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KÄHLERIAN THREE-MANIFOLD GROUPS

D. KOTSCHICK

Abstract. We prove that if the fundamental group of an arbitrary three-manifold —
not necessarily closed, nor orientable — is a Kähler group, then it is either finite or the

fundamental group of a closed orientable surface.

1. Introduction

It has been well known for more than 20 years now that the fundamental groups of
compact Kähler manifolds are in many ways very different from three-manifold groups.
For example, cf. [2], Kähler groups are indecomposable under free products, and are
far from real hyperbolic groups of dimension ≥ 3, whereas the class of three-manifold
groups is closed under taking free products and, according to Thurston, contains many
hyperbolic groups of dimension 3. Nevertheless, it was only comparatively recently
that Dimca and Suciu [5] proved the long-expected result that a Kähler group that
is also the fundamental group of a closed three-manifold must be finite. In [13], I
gave a simple proof of that result using essentially only the Albanese map and group
cohomology.

The purpose of this paper is to give a variation of that proof which covers the
fundamental groups of all three-manifolds, not only the closed ones. We shall prove:

Theorem 1. If the fundamental group of some three-manifold is infinite and a Kähler
group, then it is the fundamental group of a closed orientable surface.

This generalizes both the theorem of Dimca–Suciu [5] and a very recent result
of Friedl and Suciu [7], who considered compact three-manifolds with non-empty
toroidal boundary. The problem of determining all Kählerian three-manifold groups
was suggested by [7]. Discussing infinite groups only, as we do here, is an insignificant
restriction, since all finite groups are in fact Kähler by a classical result of Serre.
Furthermore, finite three-manifold groups are well understood.

The proof of [13] relied on Poincaré duality for closed manifolds and does not work
in the general case. Still, we follow the same strategy as in that proof, looking at
the homomorphism on fundamental groups induced by the Albanese map of a Kähler
manifold and the naturality of the cup product in group cohomology.

The proof of Theorem 1 given here depends on modern developments in three-
manifold topology only when dealing with closed manifolds with vanishing virtual first
Betti numbers. The case of manifolds with non-empty boundary is more elementary,
and requires only pre-Thurston results about three-manifolds that were available forty
years ago.
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2. The proof

Let M be an arbitrary three-manifold with infinite fundamental group. Assuming
that π1(M) is a Kähler group, we would like to prove that it is an orientable closed
surface group. We do this by first going through a series of straightforward reduction
steps, and then dealing with the crucial case of a compact aspherical three-manifold
in Theorem 2 below.

2.1. Compactness. As usual, the term Kähler group denotes a group that is the
fundamental group of some closed Kähler manifold. In particular, Kähler groups are
finitely presentable. Now it is a result of Jaco [12] that if the fundamental group of
a three-manifold is finitely presentable, then it is also the fundamental group of a
compact three-manifold, possibly with boundary. Thus we may assume that M is
compact.

2.2. Primeness. We may assume that M is prime, since otherwise its fundamental
group would be a non-trivial free product. This is not possible, either by Gromov’s the-
orem [9]; see also [2], or, granting residual finiteness of π1(M), by [13, Corollary 3.2],
where I showed that a residually finite free product has a finite index subgroup with
odd first Betti number.

2.3. Asphericity. By assumption, π1(M) is infinite. It cannot be virtually cyclic
since it is assumed to be Kähler. Therefore, our prime M is irreducible and aspherical
by the sphere theorem, compare [15]. Thus π1(M) is a torsion-free group of cohomo-
logical dimension ≤ 3.

2.4. Passage to finite coverings. Note that finite index subgroups of Kähler
groups are trivially Kähler. Since a torsion-free group containing the fundamental
group of a closed orientable surface as a finite index subgroup is itself a closed surface
group, we may replace M by an arbitrary finite covering, once we check that the
fundamental groups of non-orientable surfaces are not Kähler. This is indeed so, since
their first Betti numbers are positive (RP 2 has been excluded by the assumption that
we have infinite groups) but the cup product from H1 to H2 is trivial, contradicting
the Hard Lefschetz property. Replacing M by a finite covering we may assume that
it is orientable, so that its boundary is orientable as well.

2.5. Capping off spherical boundary components. Next, capping off an S2 in
the boundary of M by a three-ball does not change the fundamental group, so we
may assume that M does not have spherical boundary components.

2.6. Positivity of the first Betti number. If M has non-empty boundary, then,
since the boundary is orientable and not spherical, the boundary has non-trivial first
Betti number, and so does M itself by the “half lives, half dies” argument.

When M is closed, it can of course be a rational homology sphere. By Agol’s recent
resolution of the virtually Haken conjecture [1], M has a finite covering with positive
first Betti number. However, we do not need this recent result. As discussed in [13,
p. 1085/86], if M were closed, with zero virtual first Betti number, then π1(M) would
not be Kähler, using Perelman’s results and a theorem of Carlson and Toledo.
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2.7. The main argument. We have now explained that Theorem 1 follows from:

Theorem 2. Let M be a compact aspherical three-manifold with b1(M) > 0. If π1(M)
is the fundamental group of a closed Kähler manifold X, then the Albanese map of
X induces an isomorphism between π1(M) and the fundamental group of a closed
orientable surface.

Of course M must then have non-empty boundary. In fact, it is a classical result
of Heil [10, Proposition 1] that M is an interval bundle over a surface.

For the proof of Theorem 2 assume that X is a closed Kähler manifold with π1(X) =
π1(M). The assumption that the first Betti number is positive implies that X has a
non-constant Albanese map. Since the target of the Albanese is aspherical, the map
factors up to homotopy through the classifying space of π1(X), which we may take
to be M . But the cohomological dimension of M is strictly less than 4, and so the
Albanese image of X must be a complex curve, necessarily of positive genus g. By a
standard argument, this implies that the Albanese image is smooth, and the Albanese
map has connected fibers, compare [8, p. 289]. Therefore, we are in the situation of
the following lemma:

Lemma 3 ([4]). Let f : X −→ Cg be a surjective holomorphic map with connected
fibers from a compact complex manifold to a curve of genus g ≥ 1. By marking the
critical values p1, . . . , pk of f with suitable integral multiplicities mi ≥ 1, one can de-
fine the orbifold fundamental group πorb

1 (Cg) of Cg with respect to these multiplicities,
so that one obtains a short exact sequence

(2.1) 1 −→ K −→ π1(X) −→ πorb
1 (Cg) −→ 1

in which the kernel K is finitely generated, since it is a quotient of the fundamental
group of a regular fiber of f .

The point is that if there are multiplicities mi ≥ 2, then the orbifold fundamental
group on the right is rather larger than the usual topological fundamental group of
Cg, and this ensures that the kernel K is finitely generated, compare the discussion
in [4, 14, 17]. To prove Theorem 2 we only have to prove that K is trivial, for then
π1(M) = π1(X) = πorb

1 (Cg). As π1(M) is torsion-free, the orbifold structure must be
trivial, and πorb

1 (Cg) is just the usual fundamental group of Cg.
By the solution of the Fenchel conjecture [3], πorb

1 (Cg) has a surface group π1(S)
as a finite index subgroup. So at the expense of replacing M by a finite covering,
compare 2.4, its fundamental group actually fits into the following extension:

(2.2) 1 −→ K −→ π1(M)
ϕ−→ π1(S) −→ 1 ,

with the same finitely generated K as above. If K = ker(ϕ) is non-trivial, then by a
result of Hempel and Jaco [11, Theorem 1] it is infinite cyclic. The five-term exact
sequence of the extension (2.2) in real cohomology then reads

0 −→ H1(S; R)
ϕ∗
−→ H1(M ; R) −→ H1(K; R)π1(S) δ−→ H2(S; R) = R

ϕ∗
−→ H2(M ; R).

If the connecting homomorphism δ is non-zero, then H1(M ; R) = H1(S; R), with
identically zero cup product to H2(M ; R), since the cup product is natural under ϕ∗,
which vanishes on H2(S; R) by exactness. This contradicts the Kählerness of π1(M)
via the Hard Lefschetz theorem. If δ is zero, then, after possibly passing to a double
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covering again to ensure that the action of π1(S) on H1(K; R) = R is trivial, we have
b1(M) = 1 + b1(S), which is odd, again contradicting the Kählerness of π1(M).

This completes the proof of Theorem 2 and therefore also of Theorem 1.

2.8. An alternative argument. The proof of Theorem 2 given above has the pleas-
ant feature of dealing with the cases that M is closed or with non-empty boundary
uniformly. In particular, it gives yet another treatment of closed three-manifolds that
is different from [5, 13].

Now, taking for granted the closed case, an alternative — and much more high-tech
— treatment of manifolds with non-empty and non-spherical boundary is implicit in
my recent paper [14], where I discussed Kähler groups of positive deficiency. The
deficiency of a finitely presentable group is the maximum over all presentations of
the difference of the number of generators and the number of relators. For a compact
three-manifold M with non-empty boundary Epstein [6, Lemma 2.2] proved that

def(π1(M)) ≥ 1 − χ(M) = 1 − 1
2
χ(∂M).

Since the Euler characteristic of the boundary is non-positive, the deficiency of π1(M)
is positive. If ∂M has at least one boundary component with negative Euler charac-
teristic, then the deficiency is at least 2, and [14, Theorem 2] applies, to say that the
kernel K in (2.1) must be trivial and π1(M) is isomorphic to πorb

1 (Cg). Since π1(M)
is torsion-free, the orbifold structure must be trivial, and this is an ordinary surface
group.

If M has toroidal boundary, then the deficiency may well be = 1. As explained
in [14, p. 646], the results there go through for deficiency one groups whenever one
knows that the kernel K in (2.1) is not just finitely generated, but finitely presentable,
or at least of type FP2. This is the case here, since by a result of Scott [16] and Shalen
(unpublished), π1(M) is coherent, meaning that any finitely generated subgroup must
be finitely presentable. Thus, the results of [14] imply Theorem 2 above in all cases
when M has non-empty boundary.

The case of a closed M cannot be dealt with by appealing to [14], since for a closed
aspherical three-manifold the fundamental group has vanishing deficiency by another
result of Epstein, see [6, Lemma 3.1].
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