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THE CLASSICAL LIMIT OF THE HEISENBERG AND
TIME-DEPENDENT HARTREE–FOCK EQUATIONS: THE WICK

SYMBOL OF THE SOLUTION

Laurent Amour, Mohamed Khodja and Jean Nourrigat

Abstract. This paper is concerned with the Wick symbol of time evolving quantum

observables. The time dynamics is following either the Heisenberg equation relative to
the Schrödinger Hamiltonian, or the time-dependent Hartree–Fock equation. Under very
weak assumptions, we prove that the Wick symbol approximatively follows the classical

mechanics laws when the semiclassical parameter h tends to zero. For the Heisenberg
equation, this is a form of what is commonly called the Ehrenfest theorem. These state-
ments have to be understood in a weaker sense than usual and in return, we do not

assume that the Weyl symbol of the initial observable belongs to a class allowing the
use of the Egorov theorem.

0. Introduction

The aim of this paper is twofold: to prove, under minimal hypotheses, a version
of Ehrenfest theorem, and to give a similar result for the time-dependent Hartree–
Fock equation (TDHF). We first consider a quantum observable (bounded operator)
Ah(t), (t ∈ IR, h > 0), evolving according to the Heisenberg equation associated to
the Schrödinger Hamiltonian (see (1.2)). Generally speaking, the Ehrenfest theorem
suggests that the average of this observable Ah(t), taken on an h-dependent coherent
state, approximatively follows, for small h > 0, the classical mechanics laws [7]. The
average of an observable on coherent states is related to its Wick symbol. The first
goal of this work is to obtain minimal hypotheses on the initial data Ah(0), in order
that the idea conveyed by Ehrenfest is asymptotically verified when h tends to 0.

A precise statement of Ehrenfest theorem, using Egorov theorem for the proof,
is given in [4, 13] (see also the bibliography therein). It is also noted ([4] and ref-
erences therein) that the approximation by the classical mechanics laws is not valid
uniformly for all time, but up to a maximal time called the Ehrenfest time. These
results are obtained assuming that the family of observables (Ah(0)) is a semiclas-
sical pseudodifferential (PDO) operator (see [13] or [17]). Our first goal is therefore
to give another precise statement of Ehrenfest theorem, weaker than the one in [13],
but in assuming weaker hypotheses on Ah(0) (Theorem 1.1). In particular, we do not
assume that Ah(0) is a PDO operator. It is known that an operator in L2(IRn) is a
PDO one in the standard class of Calderón and Vaillancourt, when all its iterated
commutators with position and momentum operators are bounded in L2(IRn) (Beals
characterization theorem [2]). In our work, the main assumption is that the single
commutators of Ah(0) with position and momentum operators are bounded, without
any hypotheses on the iterated commutators. Then we prove that, in some sense, the
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Wick symbol of Ah(t) “approximately follows the classical mechanics laws”, although,
with our hypotheses, it does not necessarily have a limit when h tends to zero. This
is our first result.

Next, we consider the quantum dynamics associated to TDHF. In that case, the
classical mechanics laws should be the Vlasov equations. Similarly to Theorem 1.1,
the second purpose of this paper is to show that the Wick symbol of a solution ρh(t)
to the TDHF equation approximatively follows the Vlasov equation (Theorem 2.1).
We assume that the operator ρh(0) is trace class, self-adjoint, nonnegative, with a
trace equal to 1. It is also assumed that the single commutators of ρh(0) with the
position and momentum operators are trace class. Then ρh(t), solution to TDHF
equation, is trace class for all t, and therefore its Wick symbol is in L1(IR2n), as
well as all its derivatives. Then, we can prove that, in some sense, this Wick symbol
approximately follows the Vlasov equation. This Theorem 2.1 is similar to Theorem
1.1, with trace class operators instead of bounded ones.

Moreover, the second result (Theorem 2.1) is a continuation of our work in [1],
where the Weyl symbol was considered instead of the Wick symbol. The work in [1] is
devoted to the the Weyl symbol of a solution ρh(t) to the TDHF equation, under the
hypothesis that ρh(0) is a PDO trace class operator belonging to the class studied by
Rondeaux [14]. The motivation of the study of the Wick symbol rather than the Weyl
symbol is the following. The space L1(IR2n) is the natural function space for kinetic
equations such as the Vlasov equation. However, the Weyl symbol of a trace class
operator is not necessarily in L1(IR2n), without the strong hypotheses made in [1]. To
the contrary, the Wick symbol of a trace class operator always belongs to L1(IR2n),
and the use of the Wick symbol allows us to take very weak hypotheses.

One of the tools used to prove both of these two results is the approximation of a
bounded operator, verifying rather weak hypotheses, by PDO operators belonging to
the class of Calderón and Vaillancourt [6]. It is a kind of convolution where translations
are replaced by an action of the Heisenberg group. We have similar results with
bounded operators replaced by trace class ones, and the class of [6] replaced by that
of [14]. The details are found in Section 5.

The paper is organized as follows. The two main results are stated in Sections 1
and 2. In Section 3, we give an example of trace class operator whose Weyl symbol is
not in L1(IR2n). The regularity properties of the Wick symbol of bounded or trace class
operators are derived in Section 4. Section 5 is concerned with PDO approximation.
Finally, Theorems 1.1 and 2.1 are proved in Sections 6 and 7, respectively.

1. Statement of the first result: the case of bounded operators and
Ehrenfest theorem

In this section, the time evolution of the system is associated to the following h
dependent Hamiltonian (h > 0),

(1.1) ̂Hh = −h2Δ + V,

where V is a C∞ real-valued function on IRn, which is bounded together with all of its
derivatives. We also denote by ̂Hh the unique self-adjoint extension of this operator.
Let (Ah)h>0 be a family of bounded self-adjoint operators in L2(IRn). The operator
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Ah(t) corresponding to the evolution of the operator Ah at the time t is,

(1.2) Ah(t) = ei t
h

̂HhAhe
−i t

h
̂Hh .

Let us recall the standard statements of Ehrenfest theorem (see [7]). The coherent
state centered at the point X = (x, ξ) in IR2n, is the following function, depending on
h > 0,

(1.3) ΨX,h(u) = (πh)−n/4e−
|u−x|2

2h e
i
h u.ξ− i

2h x.ξ, X = (x, ξ) ∈ IR2n, u ∈ IRn.

The average taken on ΨX,h of a bounded operator A in H = L2(IRn) is,

(1.4) σwick
h (A)(X) = 〈AΨX,h,ΨX,h〉.

The function σwick
h (A) is called the Wick symbol of A (see [12]). The Wick calculus

has been also used, for instance, in [3, 9, 8, 10, 15, 16].
According to the statement of Ehrenfest theorems, as one can see in [7], the average

of Ah(t) taken on coherent states is supposed to “approximatively follow the classical
mechanics laws, as h tends to 0”.

Let us precise in which sense does this function follow the classical mechanics
equations, under the limit h tends to 0. Let ϕt(x, ξ) = (qt(x, ξ), pt(x, ξ)) denotes the
Hamiltonian flow of the function H(x, ξ) = |ξ|2 + V (x) starting at (x, ξ), i.e., the
solution to,

(1.5) q′t(x, ξ) = 2p(t, x, ξ), p′t(x, ξ) = −(∇V )(q(t, x, ξ)),

such that q0(x, ξ) = x, p0(x, ξ) = ξ. Under our hypotheses on V , the flow is globally
defined. One can say that a function f(x, ξ, t) “follows the classical mechanics laws”,
when f(X, t) = f(ϕt(X), 0), for all X ∈ IR2n and all t ∈ IR.

Consequently, to say that the Wick symbol of the observable Ah(t) asymptotically
follows the classical mechanics laws can be expressed by the fact that for every t ∈ IR:

(1.6) lim
h→0

(

σwick
h (Ah(t))(X) − σwick

h (Ah(0))(ϕt(X))
)

= 0.

Our goal is to prove (1.6) under the weakest possible hypotheses on the initial data
Ah(0).

This limit (1.6) is standard when the initial data Ah(0) is a semiclassical PDO
operator (see, for instance, [13] or [17]). We briefly recall this notion. Let us denote by
Wm,p the Sobolev space of functions that are in Lp(IRn) together with all derivatives
of order less or equal tom (in the sense of distributions). A semiclassical PDO operator
is a family of operators formally defined by

(1.7) (Ahf)(x) = (2πh)−n

∫

IR2n

Fh

(

x+ y

2
, ξ

)

e
i
h (x−y).ξf(y)dydξ, x ∈ IRn,

where Fh is a family of functions belonging to the space W∞,∞(IR2n) and bounded
in this same space independently of h ∈ (0, 1]. According to Calderón and Vaillan-
court [6], Ah is well defined as a bounded operator in H. In this paper, the relationship
between the function Fh (called symbol) and the operator Ah defined by (1.7) will be
written in the two equivalent following ways:

(1.8) Ah = Opweyl
h (Fh), Fh = σweyl

h (Ah)
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(The Weyl symbol of an arbitrary bounded operator in H is, a priori, a tempered
distribution on IR2n.)

The standard Egorov theorem claims that:

(1.9) lim
h→0

(

σweyl
h

(

ei t
h

̂HhAhe
−i t

h
̂Hh

)

(X) − Fh(ϕt(X))
)

= 0,

where Ah = Opweyl
h (Fh) is a semiclassical PDO operator, with Fh bounded in

W∞,∞(IR2n) independently of h ∈ (0, 1], where ̂Hh is defined in (1.1), and the flow
ϕt in (1.5).

The earliest version of the Egorov theorem says that, if A is a PDO operator
and U an invertible Fourier Integral Operator, then U−1AU is a PDO operator
(see Hörmander [11], volume IV, chapter 25). For a product like in (1.2), it can be
proved, without the use of Fourier integral operators, that, ifAh is a semiclassical PDO
operator with a symbol Fh bounded in W∞,∞(IR2n), then the right-hand side of (1.2)
enjoys the same property. The proof was given by Robert [13] and by Zworski [17].

In that case, the limit (1.6) follows from (1.9) since the Wick symbol is obtained
from the Weyl symbol through a mollification:

σwick
h (A) = e

h
4 Δσweyl

h (A),

where Δ is the Laplacian on IR2n. See Proposition 4.4 below, or [4, 13] for more
details.

Let us explain now how to prove (1.6) with weaker hypotheses than above. The
assumption A = Opweyl

h (F ) with F in W∞,∞(IR2n) is rather strong, and may be
expressed in terms of commutators, in a standard way. Let Pj(h) and Qj(h) be the
momentum and the position operators,

(1.10) Pj(h) =
h

i

∂

∂xj
, Qj(h) = xj .

According to Beals characterization result [2], the fact that Ah may be written as,
Ah = Opweyl

h (F ) with F inW∞,∞(IR2n) is equivalent to the fact that the commutators
(ad P (h))α(ad Q(h))βA are bounded (for all multi-indexes α, β). Saying that F (which
may depend on h) stays bounded in W∞,∞(IR2n) is equivalent to the fact,

h−(|α|+|β|)‖(ad P (h))α(ad Q(h))βAh‖L(H) ≤Mαβ ,

with Mαβ independent on h.
We shall prove the limit (1.6) under much weaker hypotheses than in the case

where Ah(0) is a semiclassical operator. Namely, only single commutators (instead
of iterated commutators) of the operator Ah with the operators Pj(h) and Qj(h)
defined in (1.10) are assumed to be bounded operators. Our estimates shall involve
the following expression,

(1.11) I∞h (A) =
1
h

n
∑

j=1

‖[Pj(h), A]‖L(H) + ‖[Qj(h), A]‖L(H).

The theorem below provides the key inequality needed to show (1.6) under weakened
hypotheses. When A is a bounded operator, we shall notice (see Proposition 4.1)
that the function σwick

h (A) is C∞ on IR2n and we shall give precise estimates on its
derivatives in terms of the parameter h and of the norm of A.
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Theorem 1.1. For all operators A in L(H), such that the commutators [Pj(h), A]
and [Qj(h), A] are bounded operators in H (1 ≤ j ≤ n), the operator Ah(t) defined
in (1.2) and the Hamiltonian flow ϕt defined in (1.5) satisfy,

(1.12)
∥

∥

∥σwick
h (Ah(t)) −

(

σwick
h (A)

)

◦ ϕt

∥

∥

∥

L∞(IR2n)
≤ C(t)

√
hI∞h (A),

where t 
→ C(t) is a function defined on IR, bounded over any compact set, depending
only on n and on V , and where I∞h (A) is defined in (1.11).

In order that (1.12) implies (1.6), it suffices to replace A by a family of operators
Ah, such that the right-hand side of (1.12) tends to 0 as h goes to 0. This assumption
is satisfied when Ah = Opweyl

h (Fh) with Fh in W∞,∞(IR2n), and uniformly bounded
in h ∈ (0, 1].

2. Statement of the second result: the case of trace class operators and
the TDHF equation

Before introducing the TDHF, let us first specify our solutions space. We shall denote
by L1(H) the space of all trace class operators on H = L2(IRn) and by D the subspace
of operators A in L1(H), such that the commutator [Δ, A] is also in L1(H), where Δ
is the Laplacian operator.

We consider two real-valued functions V and W in W∞,∞(IRn). For all h > 0, we
shall say that a function t 
→ ρh(t) being C1 from IR into L1(H) is a classical solution
to the TDHF (according to the terminology of Bove–da Prato–Fano [5]) when this
mapping is also continuous on IR into D and if

(2.1) ih
∂

∂t
ρh(t) = −h2[Δ, ρh(t)] + [Vq(ρh(t)), ρh(t)],

where Vq(ρh(t)) denotes the multiplication operator by the function

(2.2) Vq(x, ρh(t)) = V (x) + Tr(Wxρh(t)),

where Wx is the multiplication operator by the function y 
→W (x− y).
We consider a family (ρh(t))h>0 of classical solutions to (TDHF). We suppose that

the operator ρh(0) is trace class, self-adjoint ≥ 0 with a trace equal to 1. We set:

(2.3) uh(X, t) = (2πh)−nσwick
h (ρh(t))(X).

As we shall see in Section 4, this function lies in W∞,1(IR2n), it is nonnegative and

(2.4)
∫

IR2n

uh(X, t)dX = 1.

We denote by vh(X, t) the solution to the Cauchy problem for the Vlasov equation:

∂vh

∂t
+ 2

n
∑

j=1

ξj
∂vh

∂xj
−

n
∑

j=1

∂Vcl(x, vh(., t))
∂xj

∂vh

∂ξj
= 0,(2.5)

vh(X, 0) = uh(X, 0).(2.6)

We have set:

(2.7) Vcl(x, vh(., t)) = V (x) +
∫

IR2n

W (x− y)vh(y, η, t)dydη.

The function vh(., t) is itself in L1(IR2n), it is nonnegative and its integral equals to 1.
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The counterpart of Ehrenfest theorem for a family of solutions to (TDHF) con-
sists into saying that the function uh(., t) defined in (2.3), satisfies approximately the
Vlasov equation when h tends to 0. This point of view may be specified in different
ways. Our aim is to compare, as in Theorem 1.1, the functions uh(., t) and vh(., t)
and to show that, under suitable assumptions on ρh(0), their difference in norm tends
to 0. Since we are concerned with trace class operators it makes sense that the norm
involve to estimate the difference uh(., t)−vh(., t) is the L1(IR2n) norm. A first answer
to this issue is given in [1] where we assume that the operator ρh(0) is a PDO oper-
ator belonging to the Rondeaux class [14] (with a modification to take into account
the parameter h). The article [1] also gives an asymptotic expansion at any order of
uh(., t)−vh(., t). We consider here this problem with a weaker hypothesis than the one
in [1]. We are only assuming that the commutators [Pj(h), ρh(0)] and [Qj(h), ρh(0)]
are trace class operators. All these estimates shall use the expression,

(2.8) Itr
h (ρh(0)) =

1
h

n
∑

j=1

‖[Pj(h), ρh(0)]‖L1(H) + ‖[Qj(h), ρh(0)]‖L1(H).

We are now ready to state the main theorem of this section.

Theorem 2.1. Let (ρh(t))h>0 be a family of classical solutions to (TDHF) with real-
valued potentials V and W in W∞,∞(IR2n). We suppose that the operator ρh(0) is
trace class, self-adjoint ≥ 0, with a trace equal to 1. We assume that all the commu-
tators [Pj(h), ρh(0)] and [Qj(h), ρh(0)] are trace class operators. Then, there exists a
function t 
→ C(t), bounded on any compact set of IR such that, for all h ∈ (0, 1] and
for all t ∈ IR,

(2.9) ‖uh(., t) − vh(., t)‖L1(IR2n) ≤ C(t)
√
hItr

h (ρh(0))eC(t)Itr
h (ρh(0)).

An immediate consequence is the next corollary.

Corollary 2.2. Under the assumptions of Theorem 2.1, if Itr
h (ρh(0)) remains bounded

when h tends to 0, then we have,

(2.10) lim
h→0

‖uh(., t) − vh(., t)‖L1(IR2n) = 0,

for all t ∈ IR.

If ρh(0) is a PDO operator of the form ρh(0) = (2πh)nOpweyl
h (Fh), with Fh in

W∞,1(IR2n) and uniformly bounded in h, then the assumption in corollary 2.2 is
always satisfied. This is a consequence of the analogous result of the Beals character-
ization given in [14]. The dependence on the parameter h is considered in [1].

Theorem 2.1 shall be proved in Section 7.

3. A counterexample

Expanding on an idea of Rondeaux [14], we shall give an example of a trace class
operator having a Weyl symbol not being in L1(IR2n). We first point out some prop-
erties of the Weyl symbol of a trace class operator. These properties are essential in
the choice of the counterexample.

Proposition 3.1. If A is trace class, then its Weyl symbol is a continuous function
on IR2n going to 0 at infinity and also belonging to L2(IR2n). If this function is also
nonnegative then it is necessarily in L1(IR2n).
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Proof. If A is trace class then it is also Hilbert–Schmidt and it is well-known that
its Weyl symbol belongs to L2(IR2n) (cf. Robert [13]). This symbol is bounded since,
when A is trace class then we have

(3.1) σweyl
h (A)(X) = 2nTr(AΣXh), X ∈ IR2n,

where ΣX is the operator in H defined in (4.15). The fact that it is continuous and
that it is going to 0 at infinity is easily verified using (3.1), for an operator written as
u 
→ A(u) = 〈u, ϕ〉ψ, where ϕ and ψ are in S(IRn). One then concludes this point by
density, first for any finite rank A, then for any trace class operator since the set of
finite rank operators is dense in L1(H). For all functions F in W∞,1(IR2n) and G in
W∞,∞(IR2n), it is well-known (cf. Robert [13]) that

(3.2) Tr(Opweyl
h (F ) ◦Opweyl

h (G)) = (2πh)−n

∫

IR2n

F (X) G(X) dX.

Let A be a trace class operator and G be a C∞ function on IR2n with compact support.
From Theorem 5.2, there exists a sequence of functions (Fj) in W∞,1(IR2n), such that
the sequence of operators Opweyl

h (Fj) converges to A in L1(H), implying from (3.1)
that Fj converges uniformly to σweyl

h (A). It is then deduced that

(3.3) Tr(A ◦Opweyl
h (G)) = (2πh)−n

∫

IR2n

σweyl
h (A)(X) G(X) dX.

We replace G by an increasing sequence GN of C∞ functions on IR2n, with compact
support and converging pointwise to 1 when N goes to +∞, the functions |∂α

x ∂
β
ξ GN |

being all uniformly bounded on N . When σweyl
h (A) ≥ 0, we deduce from (3.3) that

0 ≤ (2πh)−n

∫

IR2n

σweyl
h (A)(X) GN (X) dX ≤ ‖A‖L1(H) ‖Opweyl

h (GN )‖L(H).

According to Calderón and Vaillancourt [6], the right-hand side remains bounded as
N tends +∞. If the function σweyl

h (A) is nonnegative then it is in L1(IR2n). �

Proposition 3.1 and the results of Rondeaux [14] suggest the construction of an
example of a trace class operator having a Weyl symbol not being in L1(IR2n). We may
assume that h = 1. Let α be a real number such that n

2 < α ≤ n. We define the
operator P by

(3.4) P = Opweyl
1 (p), p(x, ξ) =

e2ix.ξ

(1 + |x|2 + |ξ|2)α
, (x, ξ) ∈ IR2n.

The function p is not in L1(IR2n). For all λ > 0, we define an operator Aλ by,

Aλ = Opweyl
1 (aλ), aλ(x, ξ) = e2ixξ−λ(|x|2+|ξ|2).

We have

(3.5) P =
1

Γ(α)

∫ ∞

0

e−λλα−1Aλdλ,

provided that we verify the convergence. From definition (1.7) the integral kernel of
Aλ is the function Kλ defined by

Kλ(x, y) = (2π)−n

∫

IRn

ei(x−y).ξaλ

(

x+ y

2
, ξ

)

dξ.
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An explicit computation shows that

Kλ(x, y) = (2πλ)−n/2 e−(a(λ)|x|2+b(λ)|y|2+2c(λ)x.y), a(λ) =
λ

4
+

1
λ
, b(λ) = c(λ) =

λ

4
.

We can express the operator Aλ as a product,

(3.6) Aλ = (2πλb(λ))−n/2 Ta(λ) ◦Bλ ◦ T−1
b(λ) ◦ S,

where for all a > 0, (Taf)(x) = f(x
√
a), Sf(x) = f(−x) and

(3.7) (Bλf)(x) =
∫

IRn

e−(|x|2+|y|2)+2μ(λ)x.yf(y)dy, μ(λ) =
c(λ)

√

a(λ)b(λ)
.

The operator Bλ is self-adjoint ≥ 0 (since 0 < μ(λ) < 1 and B(λ) may be identified,
up to a multiplicative constant, to the exponential of an harmonic oscillator). We then
see that

‖Bλ‖L1(H) = Tr(Bλ) =
∫

IRn

e−2(1−μ(λ))|x|2dx =
(

π

2(1 − μ(λ))

)n/2

.

From (3.6) we have

‖Aλ‖L1(H) ≤ (2πλb(λ))−n/2 ‖Ta(λ)‖L(H) ‖Bλ‖L1(H) ‖T−1
b(λ)‖L(H).

The right-hand side is polynomially increasing as λ → +∞ and it is O(λ−n/2) when
λ tends to 0. With the choice of α > n

2 , the integral (3.5) converges in norm in L1(H)
and it properly defines a trace class operator P . The Weyl symbol of this operator is
the function p defined in (3.4) and does not belong to L1(IR2n).

4. Differentiability of the Wick symbol

For trace class operators, it is natural to give a variant of Ehrenfest theorem where
the limit is understood in the L1(IR2n) sense. The above counterexample shows that
the Weyl symbol is not suitable for this purpose without any additional hypothesis.

In this section, we shall show that the Wick symbol of a bounded operator (re-
spectively of a trace class operator) in L2(IRn) is a function in W∞,∞(IR2n) (resp. in
W∞ 1(IR2n)) and we shall give an upper bound for its derivatives.

Proposition 4.1. Let A be a bounded operator in H. Then the Wick symbol of A,
namely, the function σwick

h (A) defined on IR2n by (1.4), is a C∞ function on IR2n,
bounded together with all of its derivatives. For each multi-index α there exists Cα

such that:

(4.1) ‖∇ασwick
h (A)‖L∞(IR2n) ≤ Cαh

−|α|/2 ‖A‖L(H).

Proof. We shall use the following function:

(4.2) Sh(A)(X,Y ) =
〈AΨX,h,ΨY,h〉
〈ΨX,h,ΨY,h〉

,

defined on IR2n × IR2n, where the functions ΨX,h are given in (1.3). If we identify
X = (x, ξ) ∈ IRn × IRn with x + iξ ∈ Cn, we shall see that this function is holo-
morphic with respect to X, and antiholomorphic with respect to Y . The function
(X,Y ) → Sh(A)(X,Y ), holomorphic with respect to both variables, is called Wick
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symbol in Folland [10]. The restriction of Sh(A) to the diagonal is our σwick
h (A). Direct

computations shows that:

(4.3) 〈ΨX,h,ΨY,h〉 = e−
1
4h |X−Y |2+ i

2h Im(X.Y ).

In particular,

(4.4) |〈ΨX,h,ΨY,h〉| = e−
1
4h |X−Y |2 , ‖ΨX,h‖ = 1.

Consequently,

(4.5)
∣

∣

∣Sh(A)(X,Y )
∣

∣

∣ = e
1
4h |X−Y |2 |〈AΨX,h,ΨY,h〉| ≤ e

1
4h |X−Y |2 ‖A‖L(H).

An important property verified by coherent states is that:

(4.6) 〈f, g〉 = (2πh)−n

∫

IR2n

〈f,ΨX,h〉 〈ΨX,h, g〉 dX,

for all f and g in H. Applying this equality several times, we see that, for all X and
Y :

(4.7) Sh(A)(X,Y ) = (2πh)−2n

∫

IR4n

Bh(X,U, V, Y )Sh(A)(U, V )dUdV,

where, for all (X,U, V, Y ) we have set:

(4.8) Bh(X,U, V, Y ) =
〈ΨX,h,ΨU,h〉〈ΨU,h,ΨV,h〉〈ΨV,h,ΨY,h〉

〈ΨX,h,ΨY,h〉
.

Direct computations from (4.3) show that this function is holomorphic with respect to
X and antiholomorphic with respect to Y , and the same properties follow for Sh(A).
The function Bh plays the role of a modified Bergman kernel. From (4.3) we have:

(4.9) Bh(X,U, V,X) = e−
1
2h (X−V )(X−U)− 1

2h |U−V |2 .

We verify that:

hm/2|∇α
XBh(X,U, V,X)| ≤ CmKm(X,U, V, h)e−

1
4h |U−V |2 ,

where m = |α| and

Km(X,U, V, h) =
(

1 +
|X − U | + |X − V |√

h

)m

e−
1
4h (|X−U |2+|V −X|2).

Applying (4.7) restricted to the diagonal X = Y , it follows that:
(4.10)

hm/2
∣

∣

∣∇α
Xσ

wick
h (A)(X)

∣

∣

∣ ≤ C(2πh)−2n

∫

IR4n

|〈AΨU,h,ΨV,h〉|Km(X,U, V, h) dUdV.

Bounding from above |〈AΨU,h,ΨV,h〉| by the norm of A, we then obtain (4.1). �

Proposition 4.2. If A is in L1(H), then its Wick symbol σwick
h (A) belongs to W∞,1

(IR2n). For each multi-index α, there exists Cα > 0 such that:

(4.11) (2πh)−n‖∇ασwick
h (A)‖L1(IR2n) ≤ Cαh

−α
2 ‖A‖L1(H).

Inequality (4.11) is proved when α = 0 by Rondeaux [14].
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Proof. Similarly to Proposition 4.1, we have inequality (4.10). Integrating with respect
to X we obtain:

hm/2(2πh)−n‖∇ασwick
h (A)‖L1(IR2n)

≤ Cα(2πh)−2n

∫

IR4n

|〈AΨU,h,ΨV,h〉Gm

(

U − V√
h

)

dUdV

where

Gm(U) = (1 + |U |)me−
|U|2

8 ,

where m = |α|.
Since the function Gm is in L1(IR2n), Proposition 4.2 is a consequence of the

following lemma.

Lemma 4.3. Let A be a trace class operator and G be a function in L1(IR2n). Then
we have:

(2πh)−2n

∫

IR4n

∣

∣

∣ < AΨX,h,ΨY,h > G

(

X − Y√
h

)

∣

∣

∣dXdY(4.12)

≤ (2π)−n‖G‖L1(IR2n)‖A‖L1(H).

Proof. We can write A = B1B2 where B1 and B2 are two Hilbert–Schmidt operators.
Using the fundamental identity (4.6) verified by the coherent states we see that, for
all X and Y in IR2n,

〈AΨX,h,ΨY,h〉 = 〈B2ΨX,h, B
�
1ΨY,h〉 = (2πh)−n

∫

IR2n

uZh(X) vZh(Y ) dZ,

where we have set uZh(X) = 〈B2ΨX,h,ΨZ,h〉 and vZh(X) = 〈ΨZ,h, B
�
1ΨX,h〉. Let Ih

be the left-hand side of (4.12). From Schur lemma,

Ih ≤ (2πh)−3nhn‖G‖L1(IR2n)

∫

IR2n

‖uZh‖L2(IR2n) ‖vZh‖L2(IR2n)dZ.

From (4.6), we have ‖uZh‖L2(IR2n) = (2πh)n/2‖B�
2ΨZ,h‖ and ‖vZh‖L2(IR2n) = (2πh)n/2

‖B1ΨZ,h‖. Consequently,

Ih ≤ (2πh)−2nhn‖G‖L1(IR2n)

∫

IR2n

‖B1ΨZ,h‖ ‖B�
2ΨZ,h‖ dZ.

From the basic identity (4.6) for coherent states,

(2πh)−n

∫

IR2n

‖BjΨZ,h‖2dZ = (2πh)−n

∫

IR2n

〈B�
jBjΨZ,h,ΨZ,h〉 dZ

= Tr(B�
jBj) = ‖Bj‖2

L2(H),

where ‖Bj‖L2(H) is the Hilbert–Schmidt norm of Bj . Therefore,

Ih ≤ (2π)−n‖G‖L1(IR2n) ‖B1‖L2(H) ‖B2‖L2(H).

Taking the infimum over all A written as A = B1B2 we then obtain (4.12). �

Let us now recall and give a short proof of the following proposition, even if it is
standard.
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Proposition 4.4. The Wick symbol σwick
h (A) of an operator A is related to its Weyl

symbol σweyl
h (A) by:

(4.13) σwick
h (A) = e

h
4 Δσweyl

h (A),

where Δ is the Laplacian on IR2n.

Indeed, setting Fh = σweyl
h (A), the expression in definition (1.7) for the Weyl

calculus may be written as:

(4.14) A = (πh)−n

∫

IR2n

Fh(Y )ΣY hdY

where, for all Y = (y, η) in IR2n, ΣY h is the symmetry operator defined by:

(4.15) (ΣY hf)(u) = e
2i
h (u−y)ξf(2y − u), Y = (y, η) ∈ IR2n.

A direct computation shows that:

(4.16) σwick
h (ΣY h)(X) =< ΣY hΨX,h,ΨX,h >= e−

|X−Y |2
h .

Equality (4.13) then follows.

5. PDO approximation

In this section, we shall show that the class of operators having a Weyl symbol in
W∞,1(IR2n) (introduced by Rondeaux) is dense in the set of trace class operators,
similarly to the fact that W∞,1(IRn) is dense in L1(IRn). The PDO approximation
used for the proof is strongly connected with convolutions and may probably be also
applied to Schatten classes. This technique is often employed in representation theory.
However, as a function in L∞(IRn) needs to be continuous in order to be in the closure
of W∞,∞(IRn), a bounded operator needs additional hypotheses in order to be in the
closure of the class of Calderón–Vaillancourt operators.

For all X = (x, ξ) in IR2n and for all h > 0 let Wx,ξ,h be the operator defined by:

(5.1) (WX,hf)(u) = (Wx,ξ,hf)(u) = f(u− x)e
i
h u.ξ− i

2h x.ξ,

for all f ∈ L2(IRn). It is a standard representation of the Heisenberg group. Thus,
the coherent state ΨX,h verifies:

(5.2) ΨX,h = WX,hΨ0,h.

We have, for all X and Y in IR2n,

(5.3) WX,hWY,h = e
i

2h σ(X,Y )WX+Y,h,

where σ is the symplectic form σ((x, ξ), (y, η)) = y.ξ − x.η. For all operators A in
L(H) and for all h > 0 let us define:

(5.4) ThA = (πh)−n

∫

IR2n

e−
|X|2

h WX,hAW
�
X,h dX.

We note that without further hypotheses 〈ThAφ,ψ〉 makes sense for φ and ψ in
S(IRn).

We begin with the case of bounded and trace class operators. Some mild hypotheses
on their commutators with position and momentum operators are needed.
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Theorem 5.1. (a) We have:

(5.5) ‖ThA‖L(H) ≤ ‖A‖L(H),

for all operators A in L(H) and for all h > 0.
(b) When the commutators [Pj(h), A] and [Qj(h), A] are bounded operators we

have:

(5.6) ‖A− ThA‖L(H) ≤
C√
h

n
∑

j=1

‖[Pj(h), A]‖L(H) + ‖[Qj(h), A]‖L(H).

(c) When the operator A is trace class together with the commutators [Pj(h), A]
and [Qj(h), A], we have:

(5.7) ‖A− ThA‖L1(H) ≤
C√
h

n
∑

j=1

‖[Pj(h), A]‖L1(H) + ‖[Qj(h), A]‖L1(H).

(d) The Wick symbol of the operators A and ThA are related with:

(5.8) σwick
h (ThA) = e

h
4 Δσwick

h (A).

The Weyl symbol of ThA is equal to the Wick symbol of A.

Proof. Point (a) is clear since WXh is unitary. For any θ in [0, 1] define:

T (θ, h)A = (πh)−n

∫

IR2n

e−
|X|2

h WθX,hAW
�
θX,h dX.

Thus, T (1, h)A = ThA and T (0, h)A = A. We verify that:

∂

∂θ
WθX,hAW

�
θX,h =

i

h

n
∑

j=1

[

xjWθX,h[Pj(h), A]W �
θX,h − ξjWθX,h[Qj(h), A]W �

θX,h

]

.

Consequently,

‖A− ThA‖L(H) ≤
1
h

n
∑

j=1

(πh)−n

∫

IR2n×[0,1]

e−
|X|2

h

[

|xj | ‖[Pj(h), A]‖L(H)

+ |ξj | ‖[Qj(h), A]‖L(H)

]

dxdξdθ

≤ C√
h

n
∑

j=1

‖(adPj(h))A‖L(H) + ‖(adQj(h))A‖L(H),

proving point (b) and also point (c) with straightforward modifications. For the point
(d) we see that:

σwick
h (ThA)(X) = 〈(ThA)ΨX,h,ΨX,h〉 = 〈(ThA)WX,hΨ0,h,WX,hΨ0,h〉

= (πh)−n

∫

IR2n

e−
|Y |2

h 〈WY,hAW
�
Y,hWX,hΨ0,h,WX,hΨ0,h〉 dY

= (πh)−n

∫

IR2n

e−
|Y |2

h 〈AWX−Y,hΨ0,h,WX−Y,hΨ0,h〉dY.

We have used here (5.3). Consequently,

σwick
h (ThA)(X) = (πh)−n

∫

IR2n

e−
|Y |2

h σwick
h (A)(X − Y )dY,
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which is (5.8). According to Proposition 4.4 we also have:

σwick
h (ThA) = e

h
4 Δσweyl

h (ThA).

Since the operator e
h
4 Δ is one to one, we deduce as it is mentioned that σweyl

h (ThA) =
σwick

h (A). �

Next, we consider the case of trace class operators without additional assumptions.
The result below does not have any counterpart in the case of bounded operators.

Theorem 5.2. The space of operators written as OPweyl
h (F ) with F in W∞,1(IR2n)

is dense in the space L1(H) of trace class operators.

Proof. For this purpose, we modify the PDO approximation and we set:

T ′
λA = (πλ)−n

∫

IR2n

e−
|X|2

λ WX,1AW
�
X,1 dX,

for all λ > 0 and for all trace class operators A. Let us show that:

(5.9) lim
λ→0

‖T ′
λ(A) −A‖L1(H) = 0,

for all trace class operators A. Since we clearly have

A = (πλ)−n

∫

IR2n

e−
|X|2

λ A dX

then we see that,

‖T ′
λ(A) −A‖L1(H) ≤ (πλ)−n

∫

|X|<δ

e−
|X|2

λ ‖WX,hAW
�
X,h −A‖L1(H) · · ·

+ (πλ)−n

∫

|X|>δ

e−
|X|2

λ

[

‖WX,λAW
�
X,h‖L1(H) + ‖A‖L1(H)

]

dX,

for all δ > 0 and for all λ > 0. For all trace class operators A and for all ε > 0, there
exists δ > 0 such that:

|X| < δ =⇒ ‖WX,1AW
�
X,1 −A‖L1(H) < ε.

Indeed, this property is first verified when A is of the form f → <f, ϕ> ψ with ϕ
and ψ in S(IRn), it is next derived by density for finite-rank operators and then, by
density again for trace class operators. Besides, δ > 0 being fixed, we have:

lim
λ→0

(πλ)−n

∫

|X|>δ

e−
|X|2

λ

[

‖WX,1AW
�
X,1‖L1(H) + ‖A‖L1(H)

]

dX = 0.

The limit in (5.9) is then easily obtained. From (5.3), for all X in IR2n we have:

WX,1T ′
λ(A)W �

X,1 = (πλ)−n

∫

IR2n

e−
|Y |2

λ WX+Y,1AW
�
X+Y,1 dY

= (πλ)−n

∫

IR2n

e−
|X−Z|2

λ WZ,1AW
�
Z,1 dZ.
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Consequently, for all λ > 0, the mapping X →WX,1T ′
λ(A)W �

X,1 is C∞ from IR2n into
L1(H). We see, setting X = (x, ξ) as the variable of IR2n:

∂

∂xj
WX,1T ′

λ(A)W �
X,1 = −WX,1

[

Pj(1), T ′
λ(A)

]

W �
X,1

∂

∂ξj
WX,1T ′

λ(A)W �
X,1 = WX,1

[

Qj(1), T ′
λ(A)

]

W �
X,1,

where Pj(1) is the operator of differentiation with respect to uj and Qj(1) is the
multiplication operator by uj . Consequently, all order iterated commutators T ′

λ(A)
with the position and momentum operators Pj(1) and Qj(1) are trace class. From the
result of characterization of Rondeaux [14] (the analogue of Beals characterization
for trace class operators) it follows that T ′

λ(A) is written as Opweyl
1 (Fλ), with Fλ in

W∞,1(IR2n), for all λ > 0. �

6. Proof of Theorem 1.1

Let A be an operator in L(H) satisfying the assumptions in Theorem 1.1. Set Fh(X) =
σwick

h (A)(X). This function is C∞ from Proposition 4.1. Denoting by ϕt the Hamil-
tonian flow associated to the function H(x, ξ) = |ξ|2+V (x), we shall use the following
function and operators:

(6.1) wh(X, t) = Fh(ϕt(X)), Ch(t) = Opweyl
h (wh(., t)).

We shall also use the operator ThA appearing in Section 5 and the following operator:

(6.2) Bh(t) = ei t
h

̂HhTh(A)e−i t
h

̂Hh .

We shall compare Wick symbols of the operators Ah(t), Bh(t) and Ch(t) and then
compare the Wick symbol of C(t, h) with the function wh(., t). This is the purpose of
the three steps below.

First step. We have, from Theorem 5.1,

‖σwick
h (Ah(t) −Bh(t))‖L∞(IR2n) ≤ ‖Ah(t) −Bh(t)‖L(H) = ‖A− Th(A)‖L(H) . . .

(6.3)

≤ C
√
hI∞h (A),

where I∞h (A) is defined in (1.11).
Second step. The comparison of Bh(t) and Ch(t) comes from Egorov theorem.

Nevertheless, this requires some precisions due to unusual estimates satisfied by the
derivatives of wh(., t) that we first need to specify. Since wh(., 0) = σwick

h (A) we deduce
that:

∂wh(., 0)
∂xj

=
i

h
σwick

h ([Pj(h), A]),
∂wh(., 0)
∂ξj

= − i

h
σwick

h ([Qj(h), A]).

Applying Proposition 4.1 to the above commutators, we see when k ≥ 1 that:

‖∇kwh(., 0)‖L∞(IR2n) ≤ Cαβh
1−(k+1)/2I∞h (A).

The derivatives of order greater than one of the Hamiltonian flow ϕt associated to the
symbol H(x, ξ) = |ξ|2 + V (x) are bounded in R

2n with a bound equal to O(1 + t2).
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For every multi-indexes α, there exists Mα(t) such that:

(6.4) ‖∇αwh(., t)‖L∞(IR2n) ≤Mα(t)h1−(α+1)/2I∞h (A).

The operators Bh(t) and Ch(t) satisfy:

−ih∂Bh(t)
∂t

= [ ̂Hh, B(t, h)],(6.5)

−ih∂Ch(t)
∂t

= −ihOpweyl
h (∂twh(., t)) = −ihOpweyl

h ({H,wh(., t)}).

For all functions F and G in W∞,∞(IR2n), let ̂R
(2)
h (F,G) be the operator defined by:

(6.6) [Opweyl
h (F ), Opweyl

h (G)] =
h

i
Opweyl

h ({F,G}) + ̂R
(2)
h (F,G).

From standard results on the Weyl calculus, this operator satisfies the following
estimate:

(6.7) ‖ ̂R
(2)
h (F,G)‖L(H) ≤ C

∑

j≥3,k≥3
6≤j+k≤6n+10

h(j+k)/2‖∇jF‖L∞(IR2n) ‖∇kG‖L∞(IR2n).

It suffices to carefully follow the steps of the proof in [13], or, for a detailed proof, the
appendix B of [1]. With these notations, one may write:

(6.8) −ih∂Ch(t)
∂t

− [ ̂Hh, Ch(t)] = ̂R
(2)
h (H,wh(., t)).

Note that ̂R
(2)
h (Δ, wh(., t)) = 0 and consequently:

̂R
(2)
h (H,wh(., t)) = ̂R

(2)
h (V,wh(., t)).

We then may apply inequality (6.7) with the functions F = V and G = wh(., t). The
inequality (6.7), those in (6.4) which are verified by wh(., t), and the fact that all
derivatives of V are bounded allows us to write:

(6.9) ‖ ̂R
(2)
h (H,Gh(., t))‖L(H) ≤M(t) h3/2 I∞h (A).

From Theorem 5.1, the operator ThA appearing in Section 5 has a Weyl symbol equal
to the Wick symbol of A. Consequently, the Weyl symbol of Bh(0) = Th(A) and the
one of Ch(0), which is Fh = σwick

h (A) are equal. Thus:

(6.10) Bh(0) = Ch(0).

From (6.5), (6.8) and (6.10), Duhamel principle implies:

ih[Bh(t) − Ch(t)] =
∫ t

0

ei t−s
h

̂Hh ̂R
(2)
h (H,Gh(., t)) e−i t−s

h
̂Hh ds.

Consequently, when t > 0,

‖Bh(t) − Ch(t)‖L(H) ≤
1
h

∫ t

0

‖ ̂R
(2)
h (H,Gh(., s))‖L(H)ds.

We then deduce that:

(6.11) ‖σwick
h

(

Bh(t) − Ch(t)
)

‖L∞(IR2n) ≤ ‖Bh(t) − Ch(t)‖L(H) ≤M(t)
√
h I∞h (A).

Third step. From Proposition 4.4,

σwick
h ((Ch(t)) = e

h
4 Δσweyl

h (Ch(t)) = e
h
4 Δwh(., t).
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Then

‖σwick
h ((Ch(t)) − wh(., t)‖L∞(IR2n) ≤

h

4

∫ 1

0

‖Δe θh
4 Δwh(., t)‖L∞(IR2n)

≤ ‖Δwh(., t)‖L∞(IR2n).

In view of the estimates (6.4) satisfied by wh(., t), we obtain:

(6.12) ‖σwick
h (Ch(t)) − wh(., t)‖L∞(IR2n) ≤M(t)

√
hI∞h (A).

Since wh(., t) =
(

σwick
h (A)

)

◦ ϕt, then inequality (1.12) in Theorem 1.1 arises from
(6.3), (6.11) and (6.12).

7. Proof of Theorem 2.1.

Let ρh(t) be a family of solutions to the equation (TDHF) (2.1), satisfying the hy-
potheses of Theorem 2.1. Let uh(., t) be the function defined in (2.3). Let vh(., t) be
the solution to Vlasov equation (2.5) such that vh(., 0) = uh(., 0). We shall use the
functions Vq(., ρh(t)) and Vcl(., vh(., t)) defined in (2.2) and (2.7), respectively. We
shall also use the following functions:

(7.1) HHF
h (x, ξ, t) = |ξ|2 + Vq(x, ρh(t)), HVL

h (x, ξ, t) = |ξ|2 + Vcl(x, vh(., t)),

and the associated operators through the Weyl calculus, namely:

(7.2) ̂HHF
h = −h2Δ + Vq(., ρh(t)), ̂HVL

h = −h2Δ + Vcl(. , vh(., t)),

by using the same notation for the function and the corresponding multiplication
operator. We shall denote by wh(X, t) the solution to

(7.3)
∂wh

∂t
(., t) = {HHF

h (., t), wh(., t)},

such that:

(7.4) wh(., 0) = vh(., 0) = uh(., 0).

In order to compare vh(., t) with wh(., t), we note that the Vlasov equation (2.5) is
written as:

(7.5)
∂vh

∂t
(., t) = {HVL

h (., t), vh(., t)}.

We shall use the operator Bh(t) solution to

(7.6) ih
dBh(t)
dt

= [ ̂HHF
h (t), Bh(t)], Bh(0) = Th(ρh(0)),

where Th is the mapping used in Section 5. Finally, we shall also use the following
operators:

(7.7) Ch(t) = (2πh)nOpweyl
h (wh(., t)), Dh(t) = (2πh)nOpweyl

h (vh(., t)).

According to the point (d) in Theorem 5.1, we have

(7.8) σweyl
h (Bh(0)) = σweyl

h

(

Th(ρh(0))
)

= σwick
h (ρh(0)) = (2πh)nuh(., 0).

Consequently,

(7.9) Bh(0) = Ch(0) = Dh(0).
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Theorem 2.1 will be a consequence of the comparison between the Wick symbol of the
operators ρh(t) and Bh(t), between those of Bh(t) and Ch(t), between those of Ch(t)
and Dh(t), and finally between the Wick symbol of Dh(t) and the function vh(., t).
Each of these comparisons shall be written using the expression Itr

h (ρh(0)) defined
in (2.8), and shall correspond to one step of the proof, but before that, we need three
more lemmas.

Lemma 7.1. Let ρh(t) be a family of solutions to the (TDHF) equation satisfying
the assumptions in Theorem 2.1. Let vh(., t) be the function defined above. Then, for
all integer numbers k ≥ 0 we have:

(7.10) ‖∇kvh(., t)‖L1(IR2n) ≤ Ck(t)h−k/2‖ρh(0)‖L1(H),

and for all integer numbers k ≥ 1,

(7.11) ‖∇kvh(., t)‖L1(IR2n) ≤ Ck(t)h−(k−1)/2Itr
h (ρh(0)).

These estimates remain valid when replacing the function vh(., t) by the function
wh(., t).

Proof of the lemma. Since we have (7.4) for t = 0, then the estimates (7.10) and (7.11)
when t = 0 come from Proposition 4.2 applied with the operator ρh(0) (for (7.10)) and
with the commutators [Pj(h), ρh(0)] and [Qj(h), ρh(0)] (for (7.11)). Since the poten-
tials V and W are in W∞,∞(IRn), then the functions Vq(., ρh(t)) and Vcl(., vh(., t)) are
uniformly bounded together with all of their derivatives. Consequently, the estimates
satisfied at t = 0 by vh(., 0) = wh(., 0) remain valid along the Hamiltonian flows
associated to the two symbols HHF

h (., t) and HV L
h (., t). Thus, the estimates (7.10)

and (7.11) remain valid for all t for the function vh(., t) and the function wh(., t). �

Lemma 7.2. If W is a function in W∞,∞(IRn), if we denote by Wx the multiplication
by y →W (x− y) and if A is trace class, then

(7.12) e
h
4 ΔxTr(Wx ◦A) = (2πh)−n

∫

IR2n

W (x− y)σwick
h (A)(y, η)dydη.

Proof. Let us begin by the case, A = Opweyl
h (F ) with F in W∞,1(IR2n). Then, if W

is as in the lemma, by (3.2) we have:

Tr(Wx ◦A) = (2πh)−n

∫

IR2n

W (x− y)σweyl
h (A)(y, η)dydη,

and then

e
h
4 ΔxTr(Wx ◦A) = (2πh)−n

∫

IR2n

W (x− y)e
h
4 Δxσweyl

h (A)(y, η) dy dη.

Besides,
∫

IR2n

W (x− y) (e
h
4 Δη − I) σweyl

h (A)(y, η) dy dη = 0,

and taking into account Proposition 4.4 we deduce (7.12). Suppose now that A is
an arbitrarily given trace class operator. Then Theorem 5.2 shows that there exists
a sequence of operators Aj , written as, Aj = Opweyl

h (Fj) with Fj in W∞,1(IR2n),
converging to A in L1(H), (h > 0 being fixed). Equality (7.12) valid for all the Aj is
also true for A when taking the limit while using Proposition 4.2. �
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Lemma 7.3. With the above notations, we have:
(7.13)

‖vh(., t)−wh(., t)‖L1(IR2n) ≤ C(t)Itr
h (ρh(0))

[

h+
∫

[0,t]

‖vh(., s) − uh(., s)‖L1(IR2n)ds

]

.

Proof. We deduce from (7.3) and (7.5) that:

∂(vh − wh)
∂t

(., t) = {HHF
h (., t), (vh(., t)−wh(., t))}+ {(HHF

h (., t)−HVL
h (., t)), vh(., t)}.

From Duhamel principle, since vh(., 0) − wh(., 0) = 0 and since the Hamiltonian flow
associated to the function HHF

h (., t) preserves the norm of L1(IR2n), we obtain

‖vh(., t) − wh(., t)‖L1(IR2n) ≤
∫

[0,t]

‖{HHF
h (., s) −HVL

h (., s) , vh(., s)}‖L1(IR2n)ds.

We have:

HHF
h (., s) −HVL

h (., s) = (I − e
h
4 Δx)Tr(Wx ◦ ρh(t)) + e

h
4 ΔxTr(Wx ◦ ρh(t))

−
∫

IR2n

W (x− y)vh(y, η, t) dy dη.

From Lemma 7.2, we have:

e
h
4 ΔxTr(Wx ◦ ρh(t)) =

∫

IR2n

W (x− y) uh(y, η, t) dy dη.

We then deduce:

HHF
h (x, ξ, s) −HVL

h (x, ξ, s) = (I − e
h
4 Δx)Tr(Wx ◦ ρh(t)) · · ·

+
∫

IR2n

W (x− y)
(

uh(y, η, t) − vh(y, η, t)
)

dy dη.

In view of the preceding points,

‖vh(., t) − wh(., t)‖L1(IR2n)

≤ C

∫

[0,t]

‖∇vh(., s)}‖L1(IR2n)

[

h+ ‖uh(., s) − vh(., s)‖L1(IR2n)

]

ds.

From Lemma 7.1 (with k = 1) we then deduce (7.13). �

End of the proof of Theorem 2.1. First step. With the above notations (TDHF)
equation is written as:

ih
dρh(t)
dt

= [ ̂HHF
h (t), ρh(t)].

We consequently have:

ih
d(ρh(t) −Bh(t))

dt
= [ ̂HHF

h (t), (ρh(t) −Bh(t))].

Since the propagator associated to this equation preserves the trace norm, and since
Bh(0) = Th(ρh(0)), we then deduce that:

‖ρh(t) −Bh(t)‖L1(H) ≤ ‖ρh(0) − Th(ρh(0))‖L1(H).
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Consequently, from the Proposition 4.2 (with α = 0) and Theorem 5.1 (point c)),
(7.14)
(2πh)−n‖σwick

h

(

ρh(t)−Bh(t)
)

‖L1(IR2n) ≤ ‖ρh(0)−Th(ρh(0))‖L1(H) ≤ C
√
hItr

h (ρh(0)).

Second step. We shall bound in norm Bh(t)−Ch(t), and towards this aim, we shall
show that Bh(t) and Ch(t) verify similar equations. The operator Bh(t) verifies (7.6)
whereas:

ih
dCh(t)
dt

= ih(2πh)nOPweyl
h ({HHF

h (., t), wh(., t)}).

With the notation (6.6) we have:

OPweyl
h (HHF

h (., t)), OPweyl
h (wh(., t))]

=
h

i
OPweyl

h ({HHF
h (., t), wh(., t)}) + ̂R

(2)
h (HHF

h (., t), wh(., t)).

Consequently,

(7.15) ih
dCh(t)
dt

− [ ̂HHF
h (t), Ch(t)] = (2πh)n

̂R
(2)
h (HHF

h (., t), wh(., t)).

We know that R(2)
h (F,G) = 0 for all functions G when F (x, ξ) = |ξ|2. We can then

replace HHF
h (., t) by Vq(., ρh(t)) in the right-hand side of (7.15). By combining (7.15)

with equation (7.6) verified by Bh(t) and using Duhamel principle and (7.4), we obtain

‖Bh(t) − Ch(t)‖L1(H) ≤
1
h

(2πh)n

∫

[0,t]

‖ ̂R
(2)
h (Vq(., ρh(s)), wh(., s))‖L1(H)ds.

From Theorem 3.1 of [1] applied with N = 2, F = Vq(., ρh(s)), G = wh(., s), p = ∞,
q = 1, we have

‖ ̂R
(2)
h (Vq(., ρh(s)), wh(., s))‖L1(H)

≤ Ch−n
∑

α+β≤6n+10
α≥3,β≥3

h(α+β)/2‖∇αVq(., ρh(s))‖L∞(IRn) ‖∇βwh(., s)‖L1(IR2n).

Since the potentials V and W are in W∞,∞(IRn) and since the L1(IR2n) norm of
wh(., s) is bounded (Lemma 7.1) then the derivatives of all order of Vq(., ρh(s)) are
bounded. For β ≥ 1, the function ∇βwh(., s) verifies the estimates (7.11) of Lemma
7.1. Consequently, when h ∈ (0, 1],

‖ ̂R
(2)
h (Vq(., ρh(s)), wh(., s))‖L1(H) ≤ C(s)h3/2Itr

h (ρh(0)).

Consequently,
‖Bh(t) − Ch(t)‖L1(H) ≤ C(t)

√
hItr

h (ρh(0)).
We then deduce (from the Proposition 4.2 with α = 0) that:

(7.16) (2πh)−n
∥

∥

∥σwick
h

(

Bh(t) − Ch(t)
)

∥

∥

∥

L1(IR2n)
≤ C(t)

√
hItr

h (ρh(0)).

Third step. From the Proposition 4.4, we have

(2πh)−n‖σwick
h (Ch(t) −Dh(t))‖L1(IR2n)

≤ ‖eh
4 Δ(vh(., t) − wh(., t)‖L1(IR2n) ≤ ‖(vh(., t) − wh(., t)‖L1(IR2n).
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Then, from Lemma 7.2,

(2πh)−n‖σwick
h (Ch(t) −Dh(t))‖L1(IR2n)(7.17)

≤ CIh(ρh(0))

[

h+
∫

[0,t]

‖uh(., s) − vh(., s)‖L1(IR2n)ds

]

.

Fourth step. From Proposition 4.4, we have

(2πh)−nσwick
h (Dh(t)) = (2πh)−ne

h
4 Δσweyl

h (Dh(t)) = e
h
4 Δvh(., t).

Consequently, from the Lemma 7.1 with k = 2, we obtain

‖vh(., t) − (2πh)−nσwick
h (Dh(t)‖L1(IR2n) ≤ ‖(eh

4 Δ − I)vh(., t)‖L1(IR2n) ≤ . . .(7.18)

≤ Ch‖∇2vh(., t)‖L1(IR2n) ≤ C(t)
√
hItr

h (ρh(0)).

Since uh(., t) is defined by (2.3), we get from estimates (7.14), (7.16), (7.17) and (7.18)
obtained in the four steps that:

‖uh(., t) − vh(., t)‖L1(IR2n)

≤ C(t)Itr
h (ρh(0))

[

√
h+

∫

[0,t]

‖uh(., s) − vh(., s)‖L1(IR2n)ds

]

.

From Gronwall lemma, we have

‖uh(., t) − vh(., t)‖L1(IR2n) ≤ C(t)
√
hItr

h (ρh(0))eC(t)Ih(ρh(0)),

when h ∈ (0, 1], with a different constant C(t). Theorem 2.1 is complete. �
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[8] M. Combescure and D. Robert, Quadratic quantum Hamiltonians revisited, Cubo 8(1) (2006),
61–86.
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