CYCLIC EXTENSIONS OF FREE PRO-P GROUPS AND P-ADIC MODULES

Anderson L. P. Porto and Pavel A. Zalesskii

ABSTRACT. We prove a pro-p version of the classical decomposition of a \mathbb{Z}_p -torsion free $\mathbb{Z}_p C_p$ -module into indecomposable modules. We also describe some pro-p $\mathbb{Z}_p C_{p^n}$ -modules obtained from a semidirect product of a free pro-p group F and a cyclic group C_{p^n} of automorphisms by factoring out the (closed) commutator subgroup [F, F].

1. Introduction

Let p be a prime number, C_p a group of order p, \mathbb{Z}_p the ring of p-adic integers and $\mathbb{Z}_p C_p$ the group ring. Let M be a \mathbb{Z}_p -torsion free $\mathbb{Z}_p C_p$ -module. If M is finitely generated, then a classical result that plays a fundamental role in the theory of integral representations (cf. [2] or [4]) describes M as a finite direct sum of cyclic modules of the form $\mathbb{Z}_p C_p$, \mathbb{Z}_p and $J(\mathbb{Z}_p C_p)$, where $J(\mathbb{Z}_p C_p)$ is the augmentation ideal of $\mathbb{Z}_p C_p$.

Note that $\mathbb{Z}_p C_p$ is a local pro-p ring, so a $\mathbb{Z}_p C_p$ -module M is finitely generated as a pro-p $\mathbb{Z}_p C_p$ -module if and only if it is finitely generated as an abstract $\mathbb{Z}_p C_p$ -module (see pp. 126–127 in Wilson [11]). If M is infinitely generated then this is no longer the case, since an abstract infinitely generated $\mathbb{Z}_p C_p$ -module is not necessarily compact so need not be pro-p. For infinitely generated abstract $\mathbb{Z}_p C_p$ -modules the above result is not valid; \mathbb{Q}_p considered as a trivial $\mathbb{Z}_p C_p$ -module is not decomposable (since \mathbb{Q}_p is not decomposable as a \mathbb{Z}_p -module).

We prove in this paper that surprisingly the classical result mentioned above holds for infinitely generated \mathbb{Z}_p -torsion free pro-p \mathbb{Z}_pC_p -modules.

Theorem A. Let $C = \langle x \rangle$ be a group of order p and let M be a \mathbb{Z}_p -torsion free pro-p \mathbb{Z}_pC -module. Then M decomposes as

$$M = M_T \oplus M_{\theta_p} \oplus L,$$

where L is a free pro-p \mathbb{Z}_pC -submodule of M, M_T is a trivial \mathbb{Z}_pC -module, M_{θ_p} is a free pro-p $\mathbb{Z}_p[\theta_p]$ -module, where $\mathbb{Z}_p[\theta_p]$ is the quotient ring of \mathbb{Z}_pC modulo the ideal $(\phi_p(x))$ generated by the cyclotomic polynomial $\phi_p(x) = 1 + x + \ldots + x^{p-1}$ and θ_p is a root of $\phi_p(x)$. Moreover, $M_T \cong \bigoplus_{\gamma} \mathbb{Z}_p$, $M_{\theta_p} \cong \bigoplus_{\beta} J(\mathbb{Z}_pC)$ and $L \cong \bigoplus_{\phi} \mathbb{Z}_pC$ are profinite direct sums of pro-p \mathbb{Z}_pC -modules over Boolean spaces of indices γ, β, ϕ , respectively.

Note that Theorem A can not be proved simply by using the projective limit argument since it is not clear why M can be decomposed as an inverse limit of \mathbb{Z}_p -torsion free pro-p \mathbb{Z}_pC_p -modules. The existence of such a decomposition is a consequence of Theorem A.

Received by the editors May 21, 2012.

Key words and phrases. Virtually free pro-p groups. Pro-p modules.

Now let $G = F \rtimes C_{p^n}$ be a pro-p semidirect product of a free pro-p group F and a cyclic group C_{p^n} of order p^n . The continuous action of C_{p^n} on F induces the structure of a \mathbb{Z}_p -torsion free pro-p $\mathbb{Z}_pC_{p^n}$ -module on the abelianization F/[F,F]. In the second part of the paper, we study the structure of such pro-p $\mathbb{Z}_pC_{p^n}$ -modules.

Theorem B. Let $G = U \times H$ be a pro-p semidirect product of a free pro-p group U and a cyclic group H of order p^n . Suppose that the centralizers of all non-identity elements of finite order in G are finite. Then

$$U^{ab} := U/[U, U] \cong \left(\bigoplus_{i \in (I, *)} J_{K_i}(H)\right) \bigoplus L$$

is a profinite direct sum of pro-p \mathbb{Z}_pH -modules, where (I,*) is a Boolean pointed space of indices, each K_i is a subgroup of H, $J_{K_i}(H)$ is the kernel of the canonical epimorphism $\mathbb{Z}_pH \to \mathbb{Z}_p(H/K_i)$ and L is a free pro-p \mathbb{Z}_pH -module.

In the proof, we use essentially Theorem 2.2 in Herfort–Zalesskii [5], which describes certain free-by-cyclic pro-p groups as a free pro-p product of normalizers of subgroups of order p and some additional free factor.

If n=1 then we use Theorem A to prove that the abelianization $F^{ab}=F/[F,F]$ gives all possible \mathbb{Z}_p -torsion free pro-p \mathbb{Z}_pC_p -modules.

Theorem C. Let M be a \mathbb{Z}_p -free pro-p \mathbb{Z}_pC_p -module. Then there exists a pro-p semidirect product $F \rtimes C_p$ of a free pro-p group F and a group C_p of order p such that F^{ab} is isomorphic to M as a pro-p \mathbb{Z}_pC_p -module.

Note that for n > 1, F^{ab} does not give all possible \mathbb{Z}_p -torsion free pro-p \mathbb{Z}_pC_p -modules, see Remark 4.5 in [8].

Basic results about profinite groups, rings and modules used in the paper can be found in [9] or [11], and for an account of injective and divisible modules see [10]. All groups and modules in the paper are pro-p, so all subgroups and submodules are closed and all homomorphisms are continuous; generation always means topological generation. Throughout the paper p denotes a prime number, \mathbb{Z}_p the ring of p-adic integers and C_{p^n} denotes a cyclic group of order p^n . For a finite group H we denote by $\mathbb{Z}_p H$ the group ring of H over \mathbb{Z}_p and J(H) denotes the augmentation ideal of $\mathbb{Z}_p H$. If K is a subgroup of H we denote by $J_K(H)$ the kernel of the natural homomorphism $\mathbb{Z}_p H \longrightarrow \mathbb{Z}_p(H/K)$, where $\mathbb{Z}_p(H/K)$ is the free \mathbb{Z}_p -module over the coset space H/K. We use $\mathbb{Z}_p[\theta_p]$ to denote the quotient ring of $\mathbb{Z}_p C_p$ modulo the ideal $(\phi_p(x))$ generated by the cyclotomic polynomial $\phi_p(x) = 1 + x + \cdots + x^{p-1}$ — that is, the ring obtained from \mathbb{Z}_p by adding a primitive pth root of unity. If R is a ring with unity, denote by R^{\times} its group of units. We shall denote by [A, B] the topological closure of the mutual commutator subgroup of subgroups A and B of a given group and by $F^{ab} = F/[F, F]$ the abelianization of a group F.

2. Preliminary results

Let M be a pro-p \mathbb{Z}_pH -module. We say that a collection $\{M_t, t \in T\}$ of closed \mathbb{Z}_pH -submodules of M indexed by a Boolean space T is a continuous system of \mathbb{Z}_pH -submodules of M if for each open neighbourhood U of 0 in M, the set $T(U) = \{t \in T | M_t \subset U\}$ is open in T.

Definition 2.1 ([6]). Let M be a profinite \mathbb{Z}_pH -module, T a Boolean space and $\{M_t|t\in T\}$ a continuous system of \mathbb{Z}_pH -submodules of M. We say that M is a profinite direct sum of M_t , $t\in T$, notation $M=\bigoplus_{t\in T}M_t$ if:

- (1) $M_s \cap M_r = \{0\} \forall r \neq s \in T \text{ and }$
- (2) The following universal property holds: any given continuous map $\lambda: \bigcup_{t \in T} M_t \longrightarrow K$ to a profinite \mathbb{Z}_pH -module K such that each restriction $\lambda_{|M_t}: M_t \longrightarrow K$ is a continuous \mathbb{Z}_pH -homomorphism, extends to a unique continuous \mathbb{Z}_pH -homomorphism $\overline{\lambda}: \bigoplus_{t \in T} M_t \longrightarrow K$.

The concept of a free pro-p product of a continuous system of closed subgroups over a Boolean space is defined in a manner analogous to Definition 2.1.

Let G be a pro-p group having an open free pro-p subgroup F. Then the set \mathcal{T} of all subgroups of order p in G is a profinite space of indices, since it is the projective limit of corresponding finite discrete spaces of quotients G/U, where U runs through the open normal subgroups of G which are contained in F. Moreover, G acts continuously on \mathcal{T} by conjugation.

Theorem 2.2 (Theorem 2.2 [5]). Let $G \cong F \rtimes C_{p^n}$ be a cyclic extension of a free pro-p group F. Suppose $\mathcal{T} \longrightarrow \mathcal{T}/G$ admits a continuous section σ . Then

$$G \cong \left(\coprod_{T \in \sigma(T/G)} C_G(T) \right) \coprod \widetilde{F}$$

is a free pro-p product of the centralizers $C_G(T)$ of groups T of order p over a Boolean space $\sigma(T/G)$ of indices and a free pro-p subgroup \widetilde{F} of F. Moreover, each $C_G(T)$ is a semidirect product of open free pro-p subgroup of F by a finite cyclic group of order p^k , where $1 \leq k \leq n$.

Corollary 2.3. Suppose $C_F(t) = \{1\}$ for every torsion element $t \neq 1$ of G. Then $G = \left(\coprod_{i \in I} T_i\right) \coprod F(X)$ is a free pro-p product of groups $T_i \cong C_{p^{k_i}}$, where $1 \leq k_i \leq n$, F(X) is a free pro-p group and I is a profinite space.

Proof. Since in our case F acts freely on the profinite space \mathcal{T} of subgroups of order $p, \mathcal{T} \longrightarrow \mathcal{T}/F$ admits a continuous section $\sigma: \mathcal{T}/F \longrightarrow \mathcal{T}$ (see Lemma 5.6.5 in [9]). Put $I = \operatorname{Im}(\sigma)$. Since by hypothesis $C_G(T)$ is finite cyclic for each T, by Theorem 2.2 we get the required decomposition.

Remark 2.4. Since a torsion free abelian pro-p group is free abelian (see Chapter 4 in [9]), \mathbb{Z}_p -torsion freeness is equivalent to \mathbb{Z}_p -freeness, thus we shall use this shorter term in the rest of the paper.

3. The Heller–Reiner decomposition

Lemma 3.1. The equation $(\theta_p - 1)x = pz$ has a solution in any quotient ring R of $\mathbb{Z}_p[\theta_p]$ for any $z \in R$.

Proof. Since the maximal ideal of $\mathbb{Z}_p[\theta_p]$ is principal with $\theta_p - 1$ being a generator (see Proposition 7.13 [1]), the solution exists in $\mathbb{Z}_p[\theta_p]$. Let $\phi : \mathbb{Z}_p[\theta_p] \to R$ be the canonical epimorphism. Denote by \tilde{z} an element of $\mathbb{Z}_p[\theta_p]$ such that $\phi(\tilde{z}) = z$. Then by the above $(\theta_p - 1)x = p\tilde{z}$ has a solution r in $\mathbb{Z}_p[\theta_p]$. Then $\phi(r)$ is a required solution. \square

Lemma 3.2. Let M be a $\mathbb{Z}_p[\theta_p]$ -module. Suppose M is divisible as an abelian group. Then M is a divisible $\mathbb{Z}_p[\theta_p]$ -module.

Proof. It suffices to show that the multiplication by $\theta_p - 1$ is an automorphism of M. In other words we need to show that for any $y \in M$ the equation $(\theta_p - 1)x = y$ has a solution in M, since each element $a \in \mathbb{Z}_p[\theta_p]$ is of the form $(\theta_p - 1)^n \cdot \epsilon$, with $\epsilon \in (\mathbb{Z}_p[\theta_p])^\times$ for some non-negative integer n (see pp. 121 [1]). As M is p-divisible, y = pz for some $z \in M$. Let $\langle z \rangle$ be the submodule of M generated by z. Then $\langle z \rangle$ as a cyclic module is isomorphic to some quotient ring of $\mathbb{Z}_p[\theta_p]$ (see Theorem 2.2 in [10]), so that the result follows from Lemma 3.1.

Lemma 3.3. Let $C = \langle x \rangle$ be a cyclic group of order p and let B be a \mathbb{Z}_p -free pro-p $\mathbb{Z}_p C$ -module. Suppose that B is annihilated by $\phi_p(x) = 1 + x + \cdots + x^{p-1}$. Then B is a free pro-p $\mathbb{Z}_p[\theta_p]$ -module.

Proof. Consider the dual module $B^* = \operatorname{Hom}_{\mathbb{Z}_p}(B, \mathbb{Q}_p/\mathbb{Z}_p)$. Since B is \mathbb{Z}_p -free, by Theorem 4.3.3 in [9] $B \cong \prod \mathbb{Z}_p$ and so $B^* \cong \bigoplus_J \operatorname{Hom}_{\mathbb{Z}_p}(\mathbb{Z}_p, \mathbb{Q}_p/\mathbb{Z}_p) \cong \bigoplus_J \mathbb{Q}_p/\mathbb{Z}_p$ as a \mathbb{Z}_p -module, where J is some indexing set. Since $\mathbb{Q}_p/\mathbb{Z}_p$ is divisible it follows from Exercise 3.17 in [10] that B^* is a divisible \mathbb{Z}_p -module. By Lemma 3.2 B^* is divisible as a $\mathbb{Z}_p[\theta_p]$ -module and since $\mathbb{Z}_p[\theta_p]$ is a principal ideal domain (page 121 in [7]), it follows that B^* is injective as a $\mathbb{Z}_p[\theta_p]$ -module (cf. Theorem 3.24 in [10]). Therefore B is a projective $\mathbb{Z}_p[\theta_p]$ -module and as $\mathbb{Z}_p[\theta_p]$ is a local pro-p ring, B is a free pro-p $\mathbb{Z}_p[\theta_p]$ -module (see [11], pp. 127).

Lemma 3.4. Let $C = \langle x \rangle$ be a cyclic group of order p and let M be a \mathbb{Z}_p -free pro-p \mathbb{Z}_pC -module. Let $\phi_p : M \longrightarrow M$ be the \mathbb{Z}_pC -homomorphism $m \longmapsto \phi_p(x)m$ and let π be the canonical \mathbb{Z}_pC -epimorphism of M onto M/pM. Then the kernel of $\pi \circ \phi_p$ is equal to $(M^C \oplus M_{p-1}) + pM$, where M_{p-1} is the \mathbb{Z}_pC -submodule annihilated by the cyclotomic polynomial $\phi_p(x)$ and M^C is the \mathbb{Z}_pC -submodule of fixed points for the action of C on M.

Proof. Clearly $M^C \subset \operatorname{Ker}(\pi \circ \phi_p)$, because for all $m \in M^C$, we have $\phi_p(x)m = pm$ whence $(\pi \circ \phi_p)(m) = 0$. On the other hand $\phi_p(x)M_{p-1} = \{0\}$, so M_{p-1} is contained in the kernel of $\pi \circ \phi_p$. Thus, we must prove the converse containment. Suppose on the contrary that $\operatorname{Ker}(\pi \circ \phi_p) \not\subset (M_{p-1} + M^C + pM)$. In this case, there is an element $m \in \operatorname{Ker}(\pi \circ \phi_p) \setminus (M^C + M_{p-1} + pM)$. Since cyclic modules are only of the form \mathbb{Z}_p , $\mathbb{Z}_p[\theta_p]$ and \mathbb{Z}_pC (see Theorem 2.6 in [4]), one has $\langle m \rangle \cong \mathbb{Z}_pC_p$, and so $\phi_p(x)m = py$ for some $0 \neq y \in M$. It follows that $(x-1)\phi_p(x)m = (x-1)py = 0$, i.e. $py \in M^C$. Since M is \mathbb{Z}_p -free, it follows that $y \in M^C$. Then $\phi_p(x)(m-y) = py - py = 0$ and so $m = (m-y) + y \in M_{p-1} + M^C$ as needed. The proof is finished. \square

Lemma 3.5. Let $C = \langle x \rangle$ be a cyclic group of order p and let M be a \mathbb{Z}_p -free pro-p $\mathbb{Z}_p C$ -module. Let L be a free pro-p $\mathbb{Z}_p C$ -submodule of M. Then $M^C/(M^C \cap L)$ is a free pro-p \mathbb{Z}_p -module and $M_{p-1}/(M_{p-1} \cap L)$ is a free pro-p $\mathbb{Z}_p[\theta_p]$ -module.

Proof. If $L = \{0\}$, there is nothing to prove. Suppose $L \neq \{0\}$. Since L is \mathbb{Z}_pC -free, $L \cap M^C = L^C = \phi_p(x)L$ and $L_{p-1} := L \cap M_{p-1} = (x-1)L$. Let $y \in M^C \setminus (M^C \cap L)$ be such that $py \in M^C \cap L$. Then we can find an element l of some free \mathbb{Z}_pC -basis for L such that py belongs to the free cyclic pro-p \mathbb{Z}_pC -submodule $\langle l \rangle$. Namely, if l_0 is a generator of L^C as a trivial \mathbb{Z}_pC -module and such that $py \in \langle l_0 \rangle$, then l can be chosen arbitrarily such that $l_0 = \phi_p(x)l$. Then the pro- $p \mathbb{Z}_p C$ -submodule $\langle y, l \rangle$ of M is finitely generated and so by the classical Heller-Reiner decomposition (cf. [4]) it decomposes as a direct sum of \mathbb{Z}_pC -submodules: $\langle y, l \rangle = \langle l \rangle \oplus L_1$, where L_1 is a trivial $\mathbb{Z}_p C$ -submodule of M^C . Hence $\langle y, l \rangle / (M^C \cap \langle y, l \rangle)$ is \mathbb{Z}_p -torsion free, contradicting our assumptions on y. Thus $M^C/(M^C \cap L)$ is \mathbb{Z}_p -torsion free and so by Remark 2.4 is a free pro- $p \mathbb{Z}_p$ -module. Similarly let $z \in M_{p-1} \setminus (L \cap M_{p-1})$ be such that $pz \in L \cap M_{p-1}$. Then we can find an element l' of some free \mathbb{Z}_pC -basis for L such that pz belongs to the free cyclic pro- $p \mathbb{Z}_p C$ -submodule $\langle l' \rangle$. Namely, taking l_0 to be an element outside of the product IM_{p-1} such that $pz \in \langle l_0 \rangle$, where I is the maximal ideal of $(x-1)\mathbb{Z}_pC$, one can choose l' to be any element element such that $(x-1)l'=l_0$. Then $\langle z, l' \rangle$ decomposes as a direct sum of $\mathbb{Z}_n C$ -submodules: $\langle l' \rangle \oplus R$, where R is a free cyclic $\mathbb{Z}_p[\theta_p]$ -module (see cf. [4]). Hence $\langle z, l' \rangle / (M_{p-1} \cap \langle z, l' \rangle)$ is \mathbb{Z}_p -torsion free, contradicting our assumptions on z. Thus, $M_{p-1}/(M_{p-1}\cap L)$ is \mathbb{Z}_p -torsion free and so by Lemma 3.3 is a free pro- $p \mathbb{Z}_p[\theta_p]$ -module.

Theorem A. Let $C = \langle x \rangle$ be a group of order p and let M be a \mathbb{Z}_p -free pro-p \mathbb{Z}_pC -module. Then M decomposes as

$$M = M_T \oplus M_{\theta_p} \oplus L,$$

where L is a free pro-p \mathbb{Z}_pC -submodule of M, M_T is a trivial \mathbb{Z}_pC -module and M_{θ_p} is a free pro-p $\mathbb{Z}_p[\theta_p]$ -module. Moreover, $M_T \cong \bigoplus_{\gamma} \mathbb{Z}_p$, $M_{\theta_p} \cong \bigoplus_{\beta} J(\mathbb{Z}_pC)$ and $L \cong \bigoplus_{\delta} \mathbb{Z}_pC$ as pro-p \mathbb{Z}_pC -modules, where γ, β, ϕ are Boolean space of indices.

Proof. Consider M/pM as a pro-p \mathbb{F}_pC -module. Then $\widetilde{M}:=\operatorname{Hom}(M/pM,\mathbb{F}_p)$ is a discrete \mathbb{F}_pC -module. Consider the family of all injective \mathbb{F}_pC -submodules of M/pM partially ordered by inclusion. Since \mathbb{F}_pC is a Noetherian ring, it follows from Theorem 4.10 in [10], that the direct limit of such injective \mathbb{F}_pC -submodules is injective, so that by Zorn's Lemma there exists a maximal injective \mathbb{F}_pC -submodule \widetilde{L} in \widetilde{M} . Now \widetilde{L} has a complement \widetilde{K} in \widetilde{M} , i.e. $\widetilde{M}=\widetilde{L}\oplus\widetilde{K}$. By Pontryagin duality (see [3], pp. 332)

$$M/pM \cong \operatorname{Hom}(\widetilde{L} \oplus \widetilde{K}, \mathbb{F}_p) \cong \operatorname{Hom}(\widetilde{L}, \mathbb{F}_p) \oplus \operatorname{Hom}(\widetilde{K}, \mathbb{F}_p).$$

Put $\bar{L} := \operatorname{Hom}(\tilde{L}, \mathbb{F}_p)$ and $\bar{K} := \operatorname{Hom}(\tilde{K}, \mathbb{F}_p)$. We shall identify \bar{L} with the copy of \bar{L} in M/pM, and do the same with \bar{K} . Then \bar{L} is projective \mathbb{F}_pC -submodule of M/pM. As \mathbb{F}_pC is a local pro-p ring (see Proposition 7.5.3, pp.126 in [11]) \bar{L} is a free \mathbb{F}_pC -submodule of M/pM (see Corollary 7.5.4, pp. 127 in [11]).

Let $\pi: M \longrightarrow M/pM$ be the natural epimorphism. By Proposition 2.2.2 in Ribes–Zalesskii [9], π admits a continuous section $\delta: M/pM \longrightarrow M$ with $\delta(0+M)=0$. Consider a profinite space Ω of free generators of \bar{L} converging to 0. Put $\mathcal{X}=\delta(\Omega)$. Let L be the closed \mathbb{Z}_pC -submodule of M topologically generated by \mathcal{X} . Then L is a free pro-p \mathbb{Z}_pC -submodule on \mathcal{X} . Indeed, let A be a free pro-p \mathbb{Z}_pC -module on \mathcal{X} and $f:A\longrightarrow L$ be the \mathbb{Z}_pC -epimorphism induced by sending \mathcal{X} identically to its copy in L. Then as a pro-p group A is free pro-p abelian on the basis $C\mathcal{X}$. Since \bar{L} is a free

 $\mathbb{F}_p C$ -module on Ω , it is an elementary abelian pro-p group on $C\Omega$. This shows that the kernel of f is contained in the Frattini subgroup $\Phi(A)$. But a homomorphism of free abelian pro-p groups with the kernel in the Frattini subgroup is an isomorphism. Thus f is an isomorphism.

Let M^C be the pro- $p \mathbb{Z}_p C$ -submodule of fixed points in M, i.e., the closed $\mathbb{Z}_p C$ -submodule of M, annihilated by (x-1). Consider the natural epimorphism $s: M^C \longrightarrow M^C/(L\cap M^C)$. As by Lemma 3.5 $M^C/(L\cap M^C)$ is free pro-p as a \mathbb{Z}_p -module, it follows that $M^C = (L \cap M^C) \oplus U$, where U is a complement for $L \cap M^C$.

Now consider the pro-p \mathbb{Z}_pC -submodule M_{p-1} of M annihilated by $(\phi_p(x))$. By Lemma 3.3, M_{p-1} is a free pro-p $\mathbb{Z}_p[\theta_p]$ -module. Consider the natural epimorphism $r: M_{p-1} \longrightarrow M_{p-1}/(L \cap M_{p-1})$. As by Lemma 3.5 $M_{p-1}/(L \cap M_{p-1})$ is a free pro-p $\mathbb{Z}_p[\theta_p]$ -module, we have $M_{p-1} = (L \cap M_{p-1}) \oplus V$, where V is a pro-p $\mathbb{Z}_p[\theta_p]$ -submodule of M_{p-1} .

Thus $L \cap V = \{0\}$ and so $L + V = L \oplus V$. As $M^C \cap M_{p-1} = \{0\}$ one has $U \cap (L+V) = \{0\}$ so that $L+U+V = L \oplus U \oplus V$. We want to show that $M = L \oplus U \oplus V$ as a pro- $p \mathbb{Z}_p C$ -module.

It suffices to prove that $M = \langle M^C, M_{p-1}, L \rangle$ as a $\mathbb{Z}_p C$ -module, since $U \oplus V \oplus L$ contains $L \cap M^C, U, V, L \cap M_{p-1}$ and $M_{p-1} = (L \cap M_{p-1}) \oplus V, M^C = (L \cap M^C) \oplus U$. Consider the following diagram:

$$M \xrightarrow{\phi_p} M$$

$$\downarrow^{\pi} \qquad \qquad \downarrow^{\pi}$$

$$M/pM \xrightarrow{\bar{\phi}_p} M/pM,$$

where $\phi_p: M \longrightarrow M$ is a \mathbb{Z}_pC -homomorphism sending $m \longmapsto \phi_p(x)m$, π is the canonical \mathbb{Z}_pC -epimorphism of M to M/pM and $\overline{\phi_p}: M/pM \longrightarrow M/pM$ is a \mathbb{Z}_pC -homomorphism sending $\overline{m} \longmapsto \phi_p(x)\overline{m}$. Clearly the diagram is commutative.

Recall that \bar{L} is a free $\mathbb{F}_p C$ -submodule of M/pM and $M/pM \cong \bar{L} \oplus \bar{K}$, where \bar{K} is a $\mathbb{F}_p C$ -complement of \bar{L} in M/pM. By the commutativity of the above diagram the preimage of \bar{K} in M is contained in $\operatorname{Ker}(\pi \circ \phi_p)$. By Lemma 3.4, $M = \langle L, \operatorname{Ker}(\pi \circ \phi_p) \rangle = \langle L, M^C + M_{p-1} + pM \rangle$ as a free abelian pro-p group. As $pM = \Phi(M)$ is the Frattini subgroup of the abelian pro-p group M, we have $M = L + M^C + M_{p-1}$. Finally put $M_T = U$ and $M_{\theta_p} = V$.

The second part of the statement follows from the definition of a free module on a Boolean space of indices (see page 108 in [6]).

4. Finite centralizers of torsion elements

Theorem B. Let $G = U \times H$ be a pro-p semidirect product of a free pro-p group U and a cyclic group H of order p^n . Suppose that the centralizers of all non-identity elements of finite order in G are finite. Then

$$U^{ab} := U/[U, U] \cong \left(\bigoplus_{i \in (I, *)} J_{K_i}(H)\right) \bigoplus L$$

is a profinite direct sum of pro-p \mathbb{Z}_pH -modules, where (I,*) is a Boolean pointed space of indices, the K_i are subgroupss of H, $J_{K_i}(H)$ is the kernel of the canonical epimorphism $\mathbb{Z}_pH \to \mathbb{Z}_p(H/K_i)$ and L is a free pro-p \mathbb{Z}_pH -module.

Proof. By Corollary 2.3, $G = (\coprod_{i \in I} T_i) \coprod F(X)$ is a free pro-p product of groups $T_i \cong C_{p^{k_i}}$, where $1 \leq k_i \leq n$, F(X) is a free pro-p subgroup of U and I is a profinite index space. By Proposition 4.9 in [6], H is conjugate to some finite free factor in G. Thus, we may assume that $H = T_* \cong C_{p^n}$ for some $* \in I$. Let $\phi : G \longrightarrow H$ be the endomorphism identical on H and having U as the kernel.

By Corollary 3.3.10 in Ribes–Zalesskii [9], we have $F(X) = \varprojlim_{\beta \in B} F(X_{\beta})$, where X_{β}

runs through the collection of all finite quotient sets of X and $F(X_{\beta})$ is a free pro-p group with finite base X_{β} . Let $I = \varprojlim I_{\kappa}$ be a decomposition of I as an inverse limit

of finite spaces I_{κ} such that $\pi_{\kappa}(i) = \pi_{\kappa}(j)$ only if $\phi(T_i) = \phi(T_j)$, where $\pi_{\kappa} : I \longrightarrow I_{\kappa}$ is the κ th projection. Choose a generator for every subgroup of H and let S be the set of these generators. Then for every $i \in I$, there is a unique generator t_i of T_i such that $\phi(t_i) \in S$ and the set of all these generators is homeomorphic to I. Note that a projection π_{κ} induces the homomorphisms $\coprod_{i \in I} T_i \longrightarrow \coprod_{i_{\kappa} \in I_{\kappa}} T_{i_{\kappa}}$ that identifies t_i with t_j whenever $\pi_{\kappa}(i) = \pi_{\kappa}(j)$.

This gives the inverse limit decomposition

$$G \cong \left[\varprojlim_{\kappa \in K} \left(\coprod_{i_{\kappa} \in I_{\kappa}} T_{i_{\kappa}} \right) \right] \coprod \left(\varprojlim_{\beta \in B} F(X_{\beta}) \right)$$
$$\cong \varprojlim_{\kappa \in K, \beta \in B} \left[\left(\coprod_{i_{\kappa} \in I_{\kappa}} T_{i_{\kappa}} \right) \coprod F(X_{\beta}) \right]$$

(cf. Lemma 9.1.5 in Ribes–Zalesskii [9]).

Note that ϕ factors via the epimorphisms

$$f_{\kappa,\beta}: \left(\coprod_{i_{\kappa}\in I_{\kappa}} T_{i_{\kappa}}\right) \coprod F(X_{\beta}) \twoheadrightarrow H$$

and we denote by $U_{\kappa,\beta}$ its kernel.

Then by Corollary 1.1.8 in Ribes–Zalesskii [9], $U = \varprojlim_{K \times B} U_{\kappa,\beta}$. It follows that

$$U^{ab} \cong \varprojlim_{\kappa \times B} U^{ab}_{\kappa,\beta}$$
, where $U^{ab}_{\kappa,\beta} := U_{\kappa,\beta}/[U_{\kappa,\beta}, U_{\kappa,\beta}]$.

Put $*_{\kappa}$ to be the image of * in I_{κ} . By Proposition 3.3 in [8]

$$U_{\kappa,\beta}^{ab} \cong \left(\bigoplus_{i_{\kappa} \in I_{\kappa} \setminus \{*_{k}\}} J_{K_{i_{\kappa}}}\left(H\right)\right) \bigoplus L_{\kappa,\beta}$$

as a pro-p \mathbb{Z}_pH -module, where $L_{\kappa,\beta}$ is a free pro-p \mathbb{Z}_pH -module with finite base, $J_{K_{i_{\kappa}}}(H)$ is the kernel of $\mathbb{Z}_pH \to \mathbb{Z}_p(H/K_{i_{\kappa}})$. Moreover, it follows from the proof there that $L_{\kappa,\beta}$ has the image of X_{β} in $U_{\kappa,\beta}^{ab}$ as a free \mathbb{Z}_pH -basis and that $J_{K_{i_{\kappa}}}(H)$ is generated by the images of the elements $t_{*_{\kappa}}t_{i_{\kappa}}^{-1}$ in the abelianization of $U_{\kappa,\beta}$, where

 $t_{*_{\kappa}} \in T_{*_{\kappa}} \cong H$, $t_{i_{\kappa}} \in T_{i_{\kappa}}$ with $U_{\kappa,\beta}t_{i_{\kappa}} = U_{\kappa,\beta}t_{*_{\kappa}}$. Note that since I_{κ} is finite discrete space, $I_{k} \setminus \{*_{k}\} = (I_{k}, *_{\kappa})$ and so

$$\bigoplus_{i_{\kappa} \in I_{\kappa} \setminus \{*_{k}\}} J_{K_{i_{\kappa}}}(H) = \bigoplus_{i_{\kappa} \in (I_{\kappa}, *_{\kappa})} J_{K_{i_{\kappa}}}(H).$$

This means that the decomposition

$$U_{\kappa,\beta}^{ab} \cong \left(\bigoplus_{i_{\kappa} \in (I_{\kappa}, *_{\kappa})} J_{K_{i_{\kappa}}}(H)\right) \bigoplus L_{\kappa,\beta}$$

is coherent with the inverse system for U^{ab} and so by the commutation property between projective limits and profinite direct sums (see Proposition 1.6 on pp. 100 combined with 3.1 on page 107 in [6]), we have

$$U^{ab} \cong \varprojlim_{\kappa \in K} \left[\bigoplus_{i_{\kappa} \in (I_{\kappa}, *_{\kappa})} J_{K_{i_{\kappa}}} (H) \right] \bigoplus \varprojlim_{\beta \in B} L_{\kappa, \beta} \cong \bigoplus_{i \in (I, *)} J_{K_{i}} (H) \bigoplus L$$

which is the desired profinite direct sum, where L is a free pro- $p \mathbb{Z}_p H$ -module and $(I,*) = \lim_{\leftarrow} (I_{\kappa}, *_{\kappa}).$

Remark 4.1. The proof shows that L is a free pro- $p \mathbb{Z}_p H$ -module with closed free base X[U,U]/[U,U].

The following corollary is a generalization of Lemma 3.1 in [8].

Corollary 4.2. If $T_i \cong C_{p^n}$, for all $i \in I$, then

$$U^{ab} \cong \bigoplus_{i \in (I,*)} J(H) \bigoplus L,$$

where L is a free pro-p \mathbb{Z}_pH -module and J(H) is the augmentation ideal of \mathbb{Z}_pH .

Corollary 4.3. With the hypotheses of Theorem B, H acts faithfully on $U^{ab} := U/[U,U]$.

Proof. The proof is the same as in Corollary 3.4 in Porto–Zalesskii [8], pp. 229.

Corollary 4.4. The \mathbb{Z}_pH -module U^{ab} of Theorem B is indecomposable as a \mathbb{Z}_pH -module if and only if G has not more than two free factors and $|X| \leq 1$.

Proof. By Proposition 2.1 in [8], $J_{K_i}(H)$ is indecomposable \mathbb{Z}_pH -module for every $i \in (I, *)$. Hence the result follows from Theorem B.

Now we are ready to prove

Theorem C. Let M be a \mathbb{Z}_p -free pro-p \mathbb{Z}_pC_p -module. Then there exists a pro-p semidirect product $F \rtimes C_p$ of a free pro-p group F and a group C_p of order p such that F^{ab} is isomorphic to M as a pro-p \mathbb{Z}_pC_p -module.

Proof. Let c be a generator of C_p . By Theorem A, M decomposes as

$$M = M_T \oplus M_{\theta_n} \oplus L$$
,

where L is a free pro- $p \mathbb{Z}_p C_p$ -submodule of M, M_T is a trivial pro- $p \mathbb{Z}_p C_p$ -module and M_{θ_p} is a free pro- $p \mathbb{Z}_p [\theta_p]$ -module; let X, Y, Z be free profinite bases of M_T, M_{θ_p}, L , respectively. Put $Y_0 := \bigcup_{j=0}^{p-2} c^j Y$, $Z_0 := \bigcup_{t=0}^{p-1} c^t Z$ and $W := X \cup Y_0 \cup Z_0$. Let F = F(W) be the free pro-p group on W. Define a pro-p semidirect product $F \rtimes C_p$ putting for all $x \in X : x^c = x$; for each $y \in Y : (c^k y)^c = c^{k+1} y$ for $0 \leqslant k \leqslant p-3$ and $(c^{p-2}y)^c = \left(\prod_{r=0}^{p-2} c^r y\right)^{-1}$; and for all $z \in Z : (c^s z)^c = c^{s+1} z$ where $0 \leqslant s \leqslant p-1$; to be the action on the elements of the basis W and extending it to the action on F by the universal property of F. Then $F(X)^{ab} \cong M_T$, $F(Y_0)^{ab} \cong M_{\theta_p}$ and $F(Z_0)^{ab} \cong L$ as pro- $p \mathbb{Z}_p C_p$ -modules, so that

$$F^{ab} \cong F(X)^{ab} \oplus F(Y_0)^{ab} \oplus F(Z_0)^{ab} \cong M.$$

Acknowledgments

The first author was partially supported by FAPEMIG, and the second author by CAPES and CNPq.

References

- J.W.S. Cassels and A. Frohlich, Algebraic number theory, Academic Press, London, New York, 1967.
- [2] C.W. Curtis and I. Reiner, Methods of representation theory with applications to finite groups and ordes, Wiley, New York, 1981.
- [3] J. Flood, Pontryagin duality for topological modules, Proc. Amer. Math. Soc. 75(2) (1979), 329–333
- [4] A. Heller and I. Reiner, Representations of cyclic groups in ring of integers I, Ann. Math. 76(2) (1962), 73–92.
- [5] W.N. Herfort and P.A. Zalesskii, Cyclic extensions of free pro-p groups, J. Algebra 216 (1999), 511–547.
- [6] O.V. Mel'nikov, Subgroups and homology of free products of profinite groups, Math. USSR, Iz. 34 (1990), 97–119.
- [7] J. Neukirch, Algebraic Number Theory, Springer, Berlin-Heidelberg, New York, 1999.
- [8] A.L.P. Porto and P.A. Zalesskii, Free-by-finite pro-p groups and p-adic integral representations, Arch. Math. 97 (2011), 225–235.
- [9] L. Ribes and P.A. Zalesskii, Profinite groups, 40, Springer-Verlag, Berlin-Heidelberg, New York, 2nd ed., 2010.
- [10] J.J. Rotman, An introduction to homological algebra, Academic Press, University Illinois, Urbana, Illinois, 1979.
- [11] J.S. Wilson, *Profinite groups*, Clarendon Press, Oxford, 1998.

INSTITUTO DE CIÊNCIA E TECNOLOGIA (ICT), UFVJM, 39100-000, DIAMANTINA-MG, BRAZIL *E-mail address*: ander.porto@ict.ufvjm.edu.br

DEPARTAMENTO DE MATEMÁTICA, UNIVERSIDADE DE BRASÍLIA, 70910-900, BRASÍLIA-DF, BRAZIL $E\text{-}mail\ address:\ pz@mat.unb.br}$

