mentioned above holds
for infinitely generated Zp-torsion free pro-p ZpCp-modules.

Theorem A. Let C = 〈x〉 be a group of order p and let M be a Zp-torsion free pro-p
ZpC-module. Then M decomposes as

M = MT ⊕Mθp ⊕ L,

where L is a free pro-p ZpC-submodule of M, MT is a trivial ZpC-module, Mθp is
a free pro-p Zp[θp]-module, where Zp[θp] is the quotient ring of ZpC modulo the ideal
(φp(x)) generated by the cyclotomic polynomial φp(x) = 1 + x + . . . + xp−1 and θp

is a root of φp(x). Moreover, MT
∼=
⊕

γ Zp, Mθp
∼=
⊕

β J(ZpC) and L ∼=
⊕

φ ZpC
are profinite direct sums of pro-p ZpC-modules over Boolean spaces of indices γ, β, φ,
respectively.

Note that Theorem A can not be proved simply by using the projective limit argu-
ment since it is not clear why M can be decomposed as an inverse limit of Zp-torsion
free pro-p ZpCp-modules. The existence of such a decomposition is a consequence of
Theorem A.
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Now let G = F � Cpn be a pro-p semidirect product of a free pro-p group F and a
cyclic group Cpn of order pn. The continuous action of Cpn on F induces the structure
of a Zp-torsion free pro-p ZpCpn-module on the abelianization F/[F, F ]. In the second
part of the paper, we study the structure of such pro-p ZpCpn-modules.

Theorem B. Let G = U � H be a pro-p semidirect product of a free pro-p group
U and a cyclic group H of order pn. Suppose that the centralizers of all non-identity
elements of finite order in G are finite. Then

Uab := U/[U, U ] ∼=

⎛

⎝
⊕

i∈(I,∗)
JKi(H)

⎞

⎠
⊕

L

is a profinite direct sum of pro-p ZpH-modules, where (I, ∗) is a Boolean pointed
space of indices, each Ki is a subgroup of H, JKi(H) is the kernel of the canonical
epimorphism ZpH � Zp (H/Ki) and L is a free pro-p ZpH-module.

In the proof, we use essentially Theorem 2.2 in Herfort–Zalesskii [5], which describes
certain free-by-cyclic pro-p groups as a free pro-p product of normalizers of subgroups
of order p and some additional free factor.
If n = 1 then we use Theorem A to prove that the abelianization F ab = F/[F, F ]
gives all possible Zp-torsion free pro-p ZpCp-modules.

Theorem C. Let M be a Zp-free pro-p ZpCp-module. Then there exists a pro-p
semidirect product F � Cp of a free pro-p group F and a group Cp of order p such
that F ab is isomorphic to M as a pro-p ZpCp-module.

Note that for n > 1, F ab does not give all possible Zp-torsion free pro-p ZpCp-
modules, see Remark 4.5 in [8].

Basic results about profinite groups, rings and modules used in the paper can be
found in [9] or [11], and for an account of injective and divisible modules see [10].
All groups and modules in the paper are pro-p, so all subgroups and submodules are
closed and all homomorphisms are continuous; generation always means topological
generation. Throughout the paper p denotes a prime number, Zp the ring of p-adic
integers and Cpn denotes a cyclic group of order pn. For a finite group H we denote by
ZpH the group ring of H over Zp and J(H) denotes the augmentation ideal of ZpH. If
K is a subgroup of H we denote by JK (H) the kernel of the natural homomorphism
ZpH −→ Zp(H/K), where Zp(H/K) is the free Zp-module over the coset space H/K.
We use Zp[θp] to denote the quotient ring of ZpCp modulo the ideal (φp(x)) generated
by the cyclotomic polynomial φp(x) = 1+x+ · · ·+xp−1 — that is, the ring obtained
from Zp by adding a primitive pth root of unity. If R is a ring with unity, denote by
R× its group of units. We shall denote by [A, B] the topological closure of the mutual
commutator subgroup of subgroups A and B of a given group and by F ab = F/[F, F ]
the abelianization of a group F .

2. Preliminary results

Let M be a pro-p ZpH-module. We say that a collection {Mt, t ∈ T} of closed
ZpH-submodules of M indexed by a Boolean space T is a continuous system of ZpH-
submodules of M if for each open neighbourhood U of 0 in M , the set T (U) = {t ∈
T |Mt ⊂ U} is open in T .
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Definition 2.1 ([6]). Let M be a profinite ZpH-module, T a Boolean space and
{Mt|t ∈ T} a continuous system of ZpH-submodules of M . We say that M is a

profinite direct sum of Mt, t ∈ T , notation M =
⊕

t∈T

Mt if:

(1) Ms ∩Mr = {0} ∀ r �= s ∈ T and
(2) The following universal property holds: any given continuous map λ :

⋃
t∈T

Mt −→ K to a profinite ZpH-module K such that each restriction λ|Mt
:

Mt −→ K is a continuous ZpH-homomorphism, extends to a unique contin-

uous ZpH-homomorphism λ :
⊕

t∈T

Mt −→ K.

The concept of a free pro-p product of a continuous system of closed subgroups
over a Boolean space is defined in a manner analogous to Definition 2.1.

Let G be a pro-p group having an open free pro-p subgroup F . Then the set T of all
subgroups of order p in G is a profinite space of indices, since it is the projective limit
of corresponding finite discrete spaces of quotients G/U , where U runs through the
open normal subgroups of G which are contained in F . Moreover, G acts continuously
on T by conjugation.

Theorem 2.2 (Theorem 2.2 [5]). Let G ∼= F � Cpn be a cyclic extension of a free
pro-p group F . Suppose T −→ T /G admits a continuous section σ. Then

G ∼=

⎛

⎝
∐

T∈σ(T /G)

CG(T )

⎞

⎠
∐

F̃

is a free pro-p product of the centralizers CG(T ) of groups T of order p over a Boolean
space σ(T /G) of indices and a free pro-p subgroup F̃ of F . Moreover, each CG (T ) is
a semidirect product of open free pro-p subgroup of F by a finite cyclic group of order
pk, where 1 ≤ k ≤ n.

Corollary 2.3. Suppose CF (t) = {1} for every torsion element t �= 1 of G. Then
G =

(∐

i∈I
Ti

)
�F (X) is a free pro-p product of groups Ti

∼= Cpki , where 1 ≤ ki ≤ n,
F (X) is a free pro-p group and I is a profinite space.

Proof. Since in our case F acts freely on the profinite space T of subgroups of order
p, T −→ T /F admits a continuous section σ : T /F −→ T (see Lemma 5.6.5 in [9]).
Put I = Im(σ). Since by hypothesis CG(T ) is finite cyclic for each T , by Theorem 2.2
we get the required decomposition. �

Remark 2.4. Since a torsion free abelian pro-p group is free abelian (see Chapter 4
in [9]), Zp-torsion freeness is equivalent to Zp-freeness, thus we shall use this shorter
term in the rest of the paper.

3. The Heller–Reiner decomposition

Lemma 3.1. The equation (θp − 1)x = pz has a solution in any quotient ring R of
Zp[θp] for any z ∈ R.
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Proof. Since the maximal ideal of Zp[θp] is principal with θp−1 being a generator (see
Proposition 7.13 [1]), the solution exists in Zp[θp]. Let φ : Zp[θp]→ R be the canonical
epimorphism. Denote by z̃ an element of Zp[θp] such that φ(z̃) = z. Then by the above
(θp − 1)x = pz̃ has a solution r in Zp[θp]. Then φ(r) is a required solution. �

Lemma 3.2. Let M be a Zp[θp]-module. Suppose M is divisible as an abelian group.
Then M is a divisible Zp[θp]-module.

Proof. It suffices to show that the multiplication by θp − 1 is an automorphism of
M . In other words we need to show that for any y ∈ M the equation (θp − 1)x = y
has a solution in M, since each element a ∈ Zp[θp] is of the form (θp − 1)n · ε, with
ε ∈ (Zp[θp])× for some non-negative integer n (see pp. 121 [1]). As M is p-divisible,
y = pz for some z ∈M . Let 〈z〉 be the submodule of M generated by z. Then 〈z〉 as a
cyclic module is isomorphic to some quotient ring of Zp[θp] (see Theorem 2.2 in [10]),
so that the result follows from Lemma 3.1. �

Lemma 3.3. Let C = 〈x〉 be a cyclic group of order p and let B be a Zp-free pro-p
ZpC-module. Suppose that B is annihilated by φp(x) = 1 + x + · · ·+ xp−1. Then B is
a free pro-p Zp[θp]-module.

Proof. Consider the dual module B∗ = HomZp(B, Qp/Zp). Since B is Zp-free, by
Theorem 4.3.3 in [9] B ∼=

∏
Zp and so B∗ ∼=

⊕
J HomZp(Zp, Qp/Zp) ∼=

⊕
J Qp/Zp as

a Zp-module, where J is some indexing set. Since Qp/Zp is divisible it follows from
Exercise 3.17 in [10] that B∗ is a divisible Zp-module. By Lemma 3.2 B∗ is divisible
as a Zp[θp]-module and since Zp[θp] is a principal ideal domain (page 121 in [7]), it
follows that B∗ is injective as a Zp[θp]-module (cf. Theorem 3.24 in [10]). Therefore
B is a projective Zp[θp]-module and as Zp[θp] is a local pro-p ring, B is a free pro-p
Zp[θp]-module (see [11], pp. 127). �

Lemma 3.4. Let C = 〈x〉 be a cyclic group of order p and let M be a Zp-free pro-p
ZpC-module. Let φp : M −→M be the ZpC-homomorphism m �−→ φp(x)m and let π
be the canonical ZpC-epimorphism of M onto M/pM . Then the kernel of π ◦ φp is
equal to

(
MC ⊕Mp−1

)
+ pM, where Mp−1 is the ZpC-submodule annihilated by the

cyclotomic polynomial φp(x) and MC is the ZpC-submodule of fixed points for the
action of C on M.

Proof. Clearly MC ⊂ Ker(π ◦ φp), because for all m ∈ MC , we have φp(x)m = pm
whence (π ◦ φp)(m) = 0. On the other hand φp(x)Mp−1 = {0}, so Mp−1 is contained
in the kernel of π ◦ φp. Thus, we must prove the converse containment. Suppose on
the contrary that Ker(π ◦φp) �⊂ (Mp−1 +MC + pM). In this case, there is an element
m ∈ Ker(π ◦ φp) \ (MC + Mp−1 + pM). Since cyclic modules are only of the form Zp,
Zp[θp] and ZpC (see Theorem 2.6 in [4]), one has 〈m〉 ∼= ZpCp, and so φp(x)m = py
for some 0 �= y ∈ M . It follows that (x − 1)φp(x)m = (x − 1)py = 0, i.e. py ∈ MC .
Since M is Zp-free, it follows that y ∈MC . Then φp(x)(m− y) = py− py = 0 and so
m = (m− y) + y ∈Mp−1 + MC as needed. The proof is finished. �

Lemma 3.5. Let C = 〈x〉 be a cyclic group of order p and let M be a Zp-free pro-p
ZpC-module. Let L be a free pro-p ZpC-submodule of M . Then MC/(MC ∩ L) is a
free pro-p Zp-module and Mp−1/(Mp−1 ∩ L) is a free pro-p Zp[θp]-module.
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Proof. If L = {0}, there is nothing to prove. Suppose L �= {0}. Since L is ZpC-free,
L ∩MC = LC = φp(x)L and Lp−1 := L ∩Mp−1 = (x− 1)L. Let y ∈MC \ (MC ∩L)
be such that py ∈ MC ∩ L. Then we can find an element l of some free ZpC-basis
for L such that py belongs to the free cyclic pro-p ZpC-submodule 〈l〉. Namely, if l0
is a generator of LC as a trivial ZpC-module and such that py ∈ 〈l0〉, then l can be
chosen arbitrarily such that l0 = φp(x)l. Then the pro-p ZpC-submodule 〈y, l〉 of M
is finitely generated and so by the classical Heller–Reiner decomposition (cf. [4]) it
decomposes as a direct sum of ZpC-submodules: 〈y, l〉 = 〈l〉⊕L1, where L1 is a trivial
ZpC-submodule of MC . Hence 〈y, l〉/(MC∩〈y, l〉) is Zp-torsion free, contradicting our
assumptions on y. Thus MC/(MC ∩ L) is Zp-torsion free and so by Remark 2.4 is a
free pro-p Zp-module. Similarly let z ∈Mp−1\(L∩Mp−1) be such that pz ∈ L∩Mp−1.
Then we can find an element l′ of some free ZpC-basis for L such that pz belongs
to the free cyclic pro-p ZpC-submodule 〈l′〉. Namely, taking l0 to be an element
outside of the product IMp−1 such that pz ∈ 〈l0〉, where I is the maximal ideal of
(x − 1)ZpC, one can choose l′ to be any element element such that (x − 1)l′ = l0.
Then 〈z, l′〉 decomposes as a direct sum of ZpC-submodules: 〈l′〉 ⊕ R, where R is a
free cyclic Zp[θp]-module (see cf. [4]). Hence〈z, l′〉/(Mp−1 ∩ 〈z, l′〉) is Zp-torsion free,
contradicting our assumptions on z. Thus, Mp−1/(Mp−1 ∩ L) is Zp-torsion free and
so by Lemma 3.3 is a free pro-p Zp[θp]-module. �

Theorem A. Let C = 〈x〉 be a group of order p and let M be a Zp-free pro-p ZpC-
module. Then M decomposes as

M = MT ⊕Mθp ⊕ L,

where L is a free pro-p ZpC-submodule of M, MT is a trivial ZpC-module and Mθp

is a free pro-p Zp[θp]-module. Moreover, MT
∼=
⊕

γ Zp, Mθp
∼=
⊕

β J(ZpC) and L ∼=⊕
φ ZpC as pro-p ZpC-modules, where γ, β, φ are Boolean space of indices.

Proof. Consider M/pM as a pro-p FpC-module. Then M̃ := Hom (M/pM, Fp) is a
discrete FpC-module. Consider the family of all injective FpC-submodules of M/pM
partially ordered by inclusion. Since FpC is a Noetherian ring, it follows from Theorem
4.10 in [10], that the direct limit of such injective FpC-submodules is injective, so that
by Zorn’s Lemma there exists a maximal injective FpC-submodule L̃ in M̃. Now L̃

has a complement K̃ in M̃, i.e. M̃ = L̃⊕ K̃. By Pontryagin duality (see [3], pp. 332)

M/pM ∼= Hom(L̃⊕ K̃, Fp) ∼= Hom(L̃, Fp)⊕Hom(K̃, Fp).

Put L̄ := Hom(L̃, Fp) and K̄ := Hom(K̃, Fp). We shall identify L̄ with the copy
of L̄ in M/pM, and do the same with K̄. Then L̄ is projective FpC-submodule of
M/pM. As FpC is a local pro-p ring (see Proposition 7.5.3, pp.126 in [11]) L̄ is a free
FpC-submodule of M/pM (see Corollary 7.5.4, pp. 127 in [11]).
Let π : M −→ M/pM be the natural epimorphism. By Proposition 2.2.2 in Ribes–
Zalesskii [9], π admits a continuous section δ : M/pM −→ M with δ(0 + M) = 0.
Consider a profinite space Ω of free generators of L̄ converging to 0. Put X = δ (Ω).
Let L be the closed ZpC-submodule of M topologically generated by X . Then L is a
free pro-p ZpC-submodule on X . Indeed, let A be a free pro-p ZpC-module on X and
f : A −→ L be the ZpC-epimorphism induced by sending X identically to its copy
in L. Then as a pro-p group A is free pro-p abelian on the basis CX . Since L̄ is a free
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FpC-module on Ω, it is an elementary abelian pro-p group on CΩ. This shows that
the kernel of f is contained in the Frattini subgroup Φ(A). But a homomorphism of
free abelian pro-p groups with the kernel in the Frattini subgroup is an isomorphism.
Thus f is an isomorphism.

Let MC be the pro-p ZpC-submodule of fixed points in M, i.e., the closed ZpC-
submodule of M, annihilated by (x−1). Consider the natural epimorphism s : MC −→
MC/(L∩MC). As by Lemma 3.5 MC/(L∩MC) is free pro-p as a Zp-module, it follows
that MC = (L ∩MC)⊕ U, where U is a complement for L ∩MC .

Now consider the pro-p ZpC-submodule Mp−1 of M annihilated by (φp(x)). By
Lemma 3.3, Mp−1 is a free pro-p Zp[θp]-module. Consider the natural epimorphism
r : Mp−1 −→ Mp−1/(L ∩ Mp−1). As by Lemma 3.5 Mp−1/(L ∩ Mp−1) is a free
pro-p Zp[θp]-module, we have Mp−1 = (L ∩Mp−1) ⊕ V, where V is a pro-p Zp[θp]-
submodule of Mp−1.

Thus L ∩ V = {0} and so L + V = L ⊕ V . As MC ∩ Mp−1 = {0} one has
U∩(L+V ) = {0} so that L+U+V = L⊕U⊕V . We want to show that M = L⊕U⊕V
as a pro-p ZpC-module.

It suffices to prove that M =
〈
MC , Mp−1, L

〉
as a ZpC-module, since U ⊕ V ⊕ L

contains L∩MC , U, V , L∩Mp−1 and Mp−1 = (L∩Mp−1)⊕V, MC = (L∩MC)⊕U .
Consider the following diagram:

M
φp ��

π

��

M

π

��
M/pM

φ̄p

�� M/pM,

where φp : M −→ M is a ZpC-homomorphism sending m �−→ φp(x)m, π is the
canonical ZpC-epimorphism of M to M/pM and φp : M/pM −→ M/pM is a ZpC-
homomorphism sending m̄ �−→ φp(x)m̄. Clearly the diagram is commutative.

Recall that L̄ is a free FpC-submodule of M/pM and M/pM ∼= L̄ ⊕ K̄, where
K̄ is a FpC-complement of L̄ in M/pM. By the commutativity of the above diagram
the preimage of K̄ in M is contained in Ker(π ◦ φp). By Lemma 3.4,
M = 〈L,Ker(π ◦ φp)〉 =

〈
L, MC + Mp−1 + pM

〉
as a free abelian pro-p group. As

pM = Φ(M) is the Frattini subgroup of the abelian pro-p group M , we have M =
L + MC + Mp−1. Finally put MT = U and Mθp = V .

The second part of the statement follows from the definition of a free module on a
Boolean space of indices (see page 108 in [6]). �

4. Finite centralizers of torsion elements

Theorem B. Let G = U � H be a pro-p semidirect product of a free pro-p group
U and a cyclic group H of order pn. Suppose that the centralizers of all non-identity
elements of finite order in G are finite. Then

Uab := U/[U, U ] ∼=

⎛

⎝
⊕

i∈(I,∗)
JKi(H)

⎞

⎠
⊕

L
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is a profinite direct sum of pro-p ZpH-modules, where (I, ∗) is a Boolean pointed
space of indices, the Ki are subgroupss of H, JKi(H) is the kernel of the canonical
epimorphism ZpH � Zp (H/Ki) and L is a free pro-p ZpH-module.

Proof. By Corollary 2.3, G =
(∐

i∈I Ti

)
� F (X) is a free pro-p product of groups

Ti
∼= Cpki , where 1 ≤ ki ≤ n, F (X) is a free pro-p subgroup of U and I is a profinite

index space. By Proposition 4.9 in [6], H is conjugate to some finite free factor in G.
Thus, we may assume that H = T∗ ∼= Cpn for some ∗ ∈ I. Let φ : G −→ H be the
endomorphism identical on H and having U as the kernel.

By Corollary 3.3.10 in Ribes–Zalesskii [9], we have F (X) = lim←−
β∈B

F (Xβ), where Xβ

runs through the collection of all finite quotient sets of X and F (Xβ) is a free pro-p
group with finite base Xβ . Let I = lim←−

κ∈K

Iκ be a decomposition of I as an inverse limit

of finite spaces Iκ such that πκ(i) = πκ(j) only if φ(Ti) = φ(Tj), where πκ : I −→ Iκ

is the κth projection. Choose a generator for every subgroup of H and let S be the
set of these generators. Then for every i ∈ I, there is a unique generator ti of Ti such
that φ(ti) ∈ S and the set of all these generators is homeomorphic to I. Note that a
projection πκ induces the homomorphisms

∐

i∈I
Ti −→

∐

iκ∈Iκ

Tiκ that identifies ti

with tj whenever πκ(i) = πκ(j).
This gives the inverse limit decomposition

G ∼=

⎡

⎣ lim←−
κ∈K

(
∐

iκ∈Iκ

Tiκ

)⎤

⎦
∐
(

lim←−
β∈B

F (Xβ)

)

∼= lim←−
κ∈K,β∈B

[(
∐

iκ∈Iκ

Tiκ

)
∐

F (Xβ)

]

(cf. Lemma 9.1.5 in Ribes–Zalesskii [9]).
Note that φ factors via the epimorphisms

fκ,β :

(
∐

iκ∈Iκ

Tiκ

)
∐

F (Xβ) � H

and we denote by Uκ,β its kernel.
Then by Corollary 1.1.8 in Ribes–Zalesskii [9], U = lim←−

K×B

Uκ,β . It follows that

Uab ∼= lim←−
K×B

Uab
κ,β , where Uab

κ,β := Uκ,β/[Uκ,β , Uκ,β ].

Put ∗κ to be the image of ∗ in Iκ. By Proposition 3.3 in [8]

Uab
κ,β
∼=

⎛

⎝
⊕

iκ∈Iκ\{∗k}
JKiκ

(H)

⎞

⎠
⊕

Lκ,β

as a pro-p ZpH-module, where Lκ,β is a free pro-p ZpH-module with finite base,
JKiκ

(H) is the kernel of ZpH � Zp (H/Kiκ) . Moreover, it follows from the proof
there that Lκ,β has the image of Xβ in Uab

κ,β as a free ZpH-basis and that JKiκ
(H) is

generated by the images of the elements t∗κt−1
iκ

in the abelianization of Uκ,β , where
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t∗κ ∈ T∗κ
∼= H, tiκ ∈ Tiκ with Uκ,βtiκ = Uκ,βt∗κ . Note that since Iκ is finite discrete

space, Ik \ {∗k} = (Ik, ∗κ) and so
⊕

iκ∈Iκ\{∗k}
JKiκ

(H) =
⊕

iκ∈(Iκ,∗κ)

JKiκ
(H) .

This means that the decomposition

Uab
κ,β
∼=

⎛

⎝
⊕

iκ∈(Iκ,∗κ)

JKiκ
(H)

⎞

⎠
⊕

Lκ,β

is coherent with the inverse system for Uab and so by the commutation property
between projective limits and profinite direct sums (see Proposition 1.6 on pp. 100
combined with 3.1 on page 107 in [6] ), we have

Uab ∼= lim←−
κ∈K

⎡

⎣
⊕

iκ∈(Iκ,∗κ)

JKiκ
(H)

⎤

⎦
⊕

lim←−
β∈B

Lκ,β
∼=
⊕

i∈(I,∗)
JKi(H)

⊕
L

which is the desired profinite direct sum, where L is a free pro-p ZpH-module and
(I, ∗) = lim

←−
κ∈K

(Iκ, ∗κ). �

Remark 4.1. The proof shows that L is a free pro-p ZpH-module with closed free
base X[U, U ]/[U, U ].

The following corollary is a generalization of Lemma 3.1 in [8].

Corollary 4.2. If Ti
∼= Cpn , for all i ∈ I, then

Uab ∼=
⊕

i∈(I,∗)
J(H)

⊕
L,

where L is a free pro-p ZpH-module and J(H) is the augmentation ideal of ZpH.

Corollary 4.3. With the hypotheses of Theorem B, H acts faithfully on Uab :=
U/[U, U ].

Proof. The proof is the same as in Corollary 3.4 in Porto–Zalesskii [8], pp. 229. �

Corollary 4.4. The ZpH-module Uab of Theorem B is indecomposable as a ZpH-
module if and only if G has not more than two free factors and |X| ≤ 1.

Proof. By Proposition 2.1 in [8], JKi(H) is indecomposable ZpH-module for every
i ∈ (I, ∗). Hence the result follows from Theorem B. �

Now we are ready to prove

Theorem C. Let M be a Zp-free pro-p ZpCp-module. Then there exists a pro-p
semidirect product F � Cp of a free pro-p group F and a group Cp of order p such
that F ab is isomorphic to M as a pro-p ZpCp-module.
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Proof. Let c be a generator of Cp. By Theorem A, M decomposes as

M = MT ⊕Mθp ⊕ L,

where L is a free pro-p ZpCp-submodule of M, MT is a trivial pro-p ZpCp-module and
Mθp is a free pro-p Zp[θp]-module; let X, Y, Z be free profinite bases of MT , Mθp , L,
respectively. Put Y0 :=

⋃p−2
j=0 cjY, Z0 :=

⋃p−1
t=0 ctZ and W := X ∪ Y0 ∪ Z0. Let

F = F (W ) be the free pro-p group on W. Define a pro-p semidirect product F � Cp

putting for all x ∈ X : xc = x; for each y ∈ Y : (cky)c = ck+1y for 0 � k � p− 3 and

(cp−2y)c =
(∏p−2

r=0 cry
)−1

; and for all z ∈ Z : (csz)c = cs+1z where 0 � s � p− 1; to
be the action on the elements of the basis W and extending it to the action on F by
the universal property of F . Then F (X)ab ∼= MT , F (Y0)ab ∼= Mθp and F (Z0)ab ∼= L
as pro-p ZpCp-modules, so that

F ab ∼= F (X)ab ⊕ F (Y0)ab ⊕ F (Z0)ab ∼= M. �
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