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ON THE MOTIVIC DONALDSON–THOMAS INVARIANTS OF
QUIVERS WITH POTENTIALS

Sergey Mozgovoy

Abstract. We study motivic Donaldson–Thomas invariants for a class of quivers with
potentials using the strategy of Behrend et al. [1]. This class includes quivers with
potentials arising from consistent brane tilings and quivers with zero potential. Our
construction is an alternative to the constructions of Kontsevich and Soibelman [8, 9].

We construct an integration map from the equivariant Hall algebra to the quantum
torus and show that our motivic Donaldson–Thomas invariants are images of the nat-
ural elements in the equivariant Hall algebra. We show that the inegration map is an

algebra homomorphism and use this fact to prove the Harder–Narasimhan relation for
the motivic Donaldson–Thomas invariants.

1. Introduction

The goal of this paper is to study the motivic Donaldson–Thomas invariants for
some class of quivers with (polynomial) potentials (Q,W ) using the approach of
Behrend et al. [1]. These invariants are constructed using the motivic vanishing cycles
of functions on smooth moduli spaces of stable quiver representations. The function
w : M st

θ (Q,α) → C in question is the trace of the potential. It was proved in [1]
that if w is equivariant with respect to an appropriate torus action, then the motivic
vanishing cycle of w can be computed as

[ϕw] = [w−1(1)] − [w−1(0)].

We will show that under certain conditions on the potential, we can introduce a
weight function on the arrows, so that the corresponding torus action on the moduli
space will satisfy all the required conditions. Therefore, the above equation will hold
in this situation. Using the right-hand side of this equation for the definition of the
motivic Donaldson–Thomas invariants and organizing these invariants as elements
of the quantum torus, we will show that they can be obtained as images of some
natural elements of the equivariant Hall algebra of the quiver Q with respect to an
algebra homomorphism (called an integration map) from the equivariant Hall algebra
to the quantum torus. Our integration map is closely related to the integration map
of Reineke [15] from the whole Hall algebra of Q to the quantum torus. These maps
coincide in the case of a trivial potential (see [9, 11] on the discussion of the motivic
Donaldson–Thomas invariants in this case). In fact, the integration map of Reineke
is an important ingredient in our construction.

We should stress, that our construction is quite different from the construction of
Kontsevich and Soibelman [8], where an integration map from the Hall algebra of the
category of modules over the Jacobian algebra to the quantum torus was defined. Our
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approach is probably less natural, because we use the Hall algebra of the category
of quiver representations in order to define some invariants of the moduli spaces of
modules over the Jacobian algebra. However, it does the job — all the constructions
are quite elementary, the algebra homomorphism property of the integration map is
almost obvious, and the relations in the equivariant Hall algebra of the quiver (e.g. the
Harder–Narasimhan relations) can be translated to the relations in the quantum torus,
thus giving us relations between motivic Donaldson–Thomas invariants for different
stability parameters. In the last part of the paper, we will see how our constructions
can be generalized to arbitrary potentials, at least over finite fields. We expect that our
invariants agree with the invariants of Kontsevich and Soibelman. For more discussion
on this subject see [1, Section 2.5] and [4, Section 7.3].

While preparing this paper, I was informed by Kentaro Nagao on his related
work [14] on the extension of the approach from [1] to more general quivers with
potentials.

2. Preliminaries

2.1. Bilinear forms related to quivers. Let Q = (Q0, Q1) be a quiver. We define
the Euler–Ringel form to be the bilinear form on Z

Q0 given by

χ(α, β) =
∑

i∈Q0

αiβi −
∑

a:i→j
αiβj , α, β ∈ Z

Q0 .

We define the skew-symmetric form

〈α, β〉 = χ(α, β) − χ(β, α) α, β ∈ Z
Q0 .

We define the Tits form T (α) = χ(α, α), α ∈ Z
Q0 .

2.2. Representations of quivers with potentials. Let (Q,W ) be a quiver with
potential and let JW = kQ/(∂W ) be the corresponding Jacobian algebra over a field
k. A representation M of Q over a field k can be represented as

M = ((Mi)i∈Q0 , (Ma)a∈Q1),

where Mi are k-vector spaces and Ma : Ms(a) →Mt(a) are linear maps (for any arrow
a ∈ Q1, we denote its source by s(a) and denote its target by t(a)). Let W =

∑
auu,

where the sum runs over a finite number of cycles u in Q. We define

w(M) =
∑

au tr(Mu),

where for any path u = a1 . . . an, we define Mu = Ma1 . . .Man . Note that for any
exact sequence of representations of Q

0 → N → X →M → 0

we have w(X) = w(M) + w(N). Therefore, we get a map

w : K0(Rep(Q, k)) → k.

For any α ∈ Z
Q0 , we define the space of representations

R(Q,α) =
⊕

a:i→j
Hom(kαi , kαj ),
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where the sum runs over all arrows of Q. There is a map

w : R(Q,α) → k, M �→ w(M),

which is invariant under the action of GLα(k) =
∏
i∈Q0

GLαi(k) on R(Q,α) by con-
jugation. The following result is well-known [18, Proposition 3.8]

Lemma 2.1. A representation M ∈ R(α,C) is in the degeneracy locus of w (i.e.,
dw(M) = 0) if and only if M is a representation of the Jacobian algebra JW .

2.3. Moduli spaces. Let θ ∈ R
Q0 be some fixed vector. For any α ∈ N

Q0\{0}, we
define

μθ(α) =
θ · α∑
αi
.

For any nonzero Q-representation M , we define μθ(M) = μθ(dimM), where dimM =
(dimMi)i∈Q0 ∈ N

Q0 is the dimension vector of M . We say that a representation M
is semistable (resp. stable) if for any 0 �= N � M we have μθ(N) ≤ μθ(M) (resp.
μθ(N) < μθ(M)).

Let M sst
θ (Q,α) (resp. M st

θ (Q,α)) be the moduli space of θ-semistable (resp. stable)
representations of Q having dimension vector α. Let Msst

θ (Q,α) be the stack of
θ-semistable representations of Q of dimension α. The potential map w : R(Q,α) → C

descends to w : M sst
θ (Q,α) → k and w̃ : Msst

θ (Q,α) → k (the reason is that w is
additive with respect to exact sequences of modules and therefore w is constant on
the classes of S-equivalence). It follows from Lemma 2.1 that the degeneracy lo-
cus of w : M st

θ (Q,α) → k coincides with the moduli space M st
θ (JW , α) of θ-stable

JW -modules having dimension vector α.
We say that θ is α-generic if for any 0 < β < α we have μθ(β) �= μθ(α). Then any

semistable Q-representation of dimension α is automatically stable.

2.4. Weights. Let wt : Q1 → N be some map, which we will call a weight function.
For any path u = a1 · · · an we define wt(u) =

∑
wt ai. We extend the weight function

also to wt : Z
Q1 → Z by linearity.

Remark 2.2. Throughout this paper we assume that the potentialW is homogeneous
of weight 1 with respect to wt. This means that for W =

∑
u auu we have wt(u) = 1

whenever au �= 0.

Remark 2.3. Such choice of weight function is always possible for quivers with
potentials arising from consistent brane tilings [13]. For example, we can choose a
weight function corresponding to the perfect matching of the associated bipartite
graph (define the weight of an arrow to be equal 1 if it is in the perfect matching and
zero otherwise).

For any representation M and an element t ∈ Gm, we define a new representation
tM as follows:

(tM)i = Mi, i ∈ Q0, (tM)a = twt(a)Ma, a ∈ Q1.

This defines action of Gm on R(Q,α) and on M sst
θ (Q,α). If M is a representation of

the Jacobian algebra JW then so also is tM . Note that

(2.1) w(tM) = tw(M).
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3. Motivic vanishing cycle

Let K0(VarC) be the Grothendieck group of varieties [1, 5]. It has a natural ring
structure. Define the motivic ring to be MC = K0(VarC)[L−

1
2 ]. Similarly, let Mμ̂

C
be

the monodromic motivic ring [1, 5]. For any regular function f : X → C on a smooth
variety X, Denef and Loeser [5] defined the motivic vanishing cycle [ϕf ] ∈ Mμ̂

C
of f .

The following result can be used to compute [ϕf ].

Theorem 3.1 ([1, Proposition 1.11]). Let f : X → C be a regular function on a
smooth variety X. Assume that X admits a C

∗-action such that f is C
∗-equivariant

i.e. , f(tx) = tf(x) for t ∈ C
∗, x ∈ X, and such that there exist limits limt→0 tx for

all x ∈ X. Then
[ϕf ] = [f−1(1)] − [f−1(0)] ∈ MC ⊂ Mμ̂

C
.

Remark 3.2. In [1, Proposition 1.11] there is also a requirement thatXC
∗

is compact.
But, as it is mentioned after [1, Proposition 1.11], this condition can be dropped.

Let (Q,W ) be a quiver with a potential and let wt : Q1 → N be a weight function
as in Remark 2.2. Given α ∈ N

Q0 and stability parameter θ ∈ R
Q0 , the moduli

space M sst
θ (Q,α) has a C

∗-action induced by the weight function. We will show in
Lemmma 3.4 that this action satisfies the conditions of Theorem 3.1 for the function
w : M sst

θ (Q,α) → C if θ is α-generic.

Remark 3.3. It follows from the assumption that θ is α-generic that all modules in
M sst
θ (Q,α) are θ-stable and that M sst

θ (Q,α) is smooth. The fact that

w : M sst
θ (Q,α) → C

is C
∗-equivariant follows from (2.1).

Lemma 3.4. Let α ∈ N
Q0 and let θ ∈ R

Q0 be α-generic. Then for any [M ] ∈
M sst
θ (Q,α) there exists the limit limt→0 t[M ].

Proof. Let M0(Q,α) = R(Q,α)//GLα. Then M0(Q,α) is affine and there is a canon-
ical projective map π : M sst

θ (Q,α) → M0(Q,α) (see [7]). For any [M ] ∈ M0(Q,α)
there exists the limit limt→0 t[M ] as it exists already in R(Q,α). Indeed, for any point
M ∈ R(Q,α) we have limt→0 tM = M ′, where M ′a = 0 if wt(a) > 0 and M ′a = Ma if
wt(a) = 0 for a ∈ Q1. Now our statement follows from the properness of π. �

Remark 3.5. It is not true in general, that for any M ∈ Rsst
θ (Q,α) ⊂ R(Q,α) there

exists the limit limt→0 tM in Rsst
θ (Q,α). Therefore we do not formulate analogous

statement for the moduli stacks of representations. For example, consider the quiver
Q with two vertices 1, 2 and one arrow a : 1 → 2. Let α = (1, 1), θ = (1,−1) and let
the action of C

∗ on R(Q,α) be given by multiplication. Then M sst
θ (Q,α) consists of

one point [M ], which is an isomorphism class of the representation M = [C 1−→ C]. The
limit limt→0 t[M ] exists and coincides with [M ]. On the other hand, Rsst

θ (Q,α) consists
of representations Ms = [C s−→ C], s ∈ C

∗, and the limit limt→0 tM1 = [C 0−→ C] is not
contained in Rsst

θ (Q,α).

In the next theorem, we will show that M sst
θ (Q,α)C

∗
is compact. It is not necessary

for the other results of this paper. The additional condition that wt : Q1 → N is
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positive on every cycle is satisfied, in particular, for quivers with potentials arising
from brane tilings; see Remark 2.3.

Theorem 3.6. Let α ∈ N
Q0 and let θ ∈ R

Q0 be α-generic. Assume that the weight
function wt : Q1 → N is positive on every cycle. Then the subvariety of C

∗-invariant
points of M sst

θ (Q,α) is a projective variety.

Proof. We follow the strategy of [17]. In the first part of the proof we will consider
a general weight function wt : Q1 → Λ, where Λ is a free finitely generated abelian
group. It induces an action of the torus T = HomZ(Λ,C∗) on Msst

θ (Q,α). The group
Λ is a group of characters of T and we will denote the pairing between T and Λ by
(t, λ) �→ tλ.

Let [M ] ∈M sst
θ (Q,α) be some T -invariant point. It is represented by some θ-stable

M ∈ R(Q,α). There is a natural action of the group Gα =
∏
i∈Q0

GLαi on R(Q,α)
by conjugation. As M is stable, the stabilizer of M is given by C

∗ ⊂ Gα embedded
diagonally. Let PGα = Gα/C

∗. By our assumption for any t ∈ T there exists some
g = (gi)i∈Q0 ∈ GLα such that for any arrow a : i→ j in Q

(tM)a = gjMag
−1
i .

Let H ⊂ T × PGα be the subgroup of all elements (t, g) satisfying this condition.
Then p1 : H → T is surjective by our assumption. On the other hand, its kernel is
trivial and therefore p1 is an isomorphism. The composition

ψ : p2 ◦ p−1
1 : T → PGα

can be lifted to ψ : T → Gα [19]. We split ψ to components ψi : T → GL(Mi), i ∈ Q0

and decompose every Mi with respect to the character group Λ of T

Mi =
⊕

λ∈Λ

Mi,λ, i ∈ Q0.

One can see that for any arrow a : i→ j we have

(3.1) Ma(Mi,λ) ⊂Mj,λ+wt a.

Conversely, assume that such a grading on M exists. The Λ-grading of Mi induces a
group homomorphism ψi : T → GL(Mi) given by

ψi(t)m = tλm, m ∈Mi,λ.

Given t ∈ T , let g = (gi)i∈Q0 = (ψi(t))i∈Q0 . Equation (3.1) implies that for any arrow
a : i→ j and any m ∈Mi,λ we have

(tM)am = twt aMam = ψj(t)Maψi(t)−1m = gjMag
−1
i m.

This means that M is T -invariant in M sst
θ (Q,α).

If ψ′ is a different lift of ψ, then ψ′ψ−1 : T → C
∗. It can be considered as an

element in Λ. This element defines a shift in Λ-gradings of M corresponding to ψ and
ψ′. Thus, a Λ-grading of a T -invariant representation in M sst

θ (Q,α) is defined only up
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to shifts by elements in Λ. Using this shift we can assume that Mi0,0 �= 0, for some
i0 ∈ Q0.

Let now Λ = Z and wt : Q1 → Z be as in the assumption of the theorem. There
exists a boundary N such that Mi,n = 0 for i ∈ Q0, |n| > N . For example, we can
take

N = |α|m, |α| =
∑

i∈Q0

αi = dimM, m = max
a∈Q1

wt a.

Indeed, if there exists say n0 > N such that Mi,n0 �= 0 for some i ∈ Q0, then there
exists 0 ≤ k < k + m < n0 such that Mi,n = 0 for all i ∈ Q0, k + 1 ≤ n ≤ k + m.
However, then M is a direct sum of two submodules

⊕

i∈Q0,n≤k
Mi,n,

⊕

i∈Q0,n>k+m

Mi,n,

where the first submodule is nonzero because Mi0,0 �= 0. This contradicts the stability
of M .

The grading of M allows us to construct a representation M̂ of the following quiver
Q̂. Its vertices are pairs

(i, n), i ∈ Q0, −N ≤ n ≤ N

and its arrows are pairs

(a, n) : (i, n) → (j, n+ wt(a)), (a : i→ j) ∈ Q1, −N ≤ n ≤ n+ wt a ≤ N.

The dimension vector of M̂ equals α̂ ∈ Z
Q̂1 given by α̂i,n = dimMi,n.

It is clear that M̂ is stable with respect to the stability condition θ̂ defined by
θ̂i,n = θi. Conversely, given a θ̂-stable representation M̂ of the quiver Q̂ of dimension
α̂, we can construct a representation M of the quiver Q of dimension α which is
fixed by C

∗. We claim, that M is θ-stable (or, equivalently, θ-semistable). If this
is wrong then there exists a destabilizing semistable submodule N ⊂ M coming
from the Harder–Narasimhan filtration. It follows from the uniqueness of the Harder–
Narasimhan filtration that N is actually C

∗-invariant. Let U ⊂ N be some stable
submodule. For any t ∈ C

∗, the stable representation tU is a submodule of tN � N .
It follows that tU, t ∈ C

∗, form a direct sum in N (because they are simple objects
in the category of semistable modules having the same slope as N). As N is finite-
dimensional, the orbit tU, t ∈ C

∗, in the moduli space of stable modules should be
finite. However, it is an image of a connected group C

∗, so the orbit consists of just
one element. This implies that U is C

∗-invariant. The same argument as earlier for
the module M shows that U has a Λ-grading. We can choose this grading to be
compatible with the grading of M . Then U can be considered as a representation Û

of the quiver Q̂. Therefore Û is a destabilizing submodule of M̂ and this contradicts
to the stability of M̂ .

We have shown that the subvariety of C
∗-invariant points of M sst

θ (Q,α) can be
identified with the moduli space M sst

θ̂
(Q̂, α̂) (note that θ̂ is α̂-generic). Note that the

quiver Q̂ is acyclic, because any cycle in Q̂ would project to a cycle in Q and all
cycles in Q have positive weights by our assumptions. This implies that M sst

θ̂
(Q̂, α̂)

is projective and the theorem is proved. �
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4. Motivic Donaldson–Thomas invariants

Let (Q,W ) be a quiver with a potential and let wt : Q1 → N be a weight function
satisfying the condition from Remark 2.2. Let α ∈ N

Q0 and let θ ∈ R
Q0 be α-generic.

Consider the trace of the potential (also for θ non-α-generic) for the moduli space
and the moduli stack

w : M sst
θ (Q,α) → C, w̃ : Msst

θ (Q,α) → C.

We can write the moduli stack Msst
θ (Q,α) as the global quotient stack

[M sst
θ (Q,α)/C∗] with a trivial action of C

∗ (indeed, the group Gα = GLα /C∗ acts
freely on Rsst

θ (Q,α) and therefore the quotient stack [Rsst
θ (Q,α)/Gα] is isomorphic

to M sst
θ (Q,α) and the quotient stack [Rsst

θ (Q,α)/GLα] is isomorphic to [M sst
θ (Q,α)/

C
∗]). We refer to [2] for the definition of the motive of an algebraic stack. In particular,

we have

[Msst
θ (Q,α)] =

[M sst
θ (Q,α)]
[C∗]

=
[M sst

θ (Q,α)]
L − 1

.

To avoid the general definition of the motivic vanishing cycle for stacks, we define

[ϕw̃] =
[ϕw]
L − 1

,

see Section 3. Following [1, Definition 1.13], we formulate

Definition 4.1. Let α ∈ N
Q0 and let θ ∈ R

Q0 be α-generic. We define the virtual
motive Aθα of the moduli stack Msst

θ (JW , α) by the formula

Aθα = [Msst
θ (JW , α)]vir := −(−L

1
2 )− dimMsst

θ (Q,α)[ϕw̃].

Remark 4.2. Note that

(4.1) dimMsst
θ (Q,α) = dimM sst

θ (Q,α) − 1 = −T (α),

where T (α) = χ(α, α) is the Tits form of the quiver Q.

Proposition 4.3. We have

[ϕw] = [w−1(1)] − [w−1(0)] ∈ MC.

Proof. By our assumptions on the weight function, Remark 3.3, and Lemma 3.4, we
can apply Theorem 3.1. �

Corollary 4.4. We have

Aθα = (−L
1
2 )T (α) [w−1(0)] − [w−1(1)]

L − 1
= (−L

1
2 )T (α)

(
[w̃−1(0)] − [w̃−1(1)]

)
.

Definition 4.5. For a not necessarily α-generic stability parameter θ, we define the
virtual motive Aθα of the moduli stack Msst

θ (JW , α) to be

(4.2) Aθα = [Msst
θ (JW , α)]vir := (−L

1
2 )T (α)

(
[w̃−1(0)] − [w̃−1(1)]

)
.

For any μ ∈ R, we define the motivic Donaldson–Thomas series (they are elements
of the motivic quantum torus, see the next section)

Aθμ =
∑

μθ(α)=μ

Aθαx
α.
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Note that Equation (4.2) can be interpreted also over finite fields, where instead of
the motive [w̃−1(t)] we write the number of points in the corresponding fiber. In the
next section, we will use this observation in order to work with Hall algebras over finite
fields (which are technically less involved than the motivic Hall algebras). This is done
to make the exposition clearer. With some additional effort our results can be trans-
lated back to motivic Hall algebras and motivic Donaldson–Thomas invariants [12].

5. Equivariant Hall algebra

Let H be the Hall algebra of the category of representations of the quiver Q over a
finite field k = Fq (we use the conventions of [8] for the multiplication and this gives an
algebra opposite to the usual Ringel–Hall algebra). The basis of H as a vector space
consists of all isomorphism classes of representations of Q over Fq. Multiplication is
given by the rule

[N ] ◦ [M ] =
∑

[X]

FXMN [X],

where

FXMN = #{U ⊂ X | U � N, X/U �M}.
Let Heq ⊂ H be a subalgebra consisting of elements f =

∑
aM [M ] such that atM =

aM for any t ∈ k∗. We call Heq the equivariant Hall algebra. For any f =
∑
aM [M ] ∈

Heq and t ∈ k, we define ft =
∑
w(M)=t aM [M ]. The algebrasH,Heq are graded by the

dimension of representations. We denote by Ĥ, Ĥeq the corresponding completions.
Let T be the quantum torus of the quiver Q (more precisely this will be just some

part of the quantum torus). As a vector space it is

Q(q
1
2 )[[x1, . . . , xr]],

where r = #Q0. Multiplication is given by

xα ◦ xβ = (−q 1
2 )〈α,β〉xα+β ,

where 〈−,−〉 is the skew-symmetric form of the quiver Q, see Section 2.1. It was
shown by Markus Reineke [16] that there exists an algebra homomorphism

(5.1) I : Ĥ → T, [M ] �→ (−q 1
2 )T (dimM)

# AutM
xdimM .

Remark 5.1. Similarly, one can define the motivic Hall algebra of representations
over Q (see e.g. [6, 8, 3]) and the quantum torus over the Grothendieck ring of the
category of Chow motives [8], where multiplication is given by

xα ◦ xβ = (−L
1
2 )〈α,β〉xα+β .

There is an algebra homomorphism from the motivic Hall algebra to the motivic
quantum torus similar to the above map.

Let w̃ : Msst
θ (Q,α) → k be the trace of the potential. The invariants Aθα defined in

Equation (4.2) can be also defined over a finite field Fq. The point count of the stack
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Msst
θ (Q,α) (multiplied by (−q 1

2 )T (α)) corresponds to I(Ãθα), where

Ãθα =
∑

[M ] is θ−sst
dimM=α

[M ] ∈ Ĥeq.

The point count of w̃−1(t), t ∈ k, (multiplied by (−q 1
2 )T (α)) corresponds to I((Ãθα)t)

(recall that for f =
∑
aM [M ], we define ft =

∑
w(M)=t aM [M ]). Therefore, over a

finite field k = Fq, we define

Aθαx
α = I((Ãθα)0) − I((Ãθα)1) = Ieq(Ãθα),

where the map Ieq : Ĥeq → T is given by

Ieq(f) = I(f0) − I(f1).

Proposition 5.2. The map Ieq : Ĥeq → T is an algebra homomorphism.

Proof. For any f ∈ Heq, t ∈ k∗ we have

I(ft) =
I(f) − I(f0)

q − 1

and therefore

Ieq(f) =
qI(f0) − I(f)

q − 1
.

The map w is additive with respect to exact sequences. Therefore

(fg)0 =
∑

t∈k
ftg−t.

Let F = I(f), F0 = I(f0), G = I(g), G0 = I(g0). Then

I((fg)0) =
∑

t∈k
I(ft)I(g−t) =

(F − F0)(G−G0)
q − 1

+ F0G0.

Therefore

Ieq(fg) =
qI((fg)0) − I(fg)

q − 1

=
q(q − 1)F0G0 + q(F − F0)(G−G0) − (q − 1)FG

(q − 1)2

=
q2F0G0 − q(FG0 + F0G) + FG

(q − 1)2

=
(qF0 − F )(qG0 −G)

(q − 1)2
= Ieq(f)Ieq(g). �

Remark 5.3. Note that if f = f0, then Ieq(f) = I(f). This implies that the unit
element is sent to the unit element by Ieq. If the potential W is trivial then Ieq = I.

Definition 5.4. For any μ ∈ R, we define

Ãθμ =
∑

μθ(α)=μ

Ãθα =
∑

[M ] is θ−sst
μθ(dimM)=μ

[M ] ∈ Ĥeq.
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We define the motivic Donaldson–Thomas series

Aθμ = Ieq(Ãθμ) =
∑

μθ(α)=μ

Aθαx
α.

For θ = 0 and μ = 0, we denote Ãθμ (resp. Aθμ and Aθα) just by Ã (resp. A and Aα).

It follows from the Harder–Narasimhan filtration for Q-representations that, for
any θ ∈ R

Q0 , we have

Ã =
←∏

μ

Ãθμ ∈ Ĥeq,

where the product is taken in the decreasing order of μ ∈ R. Applying the algebra
homomorphism Ieq, we obtain an analogous statement in the quantum torus.

Theorem 5.5 (Harder–Narasimhan relation). For any θ ∈ R
Q0 , we have

A =
←∏

μ

Aθμ,

where the product is taken in the decreasing order of μ ∈ R.

This recursion formula can be solved using the approach of Markus Reineke [15]
(see also [10, Theorem 3.2]).

Theorem 5.6. For any θ ∈ R
Q0 , we have

Aθα =
∑

(α1,...,αk)

(−1)k−1(−q 1
2 )

∑
i<j〈αi,αj〉

k∏

i=1

Aαi .

where the sum runs over all tuples (α1, . . . , αk) of vectors in N
Q0\{0} such that∑k

i=1 αi = α and μ(
∑j
i=1 αi) > μ(α) for any 1 ≤ j < k.

Proof. According to the previous theorem, for any α ∈ N
Q0\{0}, we can write

Aαx
α =

∑

(α1,...,αk)

(Aθα1
xα1) ◦ · · · ◦ (Aθαk

xαk),

where the sum runs over all tuples (α1, . . . , αk) of vectors in N
Q0\{0} such that∑k

i=1 αi = α and μ(α1) > · · · > μ(αk). Applying [10, Theorem 3.2] we deduce that

Aθαx
α =

∑

(α1,...,αk)

(−1)k−1(Aα1x
α1) ◦ · · · ◦ (Aαk

xαk),

where the sum runs over all tuples (α1, . . . , αk) of vectors in N
Q0\{0} such that∑k

i=1 αi = α and μ(
∑j
i=1 αi) > μ(α) for any 1 ≤ j < k. The statement of the theorem

follows now from the definition of the multiplication in the quantum torus T. �

Remark 5.7. It follows from the above results that if Aα are rational functions in
q

1
2 , for α ∈ N

Q0 , then so are also Aθα for any stability parameter θ ∈ R
Q0 .
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6. Quivers with arbitrary potentials

As we explained earlier, the results of the previous section can be proved also in the
motivic setting. In this section, however, we will work only with quiver representations
over finite fields. Let Fq be some finite field. We extend scalars in the quantum torus
and define

T = C[[x1, . . . , xr]]

with multiplication xα ◦ xβ = (−q 1
2 )〈α,β〉xα+β .

Let ψ : Fq → C
∗ be some non-trivial character. Define the map

Iψ : Ĥ → T, [M ] �→ ψ(w(M))I(M),

where the map I : Ĥ → T was defined in (5.1).

Lemma 6.1. The map Iψ : Ĥ → T is an algebra homomorphism.

Proof. The map w is additive with respect to exact sequences. Therefore,

Iψ([N ] ◦ [M ]) = Iψ

(∑
FXMNX

)

= ψw(M)ψw(N)I
(∑

FXMN [X]
)

= ψw(M)ψw(N)I(N)I(M) = Iψ(N)Iψ(M). �

Recall that in the previous section we have used the weight function wt : Q1 → Z

in order to define the action of Gm on the quiver representations and to define the
equivariant Hall algebra Heq ⊂ H.

Lemma 6.2. For any f ∈ Ĥeq, we have Ieq(f) = Iψ(f).

Proof. It is enough to prove the statement for f =
∑
t∈F∗

q
[tM ], where w(M) �= 0, and

for f = [M ], where w(M) = 0. In the first case, we have

Iψ(f) =
∑

t∈F∗
q

ψw(tM)I(M) =
∑

t∈F∗
q

ψ(t)I(M) = −I(M) =
I(f)
1 − q

= Ieq(f).

In the second case, we have

Iψ(f) = I(M) = Ieq(f). �

This lemma means that instead of using the homomorphism Ieq : Ĥeq → T for the
definition of Donaldson–Thomas series, we can use the homomorphism Iψ : Ĥ → T.
While the homomorphism Ieq depends on the weight function wt : Q1 → Z (more
precisely, its domain Ĥeq depends on wt), the homomorphism Iψ depends only on the
character ψ and its domain is the whole Hall algebra Ĥ. We can use Iψ to define the
Donaldson–Thomas series for arbitrary potentials, as this approach does not require
a weight function wt : Q1 → Z, which is compatible with the potential.
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