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THE MONGE-AMPERE QUASI-METRIC STRUCTURE ADMITS A
SOBOLEV INEQUALITY

DIEGO MALDONADO

ABSTRACT. Sobolev inequalities associated to the Monge—Ampeére quasi-metric structure
are proved.

1. Introduction and main result

The Monge—Ampeére measure associated to a twice-differentiable convex function ¢ :
R™ — R is defined as p,(z) := det D*p(z). Given z € R™ and ¢ > 0, a section of ¢
centered at x with height ¢ is the open bounded convex set

(1.1) Se(x,t) :={y € R" : p(y) < p(z) + (Vo(z),y — ) +1}.

The relevant compatibility condition between the sections of ¢, which from now on we
assume to be strictly convex, and its Monge-Ampeére measure is the so-called (DC)-
doubling condition. More precisely, we write p, € (DC),, if there exist constants B > 1
and 0 < o < 1 such that for all sections S,(x,t)

(1~2) Mtp(sso(xvt)) < Buw(aSw(%t)),

where aS,(z,t) denotes a-contraction of S, (x,t) with respect to its (Euclidean) cen-
ter of mass z*. Constants depending only on B and « in (1.2) as well as on dimension
n will be called geometric constants. The Monge-Ampere quasi-metric structure was
introduced by Caffarelli and Gutiérrez [1] in their pioneering work on the linearized
Monge—-Ampere equation. Remarkably, the strictly convex function ¢ generates a
quasi-metric if and only if p, possesses the (DC)-doubling property, (see, for in-
stance, [4, Section 2]). More precisely, under the (DC')-doubling condition, ¢ renders
a structure of space of homogeneous type, see [4, Section 2] and references there in,
in such a way that the function

(1'3) p@(‘r7y) = So(y) - gp(x) - <V<p(x),y - $>, T,y € R"™,

becomes a quasi-distance in R"™, that is, p,(z,y) = 0 if and only if z = y; p,(z,y) ~
po(y,x); and py(z,y) S pp (2, 2)+py(2,y), where the implicit constants are geometric
constants. By definition (1.1), the sections of ¢ can then be realized as the quasi-balls
associated to p,. On the other hand, if p, generates a quasi-metric then the section
of ¢ satisfy the so-called engulfing property, which, in turn, is equivalent to (DC),
see [2,3,6,7].
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We will use the fact that the (DC)-doubling property implies the existence of
geometric constants K7, Ko > 0 such that

(1.4) K7t" <|Sy(z,t)|pe(Se(x, 1)) < K3t", Vo e R",Vt>0.

For the proof this statement, as well as the real analysis associated to ¢ and further
characterizations of (DC'), see, for instance, [1], Theorem 8 in [2], Theorem 4 in [3], [7],
and [6, Chapter 3].

Suppose that i, (z) > 0 for a.e. z € R™. The linearized Monge-Ampere operator,
denoted by L, is the typically degenerate, elliptic operator defined as

Ly (u)(z) := trace(A,(z)D*u(z)) ae. x € R",
with
(1.5) Ay (7)== py(z)(D*p(z)) "t ae. z€R™

The study of L, is best carried out within the Monge-Ampere structure, see [1-4].
In [8], the author proved Poincaré-type inequalities for the Monge-Ampere quasi-
metric structure, which were instrumental in his proof of Harnack’s inequality for
non-negative solutions to L, (u) = 0 (always under the hypothesis u, € (DC),, only).

In [9], Tian and Wang proved that if 1 € (ps) (in their notation, p € (CG), see [9])
and if the sections of ¢ satisfy certain size conditions (see Lemma 3.3 in [9]), then
a power-like decay of the distribution function of Green functions of L, holds true.
Consequently, a Sobolev inequality associated to A, follows. Namely, there exists
p > 1 such that for every section S := S, (z,t) there is a C' > 0 such that whenever
u € C3(S) (that is, u is continuously differentiable and compactly supported in S) we
have

(1.6) (@/Swdwy <C <M:(S)/S<AS”W’ vw)é.

The importance and variety of the Sobolev inequalities (1.6) have been thoroughly
stressed in [9].

Our main result is the Sobolev inequality (1.7) below, which we prove resorting to
neither the (1) condition nor apriori size condition on the sections of ¢. The (pso)-
condition is significantly stronger than the (DC')-condition, the gap being comparable
to that between A, Muckenhoupt weights and doubling weights, see [4, Section 3] for
a thorough discussion and examples. Moreover, under the (DC')-doubling condition
only, we can guarantee a (perhaps not optimal but) uniform value of p in (1.6). We
prove

Theorem 1. Assume p, € (DC),. Then, there exists a geometric constant K¢ > 0
such that for every section S := S,(xo,t) and every u € C}(S), we have

1) (g [ dmo(x))g"l < Ktk (g [P )

where

(1.8) VPu(z) := D*p(x) > Vu(z) Vz € S.

By means of a duality argument involving convex conjugates we also obtain the
following Sobolev-type inequality, now with respect to Lebesgue measure.
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Theorem 2. Assume p, € (DC),. Then, there exists a geometric constant K7 > 0
such that for every section S := S,(xo,t) and every u € CA(S), we have

(1.9) <|;|/Su(x)|n2—nl da:)nznl < Kot (lg/swwu(x)mxy.

2. Estimates for Green functions

The main step in the proof of Theorem 1 is a power-like decay estimate for the
distribution function of Green functions of L, on the sections of ¢. Namely,

Theorem 3. Suppose p, € (DC),. There exists a geometric constant Ks > 1 such
that for every section S := S,(x,t) and every z € S,(x,t/2) we have

1o({y € 5 gs(z,9) > A}) < Kapp(S) "t A, VA > 0.
Here ' =n/(n —1) and gs denotes the Green function of L, in S.

Proof. First, assume that = 0, ¢(0) = 0, and V¢(0) = 0. With these assumptions
we have ¢ > 0 and z € S,(0,¢) if and only if ¢(2) < t. Set S := S,(0,t) and
81/2 = S¢(0,t/2)

By the Aleksandrov—Bakelman—Pucci maximum principle (see [4, Lemma 8], [5,
Theorem 9.1]), whenever h is a solution to L, (h) = Hp, in S with h = 0 on 05, then

1/n
(21) sup bl < Culs ([ jaran,)
s s
where C depends only on the dimension n. On the other hand, note that the problem
Ly(h) = Hp, in S,
(2.2) { h = 0 on 08,

is always solvable for H € L"(S,du,) with h € VVlzocn(S) N C(S) because L, has
second-order continuous coefficients and ¢ € C? with D?p > 0 (see [5, Section 9.6]).
That is, we make use of the fact that ¢ € C? and consequently the eigenvalues of
(D2p(x))~! will be bounded and bounded away from zero on compact subsets of R™.
Notice that we use this fact only to deduce the existence of solutions.

Again by the maximum principle, if H > 0 and h solves (2.2), then h < 0 (unless

H =0, which trivially yields h = 0). Fix z € S and define T, by
T,:L"(S,py,) = R
H w— —h(z)
Then T is a positive linear functional in L™ (S, p,)* and, from (2.1),
TN (5,0,)+ < C1lSIM™

By the Riesz representation theorem, there is a non-negative function gg(z,-) €
L (S, ), where n' = —I= such that

T.(H) = /S 95(z 9) H(y) dpig (y)
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and

1
7

(2.3 (Losten dupi)) ™ < cuisp
That is, for every z € S and h € Wif(S) N C(S), with h = 0 on 0S5, we have
“h(e) = [ stz o)) dy

(2.4) - /S g5z, y)trace(D26(y)) " D2h(y)) o (y) dy.

In particular, setting h := ¢ — ¢ in (2.4), for every z € S/, we obtain

5 <t () = [ gsCetrace(Do(y) ™ DXo(w) duo )
S

(2.5) —n/sgs(z,y) dpig(y)-

Next, we prove that Green functions gg(z,-) satisfy a reverse-Holder inequality uni-
formly for z € Sy /5. Fix 2z € Sy /2, and use (2.3), (1.4), and (2.5) to write

1 o o /LSD(S)I/"|S|1/”
(uw(S) /ggs(zvy) dm@)) < Cl—‘u@(s) < Cleu@(S)
(2.6) < 201K2n®/ggs(z,y) dpig(y).-

Then, from Chebyshev’s inequality and (2.6), for A > 0 and always for z € S; /o, we
have

pe({y € S : gs(z,y) > A})

<t Lose” ducto)

M@(5> QCIKQTL "
<152 (o fostenano)
(2C1K2)" 1 (8)' 7" (8 — p(2))"

’

A"
, S lfn'tn' S 1fn'tn'
< (20 eI e 1SV

where we also used (2.5). For an arbitrary xzy € R™ and a general section S, (zo,t),
define

Pao (1) 1= @(z0 — 7) — @(30) + (Vip(20),2) V& € R".
Then p,, ~verifies the (DC)-doubling property with the same constants as p, does
(uniformly in ), also V., (0) =0, ¢4,(0) = 0 and
Spuy (0,t) = 20 — Sp(o, 1)

Thus, pe,, (Se,, (0,t)) = pe(Se(7o,t)) and if we now apply the obtained result to
¥z, the general case follows by changing variables zg — x — . (]
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3. Proof of Theorem 1 via Tian-Wang’s crucial lemma

What follows is an adaptation, to the context of the Monge—Ampere structure, of the
crucial lemma by Tian and Wang (see Lemma 2.1 in [9]). We include details of the
proof, as well as some additions, for the sake of completeness and to follow up the
geometric constants involved.

Let S := S, (zo,t9) be a section of ¢ and let G(z,y) denote the Green function
of L, on 28 := S,(x¢,2ty). As before, let us assume that g = 0, ¢(0) = 0, and
V(0) = 0. By Theorem 3, for z € S, we have

(3.1) to({y €25 : G(z,y) > A}) < Kapup(28) " (2t0)" A7, VA > 0.
Let us set
(3.2) K = K3p,(28) ™ (2t0)™

and p := 2n’ > 2 so that (3.1) reads as in Lemma 2.1 of [9], that is,
(3.3) 1({y €25 : G(z,y) > \}) < KA"%, VA >0.

Next, consider any open set U C S and let tp; = 91 (U) and Ay = A\ (U) be the first
Dirichlet eigenfunction and eigenvalue of L, in U, that is,

Lo(¥1) = —Mvhpe inU,
(3.4) { T = 0 " onou.

Let Gy denote the Green function of L, in U. Note that, since the coeflicients of A,
are continuous and A, is positive definite in S, Gy always exists. By the maximum
principle, 0 < Gy (z,y) < G(z,y) for every z,y € U (z # y).

Then ¢; and Gy can be related by ¢1(y) = A1 [;; Gu(z,y)p, () de. Normalizing
Y1 to be non-negative with [|¢1| =) = 1 and taking y; € U C S C 25 such that
¥1(y1) = 1, we can write

1<\ (0) /U G (421 (2 ()

and then, for any yo € U, use (3.3) to estimate

/UGU(:v,yo)u@(x) dx = /000 po({x € U : Gu(z,yo) > A})dA
< /000 min{u,(U), po({z € U : G(x,y0) > A})} dA
< /OOO min{p,(U), KA™%} d\ = 7y, (U) + K/Oo L))
(3.5) = K7 p, (U)' 77, T
where 7 := (K/u,(U))%P. Next, define ¢* := (}réf:s)\l(U)u@(U)l_%, and note that

ct > M{%/p > 0. Also define

(3.6) s* :=inf {/S<A@Vu, Vu):ue C&(S),/SF(U)/W = 1}
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where F(u) := [;' f(t)dt and, for a parameter k > 1 to be sent to infinity,

Pt it < k

In order to make the relevant constants more explicit, we now complement the argu-
ments in [9] by computing an upper bound for s*. Since S = S,(0, ), set

(3.8) e ::{ (o= ¢(@)" itz .

Hence, by using the divergence theorem, the fact that
div(A,(2)Vu(r)) = trace(A,(z) D*u(x)), Yu € C?,

(since the columns of A, are divergence free), and choosing k > 2 (so that 0 < h =
|h| <2 < k in S) in the definition of f in (3.7), we obtain

/ (A, (2)Vh(z), Vh(z)) do = — / h(z) div(A,(2)Vh(z)) do
S S
= [ 1) dive(ts = ¢(@) 4, @) Vi(a) d

=2 [ h@)l(to - 9(a)) div(As(x) Vi(a)
S
— (A, (@) Vp(a), V(o)) da

2 / W) (o — o(z)) div(Ag(2) Vo)) da
S

IN

—2 [ h@)(to — p(0)) trace(4,(x) DPp(w)) do
S

=20 [ W@)(t - pl@)ipla)do = 2n [ W@y (a) da

which implies

2p—3

(3.9) st < 2np%u¢,(5) LT

For a fixed k (always large enough), let v = v, € C*(S) denote the function where
the infimum (3.6) is attained. Therefore, v satisfies

{Lw(v) = fj\f(v)ugp in S,
v = 0 on 0S.

Here ) is the Lagrange multiplier associated to the minimization. Take 2/ € S such
that

(3.10) (@) = o]l e (s) = M.
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As in the proof of Lemma 2.1 in [9] we have
(3.11) A< s* < ph

For t € (0, M) (here M is as in (3.10)), set Q; :={x € S :v(z) > M —t}. As in the
proof of Lemma 2.1 in [9] one gets

(3.12) po(Q) > B (Qey2) 57,
where

tc* =
(3.13) /B - (W})l) .

By iteration of (3.12), for m € N we have

m p_\k p_\™
(3.14) o (2) > B0 (7)1 () (575)"
The next step will be to show that
(3.15) lim g (pm)(370)" = 1.

In order to show (3.15) we will now deviate from the proof of Lemma 2.1 in [9].
Indeed, instead of using a doubling property for p, we use, yet again, that ¢ € C?
and g, > 0 so that given a compact set () we have

(3.16) po() > i%f pe >0, Vre.

Continuing as in the proof of Lemma 2.1 in [9], set a := || Vv|| L~ (g), then
Qi jom D B(a', 127 /a),

here 2’ is as in (3.10). Now, by (3.16) with @ := S setting 6 := infg det D%p > 0 we
get

(3.17) trp(Qjom) > 0|B(2', 127" Ja)| = Owy (t/a)"27 ™", ¥m €N,

where w,, denotes the Lebesgue measure of the unit ball in R™. The bound (3.17) and
the fact that p > 2 then imply (3.15), and, consequently (from (3.14)),

_pP_

Q,) > g te” "
2(p—2) — —
(318) po() 2 5 = ()
Note that in the proof of (3.15) no a priori rate of convergence as m — oo is needed, so
we were able to use (3.16) without resorting to any assumptions on a priori structural
control of the infimum in (3.16). Also, since we are not using the hypothesis p, ~ 1,
we cannot follow the original reasoning in Lemma 2.1 in [9], because p,, is doubling

on sections of ¢, but not necessarily on Euclidean balls.
As in the proof of Lemma 2.1 in [9], setting n := k/M (and using (3.18)), we get

* p% 1-—n v 1 Y
(3.19) 1> < C*> [/ tv?npldter/ trz (1 —t)P~Ldt
2s 0 1

-
c* =
=: (25* ) R(n).
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Setting w := {x € S : v(x) > k}, as in the proof of Lemma 2.1 in [9] it follows that
(3.20) o) < P,

Also, on the set w we have L, (v) = —j\k”_luw, with v = k on Ow. Let G, denote the
Green function of L, in w and let 2’ be as in (3.10). Hence, by (3.5), (3.20), (3.11),
and (3.9)

M =uv(z') =k + \kP~1 / Go(x, 2"y (z)de < k+ 25\k‘p71K%u¢(w)1_%

< k+2\PUKE (pkTP) T = (14 28K 7))k
p—3

< (1425 K7)k < (14 4np™ py(S) 5 K )k = Kyk.

Consequently, n = % > K%; and, from (3.19)

inf  R(n)"7

C p—2
— > inf R(n)» =:Kg5>0.
2 ne[l/K41] — 4K2/p ne[1ll/qK4,1] () >

At this point, given u € C}(S), we can take limits as k — oo to obtain

(3.21) (/S . dW)’l’ < KE/Q (/SM“”W’ Va) dx)

The seemingly awkward dependence of K and K5 on u,(S) and tg can be circum-
vented by employing the normalization technique of Caffarelli and Gutiérrez [1]. In-
deed, given a section S = S, (zo,to) let T be an affine transformation normalizing S
so that, in the notation of [1, Section 1], we have

(3.22) Or(y) = %@(T_ly), B(0,1) € §* == T(S) € B(0,n),

Wl

- 1 _ _ 1, - _ _
(8:23) i(y) = puy (y) = 1 [T 1p(T™1y), D*a(y) = $(T~) Dxp(T~ )T~
and fiy, (S*) = 1 so that
(3.24) AT = pyp(Sp (w0, to))-
Applying the previous proof to S* and ¥, and using the fact that

t
(3.25) C1 S XO S Co,

for geometric constants ¢; and ¢o (see Theorem 8 in [2]), the constants K in (3.2) and
K5 are now completely geometric (in particular, they are independent of xg and tp).
Consequently, for @ € C(S*), it follows that

2

1
20 ([ awraman) < ([ Geevae), V)
5= Ky 5=
Finally, given u € C§(S) we set y = Tz and u(z) = a(Tx) for x € S,(zo,10),
then changing variables in (3.26) by means of (3.22)—(3.25), the Sobolev inequality
(1.7) follows. For further considerations on the smoothness assumptions for ¢, see
Remark 3.2 in [9]. O
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4. Proof of Theorem 2 via convex conjugation

Given a strictly convex, twice continuously differentiable ¢ : R™ — R, its Legendre
transform or convexr conjugate, will be denoted by . Under the hypothesis p, €
(DC), we have that py = det D*yp € (DC), (with respect to the sections of 1),
where the (DC)y-doubling constants for p,, depend only on the ones for p, and
dimension n. Also, @ is a strictly convex twice continuously differentiable function
whose domain is R™ and

(4.1) Vo(Vi(z)) = Vi(Ve(z)) =z Vo eR”,

(see [3, Section 5]) which implies that

(4.2) D*p(Vi(y))D*(y) = D*(Vp(2))D*p(z) =1 Vz,y € R
and that, for every Borel set £ C R",

(4.3) [E| = [Vo(VY(E))| = po(VY(E)) = py (Vo (E)).

Moreover, from Theorem 12 in [3], there exists a geometric constant Ky > 1 such that
for every x € R™ and t > 0,

(4.4) V(Sp(x,t/Ko)) C Sy(Ve(x),t) C Ve(S,(z, Kot)).

Next, given a section S := S,(xo,t) of ¢ set yo := Ve(z0), Sy := Sy (Yo, Kot) and
S% = V1(Sy). By (4.4) we have that

(4.5) S = S¢(l‘0,t) C Vw(Sw(yO,Kot)) = S¥.

Given u € C§(S), for y € Sy let us define v(y) := w(Vy(y)). Then, supp(v) =
V(supp(u)) C V(S) C Sy, hence v € C4(Sy). By applying (1.7) (with respect to
) to v on Sy, we obtain

1 20
(Mw(sw) /Sw [v(y)| == duw@))

1 Yo ()2
(uw(Sw) /51# VPu(y)| duw@))

By changing variables y = Vp(z), (4.1), (4.2), and (4.3) yield

n—1

2n

N[

=

< K¢ (Kot)

2

1 o /1
— u(x)|»-T dx SKwKt'A’( VPu(x 2dx>
(W' [ Jute) ) L)} (g [ 9ot
< K (Kot)? (1 / |v¢u<a:>2dw) |

51 /s

where the last inequality is due to the fact that u (and, therefore, V¥u) is supported
in S and S C S¥. By Lemma 5.2(a) in [1], Lebesgue measure is doubling, with uniform
constant 2", with respect to the sections of any convex function. Then,

|Sy(x, t)| < 2"Sy(x,t/2)] Vo e R",Vt > 0.
In particular, recalling (4.5),

|S] < 18] < |Sy (w0, K5t)| < (2K3)"[S, (w0, )| = (2K5)"|S]-
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Therefore,
n-l n—1
)™ < (B9 i)
o [ u(@) dw) < (/ lu(z)| 7T dx
(1 sel Js-
n—1 1 %
< KZ}/}QK(?)% (Kot)% <|S|/ |V“”u(x)|2 da:)
s
and (1.9) follows with Ky == 2“7 KV K[ 2. -
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