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AN OPTIMAL POINCARÉ–WIRTINGER INEQUALITY IN GAUSS
SPACE

Barbara Brandolini, Francesco Chiacchio, Antoine Henrot and

Cristina Trombetti

Abstract. Let Ω be a smooth, convex, unbounded domain of R
N . Denote by μ1(Ω) the

first nontrivial Neumann eigenvalue of the Hermite operator in Ω; we prove that μ1(Ω) ≥
1. The result is sharp since equality sign is achieved when Ω is a N -dimensional strip.
Our estimate can be equivalently viewed as an optimal Poincaré–Wirtinger inequality

for functions belonging to the weighted Sobolev space H1(Ω, dγN ), where γN is the
N -dimensional Gaussian measure.

1. Introduction

Let Ω be a convex domain of R
N (N ≥ 2) and let us denote by dγN the standard

Gaussian measure in R
N , that is

dγN =
1

(2π)N/2
e−

|x|2
2 dx.

In [3] (see also [37] and [2]) the authors prove, among other things, that if Ω is a convex,
bounded domain, the first nontrivial eigenvalue μ1(Ω) of the following problem:

(1.1)

⎧
⎪⎨

⎪⎩

−div
(

exp
(

−|x|2
2

)

Du

)

= μ exp
(

−|x|2
2

)

u in Ω

∂u

∂ν
= 0 on ∂Ω

satisfies

(1.2) μ1(Ω) ≥ max
{

1,
1
2

+
π2

diam(Ω)2

}

.

Here ν stands for the outward normal to ∂Ω and diam(Ω) for the diameter of Ω. It is
well known that μ1(Ω) can be characterized in the following variational way:

μ1(Ω) = min

⎧
⎪⎪⎨

⎪⎪⎩

∫

Ω

|Dψ|2dγN

∫

Ω

ψ2dγN

: ψ ∈ H1(Ω, dγN ) \ {0},
∫

Ω

ψdγN = 0

⎫
⎪⎪⎬

⎪⎪⎭

,

where H1(Ω, dγN ) is the weighted Sobolev space defined as follows:

H1(Ω, dγN ) =
{
u ∈W 1,1

loc (Ω) : (u, |Du|) ∈ L2(Ω, dγN ) × L2(Ω, dγN )
}
,
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endowed with the norm

‖u‖H1(Ω,dγN ) = ‖u‖L2(Ω,dγN ) + ‖Du‖L2(Ω,dγN ) .

Incidentally note that the space H1(Ω, dγN ) ≡ H1(Ω) whenever Ω is a bounded
domain.

Estimate (1.2) implies that, if Ω is a bounded, convex domain of R
N , the following

Poincaré–Wirtinger inequality holds:

(1.3)
∫

Ω

(

u−
∫

Ω

udγN

)2

dγN ≤
∫

Ω

|Du|2dγN , ∀u ∈ H1(Ω, dγN ).

It is well known (see, e.g., [20]) that, when Ω = R
N , inequality (1.3) still holds true.

The purpose of this paper is to fill the gap between convex, bounded sets and the
whole R

N by proving the following sharp lower bound.

Theorem 1.1. Let Ω ⊂ R
N be a convex, C2 domain whose boundary satisfies a

uniform interior sphere condition (see (2.1) below). Then

(1.4) μ1(Ω) ≥ 1,

equality holding if Ω is any N -dimensional strip.

Our strategy consists into constructing a suitable sequence {Ωk}k∈N of bounded
convex domains invading Ω and then passing to the limit in (1.2). To show that μ1(Ωk)
converge to μ1(Ω) one of the main ingredients is an extension theorem for functions
belonging to H1(Ωk, dγN ) with a constant independent of k (see Theorem 2.1, see
also [19]).

The structure of the differential operator in (1.1) suggests the relevance of the
case of unbounded sets since the density of Gaussian measure degenerates at infinity.
Moreover, in such a case, the space H1(Ω, dγN ) does no longer coincide with H1(Ω).
Indeed, when Ω = R

N , the case mostly studied by physicists, the eigenvalues of
problem (1.1) are the integers and the corresponding eigenfunctions are combinations
of Hermite polynomials, which clearly do not belong to H1(RN ).

The Hermite operator appearing in problem (1.1) is widely studied in literature
from many points of view. It is a classical subject in quantum mechanics (see, for
instance, [20]) as well as in probability; indeed it is the generator of the Ornstein–
Uhlenbeck semigroup (see, e.g., [10]). Finally, problems of the kind (1.1) are related
to some functional inequalities as the well-known Gross Theorem on the Sobolev
Logarithmic embedding (see, e. g., [11, 21,24,27,28,32,40]).

Note that the convexity assumption in Theorem 1.1 cannot be relaxed; it is enough
to consider the classical example of a planar domain made by two equal squares con-
nected by a thin corridor. Problems linking the geometry of a domain and the sequence
of eigenvalues of a second-order elliptic operator are classical since the estimates by
Faber, Krahn or Pólya, Szégö concerning the first eigenvalue of the Laplacian with
Dirichlet or Neumann boundary conditions, respectively. Further developments of
this topic can be found for instance in [1, 4, 5, 8, 15–17, 22, 26, 38], where estimates
for Dirichlet eigenvalues and eigenfunctions of linear and nonlinear operators are de-
rived. Concerning Neumann boundary conditions we refer the reader to [5,12,14] and
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to [6, 18, 29, 30, 39] for lower bounds of Neumann eigenvalues in different contexts
(Laplacian, p-Laplacian, manifolds of constant curvature). For results in Gauss space
we mention, for instance, [9, 13, 23]. Clearly the above list of references is far from
being exhaustive; more papers in this growing field of research are cited in [33–36].

2. Proof of Theorem 1.1

We recall that, given a subset Ω of R
N , ∂Ω satisfies a uniform interior sphere

condition if

(2.1) ∃r̄ > 0 : ∀x ∈ ∂Ω ∃Br̄ ⊂ Ω such that Br̄ ∩ Ω = {x} ,
where Br̄ denotes a ball with radius r̄ > 0.

The proof of our result is divided in two steps. The first one provides an extension
theorem that may have an interest by its own. In the second one, we consider a
sequence of convex, bounded domains {Ωk}k∈N

invading Ω satisfying μ1(Ωk) ≥ 1 and
we show that lim

k
μ1(Ωk) = μ1(Ω).

Theorem 2.1. Let Ω ⊂ R
N be a convex, C2 domain whose boundary satisfies (2.1)

and let us denote d0 = dist(0, ∂Ω). Let u ∈ H1(Ω, dγN ); there exists a function
ũ ∈ H1(RN , dγN ) extending u to the whole R

N and a constant C such that

(2.2) ||ũ||H1(RN ,dγN ) ≤ C||u||H1(Ω,dγN ).

In (2.2) C = C(r̄, N) if 0 ∈ Ω, while C = C(r̄, N, d0) if 0 /∈ Ω.

Proof of Theorem 2.1. We distinguish two cases: 0 ∈ Ω and 0 /∈ Ω and we fix r̃ = r̄
2 .

Suppose first that 0 ∈ Ω. Let us denote by d(x) = dist(x, ∂Ω) the distance of a
point x ∈ R

N from ∂Ω and

Ωr̃ = {x ∈ R
N \ Ω : d(x) < r̃}, Ωr̃ = {x ∈ Ω : d(x) < r̃}.

Let u ∈ H1(Ω, dγN ); we want to extend u to R
N by reflection along the normal to

∂Ω. Define
Φ : x ∈ Ωr̃ −→ Φ(x) = x− 2d(x)Dd(x) ∈ Ωr̃.

By construction Φ is a C1 one-to-one map; we claim that

(2.3) 1 ≤ |JΦ(x)| ≤ 3N−1, ∀x ∈ Ωr̃.

A straightforward computation yields

∂Φi(x)
∂xj

= δij − 2
∂d(x)
∂xj

∂d(x)
∂xi

− 2d(x)
∂2d(x)
∂xi∂xj

.

By a rotation of coordinates we can assume that the xN -axis lies in the direction
Dd(x). By a further rotation of the first N − 1 coordinates we can also assume that
the x1, . . . , xN−1 axes lie along the principal directions corresponding to the principal
curvatures κ1, . . . , κN−1 of ∂Ω at p(x) = x+Φ(x)

2 . Clearly p(x) is the projection of x
on ∂Ω. In this coordinate system, known as principal coordinate system at p(x), it is
immediate to verify that

|JΦ(x)| =
N−1∏

i=1

(

1 +
2d(x)κi

1 − d(x)κi

)

.

Claim (2.3) follows recalling that d(x) < r̃ = r̄
2 and κi ≤ 1

r .
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We observe that in the simplest case N = 2, (2.3) has been proven, in a different
and more direct way, in [13].

Now define

u(x) = u(Φ−1(x)) ∀ x ∈ Ωr̃.

Let θ ∈ C∞
0 (RN ) be a cut-off function such that 0 ≤ θ ≤ 1 in R

N , θ = 1 in Ω, θ = 0
in R

N \ (Ω ∪ Ωr̃) and |Dθ| ≤ C = C(r̄). Set

(2.4) ũ =

⎧
⎪⎨

⎪⎩

u in Ω
θ u in Ωr̃

0 in R
N \ (Ω ∪ Ωr̃).

Since Ω contains the origin, it is easy to verify that

(2.5) exp
(−|Φ(x)|2

2
+

|x|2
2

)

≤ 1, ∀ x ∈ Ωr̃.

Thus, by (2.3), (2.4) and (2.5) we get

∫

RN

ũ2dγN =
∫

Ω

u2dγN +
∫

Ωr̃

ũ2dγN(2.6)

≤
∫

Ω

u2dγN +
∫

Ωr̃

u2(x) exp
(

−|Φ(x)|2
2

+
|x|2
2

)

|JΦ|dγN

≤ C(N)
∫

Ω

u2dγN .

On the other hand, (2.3), (2.4), (2.5) and (2.6) imply

∫

RN

|Dũ|2dγN ≤ C(N, r̄)
[∫

Ωr̃

ū2dγN +
∫

Ω∪Ωr̃

|Dū|2dγN

]

≤ C(N, r̄)
[∫

Ω

u2dγN +
∫

Ω

|Du|2dγN +
∫

Ωr̃

|Du|2 exp
(

−|Φ(x)|2
2

+
|x|2
2

)

|JΦ|dγN

]

≤ C(N, r̄)
[∫

Ω

u2dγN +
∫

Ω

|Du|2dγN

]

.

Hence, if Ω contains the origin (2.2) holds true.
Suppose now that 0 /∈ Ω. Up to a rotation about the origin, the translation T :

x = (x1, x2, . . . , xN ) ∈ R
N → (x1 − δ, x2, . . . , xN ) ∈ R

N , for a fixed δ > d0 , maps Ω
onto a set T (Ω) containing the origin. Define

v(x) = v(x1, x2, . . . , xN ) = u(x1 + δ, x2, . . . , xN ) exp
(

−x1δ

2
− δ2

4

)

, x ∈ T (Ω);
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then
∫

Ω

u2dγN =
∫

T (Ω)

v2dγN .

By construction T (Ω) contains the origin, then there exists a function ṽ ∈ H1(RN , dγN )
such that ṽ

∣
∣
T (Ω) = v and

||ṽ||H1(RN ,dγN ) ≤ C(r̄, N)||v||H1(T (Ω),dγN ).

Let

ũ(x) = ũ(x1, x2, . . . , xN ) = ṽ(x1 − δ, x2, . . . , xN ) exp
(
x1δ

2
− δ2

4

)

,

we finally get

||ũ||H1(RN ,dγN ) ≤ C(r̄, N, d0)||u||H1(Ω,dγN ). �

Using the fact that H1(RN , dγN ) is compactly embedded into L2(RN , dγN ) (see,
e.g. [25]) and the above extension theorem we deduce the compact embedding of
H1(Ω, dγN ) into L2(Ω, dγN ). By classical arguments (see, for instance, Theorem 5.4.3
in [7], see also Proposition 3.4 in [31]) we can deduce a Poincaré–Wirtinger inequality
with a constant depending on Ω. Therefore, as we said in Section 1, by the classi-
cal spectral theory on compact self-adjoint operators, μ1(Ω) satisfies the following
variational characterization

μ1(Ω) = min

⎧
⎪⎪⎨

⎪⎪⎩

∫

Ω

|Dψ|2dγN

∫

Ω

|ψ|2dγN

: ψ ∈ H1(Ω, dγN )\ {0} ,
∫

Ω

ψdγN = 0

⎫
⎪⎪⎬

⎪⎪⎭

.

When Ω is a convex, bounded domain, estimate (1.4) is contained in [3]. Therefore,
from now on Ω will denote a convex, unbounded domain. Let {Ωk}k∈N

be a sequence
of convex, bounded, C2 domains whose boundaries satisfy (2.1) for every k ∈ N, and
invading Ω in the sense that

Ωk ⊂ Ωk+1 ∀k ∈ N and
⋃

k∈N

Ωk = Ω.

For the explicit construction of a sequence of this kind, see for instance [13].
As proven in [3] we have that

(2.7) μ1(Ωk) ≥ 1, ∀k ∈ N,

that can be equivalently written as

(2.8)
∫

Ωk

ψ2dγN ≤
∫

Ωk

|Dψ|2dγN , ∀ψ ∈ H1(Ωk, dγN ) :
∫

Ωk

ψdγN = 0.

Now we want to pass to the limit in (2.7). To this aim consider the operator

Ak : f ∈ L2(Ω, dγN ) :
∫

Ω

fdγN = 0 −→ ũk ∈ H1(Ω, dγN ),
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where ũk is the extension provided in Theorem 2.1 of the solution uk ∈ H1(Ωk, dγN )
to the following problem:

(2.9)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−div
(
exp
(
− |x|2

2

)
Duk

)
= (f − ck) exp

(
− |x|2

2

)
in Ωk

∂uk

∂νk
= 0 on ∂Ωk

∫

Ωk

ukdγN = 0,

where ck =
∫

Ωk

fdγN and νk is the outward normal to ∂Ωk. Observe that Lax–

Milgram theorem ensures the existence and uniqueness of uk. Moreover, γN (Ω\Ωk) →
0 implies ck → 0. We also introduce the operator

A : f ∈ L2(Ω, dγN ) :
∫

Ω

fdγN = 0 −→ u ∈ H1(Ω, dγN ),

where u is the unique solution, whose existence is guaranteed by Lax–Milgram theo-
rem, to the problem

(2.10)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−div
(
exp
(
− |x|2

2

)
Du
)

= f exp
(
− |x|2

2

)
in Ω

∂u

∂ν
= 0 on ∂Ω

∫

Ω

udγN = 0.

Using uk as test function in (2.9), from Schwarz inequality we deduce

∫

Ωk

|Duk|2dγN =
∫

Ωk

uk(f − ck)dγN ≤
(∫

Ωk

u2
kdγN

)1/2(∫

Ωk

(f − ck)2dγN

)1/2

.

Using (2.8) and recalling that ck → 0, we get
∫

Ωk

|Duk|2dγN ≤ C1

∫

Ω

f2dγN + C2,

where C1, C2 are positive constants whose values are independent of k. The above
inequality together with (2.8) yield

∫

Ωk

u2
kdγN +

∫

Ωk

|Duk|2dγN ≤ C,

where C is a positive constant whose value is independent of k. From (2.2) we de-
duce that the sequence {ũk}k∈N is bounded in H1(Ω, dγN ). Since the embedding of
H1(Ω, dγN ) into L2(Ω, dγN ) is compact, there exists a (not relabelled) subsequence
{ũk}k∈N such that ũk ⇀ v in H1(Ω, dγN ), ũk → v in L2(Ω, dγN ) and a.e. in Ω. In
fact, v coincides with u since they both solve the same problem (2.10). Indeed, let
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φ ∈ C∞(Ω). Recalling that γN (Ω \ Ωk) → 0 and Ωk ⊂ Ω, we get
∫

Ω

DvDφdγN = lim
k

∫

Ω

DũkDφdγN = lim
k

(∫

Ωk

DukDφdγN +
∫

Ω\Ωk

DũkDφdγN

)

= lim
k

∫

Ωk

(f − ck)φdγN =
∫

Ω

fφdγN .

Finally, as k goes to +∞,

(2.11) ||(Ak −A)f ||L2(Ω,dγN ) = ||ũk − u||L2(Ω,dγN ) → 0.

The compact embedding of H1(Ω, dγN ) into L2(Ω, dγN ) and (2.11) allow us to adapt
Theorems 2.3.1 and 2.3.2 in [33] to conclude that the operators Ak strongly converge
to A and hence

μ1(Ωk) → μ1(Ω).

Finally, we prove the optimality of our estimate (1.4). Consider the N -dimensional
strip

Sa = {x = (x1, x2, . . . , xN ) ∈ R
N : −a < x1 < a, x2, . . . , xN ∈ R}, a ∈ (0,+∞).

The eigenfunctions are factorized and can be written as linear combinations of prod-
ucts of homogeneous Hermite polynomials Hm1(x1), Hm2(x2), . . . , HmN

(xN ). We re-
call that the Hermite polynomials in one variable are defined by

Hm(t) = (−1)met2/2 d
m

dtm
e−t2/2, m ∈ N ∪ {0},

and they constitute a complete set of eigenfunctions to problem (1.1) when Ω = R;
more precisely

−
(
e−t2/2H ′

m(t)
)′

= me−t2/2Hm(t), m ∈ N ∪ {0}.
Denote by λ1(−a, a) the first Dirichlet eigenvalue of the one-dimensional Hermite
operator in the interval (−a, a). One can easily verify that

μ1(−a, a) = λ1(−a, a) + 1 > 1 = μ1(R).

Therefore, μ1(Sa) = 1 for every a ∈ (0,+∞) and a corresponding eigenfunction is,
for instance, H1(x2) = x2.

References

[1] A. Alvino, V. Ferone and G. Trombetti, On the properties of some nonlinear eigenvalues, SIAM

J. Math. Anal. 29(2) (1998), 437–451.
[2] B. Andrews and J. Clutterbuck, Proof of the fundamental gap conjecture, J. Amer. Math. Soc.

24(3) (2011), 899–916.

[3] B. Andrews and L. Ni, Eigenvalue comparison on Bakry-Emery manifolds, Commun. Partial
Differ. Equ. 37 (2012), 2081–2092.

[4] M.S. Ashbaugh and R.D. Benguria, A sharp bound for the ratio of the first two eigenvalues of

Dirichlet Laplacians and extensions, Ann. Math. (2) 135(3) (1992), 601–628.
[5] M.S. Ashbaugh and R.D. Benguria, Sharp upper bound to the first nonzero Neumann eigenvalue

for bounded domains in spaces of constant curvature., J. Lond. Math. Soc. (2) 52(2) (1995),
402–416.

[6] M.S. Ashbaugh and L. Hermi, On extending the inequalities of Payne, Pólya, and Weinberger
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