Math. Res. Lett. 20 (2013), no. 3, 537-545 © International Press 2013

CYCLIC EXTENSIONS OF FREE PRO-P GROUPS AND
P-ADIC MODULES

ANDERSON L. P. PORTO AND PAVEL A. ZALESSKII

ABSTRACT. We prove a pro-p version of the classical decomposition of a Zp-torsion
free ZpCp-module into indecomposable modules. We also describe some pro-p Z,Cpn-
modules obtained from a semidirect product of a free pro-p group F' and a cyclic group
Cpn of automorphisms by factoring out the (closed) commutator subgroup [F, F].

1. Introduction

Let p be a prime number, C, a group of order p, Z, the ring of p-adic integers
and Z,C), the group ring. Let M be a Z,-torsion free Z,Cp,-module. If M is finitely
generated, then a classical result that plays a fundamental role in the theory of integral
representations (cf. [2] or [4]) describes M as a finite direct sum of cyclic modules of
the form Z,C), Z, and J(Z,C,), where J(Z,C)}) is the augmentation ideal of Z,C,,.

Note that Z,C), is a local pro-p ring, so a Z,Cy,-module M is finitely generated as a
pro-p Z,C,-module if and only if it is finitely generated as an abstract Z,C),-module
(see pp. 126-127 in Wilson [11]). If M is infinitely generated then this is no longer the
case, since an abstract infinitely generated Z,C),-module is not necessarily compact
so need not be pro-p. For infinitely generated abstract Z,C),-modules the above result
is not valid; Q, considered as a trivial Z,C),-module is not decomposable (since Q,, is
not decomposable as a Zy-module).

We prove in this paper that surprisingly the classical result mentioned above holds
for infinitely generated Z,-torsion free pro-p Z,C),-modules.

Theorem A. Let C = (z) be a group of order p and let M be a Z,-torsion free pro-p
Z,C-module. Then M decomposes as

M:MT@MQPEBL,

where L is a free pro-p 7Z,C-submodule of M, Mr is a trivial Z,C-module, My, is
a free pro-p Z,[0,]-module, where Zy[0,)] is the quotient ring of Z,C modulo the ideal
(¢p(x)) generated by the cyclotomic polynomial ¢p(x) = 1+ x + ...+ 2P~ and 6,
is a root of ¢p(x). Moreover, My = @ Z,, My, = Py J(Z,C) and L = P, Z,C
are profinite direct sums of pro-p Z,C-modules over Boolean spaces of indices vy, 3, ¢,
respectively.

Note that Theorem A can not be proved simply by using the projective limit argu-
ment since it is not clear why M can be decomposed as an inverse limit of Z,-torsion
free pro-p Z,C),-modules. The existence of such a decomposition is a consequence of
Theorem A.
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Now let G = F x Cpn be a pro-p semidirect product of a free pro-p group F' and a
cyclic group Cp» of order p™. The continuous action of C)p» on F' induces the structure
of a Zy-torsion free pro-p Z,Cp»-module on the abelianization F/[F, F|. In the second
part of the paper, we study the structure of such pro-p Z,C},»-modules.

Theorem B. Let G = U x H be a pro-p semidirect product of a free pro-p group
U and a cyclic group H of order p™. Suppose that the centralizers of all non-identity
elements of finite order in G are finite. Then

vt =U/UU)= | @ Jx(H) | EPL

1€ (1,%)

is a profinite direct sum of pro-p Z,H-modules, where (I,%) is a Boolean pointed
space of indices, each K; is a subgroup of H, Jk,(H) is the kernel of the canonical
epimorphism ZyH — Z, (H/K;) and L is a free pro-p Z,H-module.

In the proof, we use essentially Theorem 2.2 in Herfort—Zalesskii [5], which describes
certain free-by-cyclic pro-p groups as a free pro-p product of normalizers of subgroups
of order p and some additional free factor.

If n = 1 then we use Theorem A to prove that the abelianization F% = F/[F, F]
gives all possible Z,-torsion free pro-p Z,C),-modules.

Theorem C. Let M be a Zy,-free pro-p Z,Cp-module. Then there exists a pro-p
semidirect product F' x Cp, of a free pro-p group F' and a group C, of order p such
that F is isomorphic to M as a pro-p Z,Cp-module.

Note that for n > 1, F® does not give all possible Zp-torsion free pro-p Z,C,-
modules, see Remark 4.5 in [8].

Basic results about profinite groups, rings and modules used in the paper can be
found in [9] or [11], and for an account of injective and divisible modules see [10].
All groups and modules in the paper are pro-p, so all subgroups and submodules are
closed and all homomorphisms are continuous; generation always means topological
generation. Throughout the paper p denotes a prime number, Z, the ring of p-adic
integers and C)» denotes a cyclic group of order p™. For a finite group H we denote by
ZpH the group ring of H over Z, and J(H) denotes the augmentation ideal of Z,H. If
K is a subgroup of H we denote by Ji (H) the kernel of the natural homomorphism
Z,H — 7Z,(H/K), where Z,(H/K) is the free Z,-module over the coset space H/K.
We use Zy,[0),] to denote the quotient ring of Z,C), modulo the ideal (¢, (z)) generated
by the cyclotomic polynomial ¢p,(z) =1+x+---+ xzP~! — that is, the ring obtained
from Z, by adding a primitive pth root of unity. If R is a ring with unity, denote by
R* its group of units. We shall denote by [A, B] the topological closure of the mutual
commutator subgroup of subgroups A and B of a given group and by F® = F/[F, F]
the abelianization of a group F.

2. Preliminary results

Let M be a pro-p Z,H-module. We say that a collection {M;,t € T} of closed
Z,H-submodules of M indexed by a Boolean space 7' is a continuous system of Z, H-
submodules of M if for each open neighbourhood U of 0 in M, the set T'(U) = {t €
T|My C U} is open in T'.
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Definition 2.1 ([6]). Let M be a profinite Z,H-module, T'" a Boolean space and
{Mt € T} a continuous system of Z,H-submodules of M. We say that M is a

profinite direct sum of My, t € T, notation M = @ M, if:
teT
(1) MNnM, ={0}Vr+#seT and
(2) The following universal property holds: any given continuous map A : [J,cr
M; — K to a profinite Z,H-module K such that each restriction Az,
M, — K is a continuous Z,H-homomorphism, extends to a unique contin-

uous Z, H-homomorphism A : @ M, — K.
teT

The concept of a free pro-p product of a continuous system of closed subgroups
over a Boolean space is defined in a manner analogous to Definition 2.1.

Let G be a pro-p group having an open free pro-p subgroup F'. Then the set 7 of all
subgroups of order p in G is a profinite space of indices, since it is the projective limit
of corresponding finite discrete spaces of quotients G/U, where U runs through the
open normal subgroups of G which are contained in F'. Moreover, GG acts continuously
on 7 by conjugation.

Theorem 2.2 (Theorem 2.2 [5]). Let G = F x Cyn be a cyclic extension of a free
pro-p group F. Suppose T — T /G admits a continuous section o. Then

G I ce|IIF

Teo(T/G)

is a free pro-p product of the centralizers Ca(T) of groups T of order p over a Boolean
space (T /G) of indices and a free pro-p subgroup F of F. Moreover, each Cq (T) is
a semidirect product of open free pro-p subgroup of F' by a finite cyclic group of order
pk, where 1 < k <n.

Corollary 2.3. Suppose Cr(t) = {1} for every torsion element t # 1 of G. Then

(H T; ) ITF(X) is a free pro-p product of groups T; = Cpri, where 1 < k; <n,

F(X is a free pro-p group and I is a profinite space.

Proof. Since in our case F' acts freely on the profinite space 7 of subgroups of order
p, T — T /F admits a continuous section o : 7/F — T (see Lemma 5.6.5 in [9]).
Put I = Im(o). Since by hypothesis C(T) is finite cyclic for each T', by Theorem 2.2
we get the required decomposition. O

Remark 2.4. Since a torsion free abelian pro-p group is free abelian (see Chapter 4
in [9]), Z,-torsion freeness is equivalent to Z,-freeness, thus we shall use this shorter
term in the rest of the paper.

3. The Heller-Reiner decomposition

Lemma 3.1. The equation (6, — 1)x = pz has a solution in any quotient ring R of
Zyp0p) for any z € R.



540 ANDERSON L. P. PORTO AND PAVEL A. ZALESSKII

Proof. Since the maximal ideal of Z,,[6,,] is principal with 6, — 1 being a generator (see
Proposition 7.13 [1]), the solution exists in Z,[0,]. Let ¢ : Z,[6,] — R be the canonical
epimorphism. Denote by Z an element of Z,[6,] such that ¢(Z) = z. Then by the above
(6, — 1)z = pZ has a solution r in Z,[6,]. Then ¢(r) is a required solution. O

Lemma 3.2. Let M be a Z,[0,]-module. Suppose M is divisible as an abelian group.
Then M is a divisible Z,[0,]-module.

Proof. 1t suffices to show that the multiplication by 6, — 1 is an automorphism of
M. In other words we need to show that for any y € M the equation (6, — 1)z =y
has a solution in M, since each element a € Z,[0,] is of the form (6, — 1)" - €, with
€ € (Zpyl6p])* for some non-negative integer n (see pp. 121 [1]). As M is p-divisible,
y = pz for some z € M. Let (z) be the submodule of M generated by z. Then (z) as a
cyclic module is isomorphic to some quotient ring of Z,[6,] (see Theorem 2.2 in [10]),
so that the result follows from Lemma 3.1. g

Lemma 3.3. Let C = (x) be a cyclic group of order p and let B be a Z,-free pro-p
Z,C-module. Suppose that B is annihilated by ¢,(z) =1+ +---+xP~L. Then B is
a free pro-p Z,[0,]-module.

Proof. Consider the dual module B* = Homgz, (B,Q,/Z,). Since B is Z,-free, by
Theorem 4.3.3 in [9] B = [[Z, and so B* = @ ; Homg, (Z,, Q,/Zy) = P ; Q,/Zy as
a Zy-module, where J is some indexing set. Since Q,/Z,, is divisible it follows from
Exercise 3.17 in [10] that B* is a divisible Z,-module. By Lemma 3.2 B* is divisible
as a Zp|0,]-module and since Z,[0,] is a principal ideal domain (page 121 in [7]), it
follows that B* is injective as a Z,[0,]-module (cf. Theorem 3.24 in [10]). Therefore
B is a projective Zjy[0,]-module and as Z,[6)] is a local pro-p ring, B is a free pro-p
Zp|0p]-module (see [11], pp. 127). O

Lemma 3.4. Let C = (z) be a cyclic group of order p and let M be a Z,-free pro-p
Z,C-module. Let ¢, : M — M be the Z,C-homomorphism m —— ¢,(x)m and let ©
be the canonical Z,C-epimorphism of M onto M/pM. Then the kernel of o ¢, is
equal to (M @ M,_1) + pM, where M,_, is the Z,C-submodule annihilated by the
cyclotomic polynomial ¢,(x) and M€ is the Z,C-submodule of fized points for the
action of C' on M.

Proof. Clearly MY C Ker(r o ¢,,), because for all m € MY, we have ¢,(z)m = pm
whence (7 o ¢,)(m) = 0. On the other hand ¢,(z)M,_1 = {0}, so M,_, is contained
in the kernel of 7 o ¢,. Thus, we must prove the converse containment. Suppose on
the contrary that Ker(ro@,) ¢ (M,_1+ M +pM). In this case, there is an element
m € Ker(mo ¢,) \ (MY + M,_; + pM). Since cyclic modules are only of the form Z,,
Zy[0p] and Z,C' (see Theorem 2.6 in [4]), one has (m) = Z,C,, and so ¢,(z)m = py
for some 0 # y € M. It follows that (z — 1)¢,(x)m = (x — 1)py = 0, i.e. py € M.
Since M is Z,-free, it follows that y € M. Then ¢,(z)(m —y) = py — py = 0 and so
m=(m—y)+y € M,_1+ M as needed. The proof is finished. d

Lemma 3.5. Let C = (x) be a cyclic group of order p and let M be a Z,-free pro-p
Z,C-module. Let L be a free pro-p Z,C-submodule of M. Then M€ /(M® NL) is a
free pro-p Zp-module and My,_1/(M,—1 N L) is a free pro-p Zy,[0,]-module.
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Proof. If L = {0}, there is nothing to prove. Suppose L # {0}. Since L is Z,C-free,
LNM® =L%=¢,(zx)Land L, 1 :== LN M, 1= (z—1)L. Let y € M\ (MY N L)
be such that py € M® N L. Then we can find an element [ of some free Z,C-basis
for L such that py belongs to the free cyclic pro-p Z,C-submodule (I). Namely, if [,
is a generator of L as a trivial Z,C-module and such that py € (lo), then [ can be
chosen arbitrarily such that [y = ¢,(x)l. Then the pro-p Z,C-submodule (y,) of M
is finitely generated and so by the classical Heller-Reiner decomposition (cf. [4]) it
decomposes as a direct sum of Z,C-submodules: (y,1) = () ® L1, where L is a trivial
Z,C-submodule of M. Hence (y,1)/(MN{y,1)) is Z,-torsion free, contradicting our
assumptions on y. Thus M /(MY N L) is Z,-torsion free and so by Remark 2.4 is a
free pro-p Z,-module. Similarly let z € M,_; \ (LNM,_1) be such that pz € LNM,_;.
Then we can find an element ! of some free Z,C-basis for L such that pz belongs
to the free cyclic pro-p Z,C-submodule (I’). Namely, taking ly to be an element
outside of the product IM,_; such that pz € (ly), where I is the maximal ideal of
(x — 1)Z,C, one can choose I’ to be any element element such that (z — 1)I' = .
Then (z,1") decomposes as a direct sum of Z,C-submodules: (I') & R, where R is a
free cyclic Z,[0,]-module (see cf. [4]). Hence(z,1")/(Mp—1 N (z,l')) is Z,-torsion free,
contradicting our assumptions on z. Thus, M,_1/(M,—_1 N L) is Z,-torsion free and
so by Lemma 3.3 is a free pro-p Zy[6,]-module. d

Theorem A. Let C = (x) be a group of order p and let M be a Z,-free pro-p Z,C-
module. Then M decomposes as

M = My @ My, & L,

where L is a free pro-p 7Z,C-submodule of M, Mt is a trivial Z,C-module and Mp,
is a free pro-p Zy,[0,]-module. Moreover, My = EB7 Zp, My, = Dy J(Z,C) and L =
@¢ 2,C as pro-p Z,C-modules, where v, 3, ¢ are Boolean space of indices.

Proof. Consider M/pM as a pro-p F,C-module. Then M = Hom (M /pM,F),) is a
discrete F,C-module. Consider the family of all injective F,C-submodules of M /pM
partially ordered by inclusion. Since F,C'is a Noetherian ring, it follows from Theorem
4.10 in [10], that the direct limit of such injective IF,,C-submodules is injective, so that
by Zorn’s Lemma there exists a maximal mJectlve F,C-submodule Lin M. Now L
has a complement K in M, i.e. M = L ® K. By Pontryagin duality (see [3], pp- 332)

M/pM = Hom(L & K, F,) = Hom(L,F,) ® Hom(K,F,).

Put L := Hom(L,F ») and K := Hom(K F,). We shall identify L with the copy
of L in M/pM, and do the same with K. Then L is projective F,C-submodule of
M/pM. As F,C is a local pro-p ring (see Proposition 7.5.3, pp.126 in [11]) L is a free
]F,,C’—submodule of M/pM (see Corollary 7.5.4, pp. 127 in [11]).

Let m : M — M/pM be the natural epimorphism. By Proposition 2.2.2 in Ribes—
Zalesskii [9], m admits a continuous section 6 : M/pM — M with §(0 + M) = 0.
Consider a profinite space € of free generators of L converging to 0. Put X = § (Q).
Let L be the closed Z,C-submodule of M topologically generated by X. Then L is a
free pro-p Z,C-submodule on X. Indeed, let A be a free pro-p Z,C-module on X" and
f A — L be the Z,C-epimorphism induced by sending X identically to its copy
in L. Then as a pro-p group A is free pro-p abelian on the basis CX. Since L is a free
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F,C-module on 2, it is an elementary abelian pro-p group on C2. This shows that
the kernel of f is contained in the Frattini subgroup ®(A). But a homomorphism of
free abelian pro-p groups with the kernel in the Frattini subgroup is an isomorphism.
Thus f is an isomorphism.

Let M¢ be the pro-p Z,C-submodule of fixed points in M, i.e., the closed Z,C-
submodule of M, annihilated by (z—1). Consider the natural epimorphism s : M —
M€ /(LNM®). As by Lemma 3.5 M /(LNMC) is free pro-p as a Z,-module, it follows
that MY = (LN M) @ U, where U is a complement for L N M.

Now consider the pro-p Z,C-submodule M,_; of M annihilated by (¢,(z)). By
Lemma 3.3, M,,_; is a free pro-p Z,[0,]-module. Consider the natural epimorphism
r: M,y — My,_1/(LN Mp_1). As by Lemma 3.5 M,_1/(L N Mp,_1) is a free
pro-p Zy|0,]-module, we have M, 1 = (LN Mp_1) &V, where V is a pro-p Z,[0,]-
submodule of M,_;.

Thus LNV = {0} and so L+V = L@ V. As M“ N M,_; = {0} one has
UN(L+V) = {0} sothat L+U+V = LeU®V. We want to show that M = LoUaV
as a pro-p Z,C-module.

It suffices to prove that M = <MC,MP_1,L> as a Z,C-module, since UV & L
contains LN MC,U,V, LN M,y and M,y = (LN M,_1)®V, M® = (LNM®)aU.

Consider the following diagram:

bp

M———M

M/pM?M/pM,

where ¢, : M — M is a Z,C-homomorphism sending m —— ¢,(z)m, 7 is the
canonical Z,C-epimorphism of M to M/pM and ¢, : M/pM — M/pM is a Z,C-
homomorphism sending m —— ¢, (z)m. Clearly the diagram is commutative.

Recall that L is a free F,C-submodule of M/pM and M/pM = L & K, where
Kisa F,C-complement of L in M/pM. By the commutativity of the above diagram
the preimage of K in M is contained in Ker(m o ¢p). By Lemma 3.4,
M = (L,Ker(mo¢,)) = <L,MC + M, —|—pM> as a free abelian pro-p group. As
pM = ®(M) is the Frattini subgroup of the abelian pro-p group M, we have M =
L+ M€+ M,_1. Finally put M7 = U and My, = V.

The second part of the statement follows from the definition of a free module on a
Boolean space of indices (see page 108 in [6]). O

4. Finite centralizers of torsion elements

Theorem B. Let G = U x H be a pro-p semidirect product of a free pro-p group
U and a cyclic group H of order p™. Suppose that the centralizers of all non-identity
elements of finite order in G are finite. Then

vt =U/UU)= | @ Jx(H) | EPL

1€ (1,%)
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is a profinite direct sum of pro-p Z,H-modules, where (I,*) is a Boolean pointed
space of indices, the K; are subgroupss of H, Jx,(H) is the kernel of the canonical
epimorphism ZyH — Z, (H/K;) and L is a free pro-p Z,H-module.

Proof. By Corollary 2.3, G = (]_L-GI TZ) IT F(X) is a free pro-p product of groups
T; = Cpri, where 1 < k; < n, F(X) is a free pro-p subgroup of U and I is a profinite
index space. By Proposition 4.9 in [6], H is conjugate to some finite free factor in G.
Thus, we may assume that H = T, = Cp» for some * € I. Let ¢ : G — H be the
endomorphism identical on H and having U as the kernel.

By Corollary 3.3.10 in Ribes—Zalesskii [9], we have F'(X) = lim F'(X3), where X

BeB

runs through the collection of all finite quotient sets of X and F(Xpg) is a free pro-p
group with finite base Xg. Let I = (h‘m 1. be a decomposition of I as an inverse limit

rEK
of finite spaces I,; such that 7, (i) = m.(j) only if ¢(T;) = #(T}), where 7 : I — I,
is the kth projection. Choose a generator for every subgroup of H and let S be the
set of these generators. Then for every ¢ € I, there is a unique generator ¢; of T; such
that ¢(¢;) € S and the set of all these generators is homeomorphic to I. Note that a
projection 7, induces the homomorphisms Hie[ T, — HiNeIN T;, that identifies ¢;
with ¢; whenever 7, (i) = 7. (j).
This gives the inverse limit decomposition

G = | lim ( 11 T) IT (ﬁgn F(Xﬁ)>
REK G €1y BeB
= lim KH Tm)HF(Xﬁ)
KEK,BEB i €1k

(cf. Lemma 9.1.5 in Ribes—Zalesskii [9]).
Note that ¢ factors via the epimorphisms

frp ( 11 Tz‘n> [MFxs) - H

in€l,
and we denote by U, s its kernel.
Then by Corollary 1.1.8 in Ribes-Zalesskii [9], U = lim Uy g. It follows that
KxB
U = lim U, where Ut = Uy 5/[Us g, Us -
KxB

Put #, to be the image of * in I;. By Proposition 3.3 in [§]

Uab, = B k. H)|PLs

i €1\ {*x }
as a pro-p Zp,H-module, where L, 3 is a free pro-p Z,H-module with finite base,
Jr,, (H) is the kernel of Z,H — Z, (H/K;, ). Moreover, it follows from the proof
there that L, g has the image of Xz in U,‘j}’ﬂ as a free Z,H-basis and that Jg, (H) is

generated by the images of the elements ¢, ¢; ! in the abelianization of U, 5, where
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tv, €T, = H, t; €T, with Uggt;, = U, gts,. Note that since I, is finite discrete
space, Iy \ {*t} = (Ix,*,) and so

D k.= D Ik, H).
i €L\ {*r} 1€k, *k)

This means that the decomposition

vti=| P Ik, (H) | PLep

ine(Lm*m)

is coherent with the inverse system for U and so by the commutation property
between projective limits and profinite direct sums (see Proposition 1.6 on pp. 100
combined with 3.1 on page 107 in [6] ), we have

vt=lm | P Ik, (H)|Plim Les= @ Ik (H)EPL
BEB

KREK iNE(IN1*N) le([,*)

which is the desired profinite direct sum, where L is a free pro-p Z,H-module and
(I, %) = Hm (1, *,). O

rREK

Remark 4.1. The proof shows that L is a free pro-p Z,H-module with closed free
base X[U,U]/[U,U].

The following corollary is a generalization of Lemma 3.1 in [8].
Corollary 4.2. IfT; =2 Cpn, for alli € I, then
v @ Jm @
i€(I,%)
where L is a free pro-p Z,H-module and J(H) is the augmentation ideal of Z,H.

Corollary 4.3. With the hypotheses of Theorem B, H acts faithfully on U :=
U/[U,U].

Proof. The proof is the same as in Corollary 3.4 in Porto—Zalesskii [8], pp. 229. O

Corollary 4.4. The Z,H-module U of Theorem B is indecomposable as a Z,H-
module if and only if G has not more than two free factors and | X| < 1.

Proof. By Proposition 2.1 in [8], Jg,(H) is indecomposable Z,H-module for every
i € (I,*). Hence the result follows from Theorem B. g

Now we are ready to prove

Theorem C. Let M be a Zy,-free pro-p Z,Cp-module. Then there exists a pro-p
semidirect product F' x Cp, of a free pro-p group F' and a group C, of order p such
that F is isomorphic to M as a pro-p Zy, Cp-module.
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Proof. Let c be a generator of Cp,. By Theorem A, M decomposes as
M= Mo Mgp @ L,

where L is a free pro-p Z,Cy,-submodule of M, Mr is a trivial pro-p Z,Cp-module and
My, is a free pro-p Z,[0,]-module; let X,Y, Z be free profinite bases of My, My, , L,
respectively. Put Yy := U?;g AY, Zy = Uf;ol Z and W := X UYy U Zy. Let
F = F(W) be the free pro-p group on W. Define a pro-p semidirect product F' x C,
putting for all 2 € X : 2¢ = z; for each y € Y : (c*y)¢ = cFHly for 0 <k < p—3 and
(cP~2y)e = (Hf;g c’“y) 1; and for all z € Z: (¢®°2)¢ = ¢*T!2 where 0 < s <p—1; to
be the action on the elements of the basis W and extending it to the action on F' by
the universal property of F. Then F(X)® = My, F(Yy)®™ = My, and F(Zy)** = L
as pro-p Z,Cp-modules, so that

F = F(X)" & F(Yy)™ & F(Zo)* = M. m
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