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AN APPLICATION OF THE RIGIDITY OF
DOLBEAULT-TYPE OPERATORS

Ping Li

Abstract. Suppose a compact, almost-complex manifold admits a compatible circle
action. By using the rigidity property and the coefficient of y + 1 in the χy-genus
simultaneously, we show that the weights on the fixed point set of this circle action

have intimate relations, which improves a previous result of the author.

1. Introduction and main result

In a previous paper [5], the author noticed that some Dolbeault-type operators on
compact, almost-complex manifolds are rigid, which means that the equivariant indices
of these operators have the property of invariance under compatible circle actions. In
particular, if some circle action on a compact, almost-complex manifold has isolated
fixed points, this rigidity phenomenon provides us with intimate relations between
the weights on the fixed points and the indices of these Dolbeault-type operators
[5, Theorem 2.2]. Using this observation, the author gives some applications to sym-
plectic geometry and related topics. Among the others, the author proved a result
[5, Theorem 3.5], which generalizes a result of Pelayo and Tolman [9, Theorem 2].

Theorem 3.5 in [5] says that, if a compact, almost-complex manifold admits a
compatible circle action with isolated fixed points, then the weights of all the fixed
points, when gathering together, can be paired such that the sum of each pair is
zero. The original proof of this result in [5] heavily relies on the property that the
fixed points are isolated. So in this sense, it cannot be generalized to the general
case. Recently, the author found out an alternative proof of this result by combining
the rigidity of Dolbeault-type operators and the coefficient of y + 1 in the Taylor
expansion of the Hirzebruch χy-genus. More details can be found in Section 2. Using
this new method, we can generalize [5, Theorem 3.5] to arbitrary fixed point set.

The rest of this section is to fix some symbols and state our main result
(Theorem 1.1), whose proof will be given in Section 2. In Section 3 we will explain
the motivation of the idea of our proof.

Let (M2n, J) be a compact, almost-complex manifold with an almost-complex
structure J and real dimension 2n. We call a circle action on (M2n, J) compatible
if it preserves this almost-complex structure J . Suppose we have a non-trivial com-
patible circle action (S1-action) on (M2n, J) with non-empty fixed points:

ϕ : S1 × M → M.

Received by the editors April 2, 2012.

2000 Mathematics Subject Classification. 37B05, 58J20, 32Q60.
Key words and phrases. rigidity, Dolbeault-type operator, circle action, weight.

81



82 PING LI

Let Fix(M) be the fixed point set of this action ϕ. As is well-known, each connected
component of Fix(M) is a compact, connected, almost-complex submanifold of M .
Let F be any such a connected component with complex dimension r (0 ≤ r ≤ n−1).
Here r depends on the choice of F . Then the normal bundle of F in M , which is
denoted by ν(F ), can be decomposed into a sum of n − r complex line bundles with
respect to this action

ν(F ) =
n−r⊕

i=1

L(F, ki), ki ∈ Z − {0},

such that for each v ∈ L(F, ki) and g ∈ S1 ⊂ C, we have

ϕ∗(g) · v = gki · v.

Note that these non-zero integers k1, . . . , kn−r are not necessarily distinct and depend
on the choice of F , which we call the weights of this circle action on the connected
component F .

From now on we use e(·) to denote the Euler number of a manifold. Now we
associate each component F in Fix(M)

(
resp. Fix(M)

)
to a set S(F )

(
resp. S(M, ϕ)

)

as follows.

S(F ) :=

⎧
⎪⎨

⎪⎩

∅, if e(F ) = 0,∐
e(F ) copies{k1, . . . , kn−r}, if e(F ) > 0,

∐
−e(F ) copies{−k1, . . . ,−kn−r}, if e(F ) < 0,

and
S(M, ϕ) :=

∐

F

S(F ),

where the sum is over all the connected components in Fix(M).
Here “

∐
” means disjoint union. Although we write {k1, . . . , kn−r} as a set, repeated

elements in it may not be discarded.
Now we can state our main result in this note, which shows that the weights on the

components of Fix(M) whose Euler numbers are non-zero have intimate relations.

Theorem 1.1. Let the notation be as above. Then for any m ∈ Z − {0}, the times
m appears in S(M, ϕ) is the same as that of −m.

Remark 1.2. (1) This result says nothing about the weights on those connected
components whose Euler numbers are zero.

(2) When Fix(M, ϕ) consists of isolated fixed points, Theorem 1.1 reduces to ([5],
Theorem 3.5) as e({pt}) = 1.

The following corollary is a generalization of [9, Theorem 2] from isolated fixed
points to arbitrary fixed points set.

Corollary 1.3. Let the notation be as above. Then

∑

F

[
e(F ) ·

n−r∑

i=1

ki

]
= 0,

where the sum is also taken over all the connected components in Fix(M).

Let us end this section by using a typical example to illustrate Theorem 1.1.
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Example 1.4. Let CPn be an n-dimensional complex projective space with
homogeneous coordinate [z0, z1, . . . , zn]. Let λ1, . . . , λs (s ≤ n + 1) be s distinct inte-
gers. We can choose s non-negative integers n1, . . . , ns, such that

s∑

i=1

(ni + 1) = n + 1.

Using these data we can define an S1-action ϕ on CPn by

ϕ : S1 × CPn −→ CPn,

(z, [z0, z1, . . . , zn]) �−→ [zλ1z0, . . . , z
λ1zn1 , . . . , z

λszn−ns , . . . , z
λszn],

i.e., each λi appears exactly ni + 1 times consecutively. Clearly

Fix(CPn) =
s∐

i=1

CPni , (CP 0 := {pt})

and the weights of this action on the fixed point component CPni are

{λj − λi with multiplicity nj + 1 | j �= i}.
Thus, in S(CPn, ϕ), each λi − λj (i �= j) appears (ni + 1)(nj + 1) times.

2. Proof of Theorem 1.1

We keep using the notation and symbols in Section 1. Now we recall the definition of
Hirzebruch χy-genus, χy(M), for a compact, almost-complex manifold (M2n, J).

The choice of an almost Hermitian metric on M enables us to define the Hodge
star operator ∗ and the formal adjoint ∂̄∗ = − ∗ ∂̄ ∗ of the ∂̄-operator. Then for each
0 ≤ p ≤ n, there is a Dolbeault-type elliptic operator

(2.1)
⊕

q even

Ωp,q(M) ∂̄+∂̄∗
−−−→

⊕

q odd

Ωp,q(M),

where Ωp,q(M) := Γ(ΛpT ∗M⊗ΛqT ∗M). Here T ∗M is the dual of holomorphic tangent
bundle TM in the sense of J . The index of this operator is denoted by χp(M). We
define the Hirzebruch χy-genus, χy(M), by

χy(M) =
n∑

p=0

χp(M) · yp.

Remark 2.1. (1) When J is integrable, i.e., M is an n-dimensional complex
manifold, χp(M) is equal to the index of the following well-known Dolbeault
complex

(2.2) 0 → Ωp,0(M) ∂̄−→ Ωp,1(M) ∂̄−→ · · · ∂̄−→ Ωp,n(M) → 0

and hence

χp(M) =
n∑

q=0

(−1)qhp,q(M),

where hp,q(M) are the corresponding Hodge numbers of M .
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(2) It is a well-known fact that ∂̄2 ≡ 0 is equivalent to the integrality of J . So
for a general almost-complex manifold, ∂̄2 is not identically zero and thus we
cannot define the Dolbeault complex (2.2). Therefore (2.1) can be viewed as
the Dolbeault-type complex in the almost-complex case.

If we denote by xi, 1 ≤ i ≤ n, the formal Chern roots of TM , i.e., the i-th
elementary symmetric polynomial of x1, . . . , xn represents ci, the i-th Chern class of
TM , then the Atiyah–Singer Index Theorem tells us that

χy(M) =
n∏

i=1

xi(1 + ye−xi)
1 − e−xi

· [M ],

where [M ] is the fundamental class of M induced from J .
Moreover, if a compatible S1-action ϕ acts on (M2n, J), then for any g ∈ S1, we

can define the corresponding equivariant indices χp(g, M) and equivariant Hirzebruch
χy-genus

χy(g, M) :=
n∑

p=0

χp(g, M) · yp.

We still use F to denote any connected component of the action ϕ on (M2n, J)
with complex dimension r. Let α1, . . . , αr denote the formal Chern roots of TF , the
holomorphic tangent bundle of F in the sense of J |F . Let ti, 1 ≤ i ≤ n − r, be the
first Chern classes of the complex line bundles L(F, ki). The following proposition is
a generalization of [5, Theorem 2.2].

Proposition 2.2. Let the notation be as above. Then the following identity holds

(2.3) χy(M) ≡
∑

F

⎡

⎣
(

r∏

i=1

αi
1 + ye−αi

1 − e−αi

)⎛

⎝
n−r∏

j=1

1 + ygkj e−tj

1 − gkj e−tj

⎞

⎠

⎤

⎦ · [F ],

where g is an indeterminate and the sum is over all the connected components in
Fix(M).

Proof. The proof is similar to that of [5, Theorem 2.2] and the reader can also consult
[4, p. 68–69]. For the sake of completeness, we still indicate it.

First, we choose a generic (topological generator) g ∈ S1. Then the fixed point
set of this g is precisely the whole Fix(M). The Lefschetz fixed point formula of
Atiyah–Bott–Segal–Singer [1, p. 562] tells us that

(2.4) χy(g, M) =
∑

F

⎡

⎣
(

r∏

i=1

αi
1 + ye−αi

1 − e−αi

)⎛

⎝
n−r∏

j=1

1 + ygkj e−tj

1 − gkj e−tj

⎞

⎠

⎤

⎦ · [F ].

Note that topological generators in S1 are dense. Therefore (2.4) is an identity when
taking g as an indeterminate. Also note that the right-hand side (RHS) of (2.4) has
well-defined limits at g = 0 and ∞ as

lim
g→∞

(
RHS of (2.4)

)
=

∑

F

χy(F )(−y)d+(F ),

lim
g→0

(
RHS of (2.4)

)
=

∑

F

χy(F )(−y)d−(F ),
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where d+(F ) (resp. d−(F )) is the number of positive (resp. negative) integers among
k1, . . . , kn−r. So χy(g, M) also has well-defined limits at g = 0 and ∞. However, by
definition χy(g, M) is a finite Laurent series of g, which means it must be a constant.
Hence

χy(g, M) ≡ χy(id, M) = χy(M), ∀g.

This completes the proof of this proposition. �

We need the following lemma to derive Theorem 1.1.

Lemma 2.3. The Taylor expansion of
n∏

i=1

xi(1 + ye−xi)
1 − e−xi

at y = −1 is of the form

cn +
(
cn−1 − n

2
cn

)
(y + 1) + · · · .

Consequently,

χy(M) = e(M) − n

2
e(M)(y + 1) + · · · .

Proof.
n∏

i=1

xi(1 + ye−xi)
1 − e−xi

=
n∏

i=1

[
xi +

xi

exi − 1
(y + 1)

]
.

The coefficient of y + 1 is

n∑

i=1

⎛

⎝ xi

exi − 1
·
∏

j �=i

xj

⎞

⎠ =
n∑

i=1

⎡

⎣
(

1 − 1
2
xi

)
·
∏

j �=i

xj

⎤

⎦ = cn−1 − n

2
cn.

�

Now we are in a position to prove Theorem 1.1.

Proof. From Lemma 2.3 we know

(2.5)
r∏

i=1

αi(1 + ye−αi)
1 − e−αi

= cr(F ) +
[
cr−1(F ) − r

2
cr(F )

] · (y + 1) + · · · ,

and
n−r∏

j=1

1 + ygkj e−tj

1 − gkj e−tj
=

n−r∏

j=1

[
1 +

gkj e−tj

1 − gkj e−tj
(y + 1)

]
(2.6)

= 1 +
n−r∑

j=1

gkj e−tj

1 − gkj e−tj
(y + 1) + · · ·

= 1 +

⎛

⎝
n−r∑

j=1

gkj

1 − gkj
+ higher degree terms

⎞

⎠ · (y + 1) + · · · .
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Using (2.5), (2.6), and comparing the coefficients of y + 1 on both sides of (2.3),
we deduce that

−n

2
e(M) =

∑

F

⎡

⎣−r

2
e(F ) + e(F )

n−r∑

j=1

gkj

1 − gkj

⎤

⎦(2.7)

=
∑

F

⎡

⎣
(r

2
− n

)
e(F ) + e(F )

n−r∑

j=1

1
1 − gkj

⎤

⎦ .

Letting y = −1 in (2.3) we have the well-known identity

e(M) =
∑

F

e(F ).

Using this identity to substitute e(M) in (2.7), we obtain

1
2

∑

F

(n − r)e(F ) =
∑

F

⎡

⎣e(F )
n−r∑

j=1

1
1 − gkj

⎤

⎦(2.8)

=
∑

e(F )>0

⎡

⎣e(F )
n−r∑

j=1

1
1 − gkj

⎤

⎦

+
∑

e(F )<0

⎡

⎣−e(F )
n−r∑

j=1

(
1

1 − g−kj
− 1

)⎤

⎦ .

Rewriting (2.8), we have

∑

e(F )>0

⎡

⎣e(F )
n−r∑

j=1

1
1 − gkj

⎤

⎦ +
∑

e(F )<0

⎡

⎣−e(F )
n−r∑

j=1

1
1 − g−kj

⎤

⎦ =
1
2

∑

F

(n − r)|e(F )|.

Then Theorem 1.1 follows from the following lemma, which should be well known
and has been used implicitly in the proof of Theorem 3.5 in [5]. Unfortunately we
cannot find a reference for this lemma. To make our proof more rigorous, we give a
detailed proof of this lemma ourselves. �

Lemma 2.4. Suppose we have m non-zero integers k1, . . . , km, which are not neces-
sarily distinct, and an indeterminate g. Then as a rational function,

m∑

i=1

1
1 − gki

≡ constant

if and only if m is even, constant = m
2 , and there exist m

2 positive integers p1, . . . , pm
2
,

which are not necessarily distinct either, such that

{k1, . . . , km} = {p1, . . . , pm
2
} ∪ {−p1, . . . ,−pm

2
}.

Proof. The “if” part is trivial as
1

1 − gk
+

1
1 − g−k

≡ 1

for any non-zero integer k.
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Now we prove the “only if” part. Assume that there are r negative integers among
k1, . . . , km.

m∑

i=1

1
1 − gki

=
∑

ki>0

1
1 − gki

+
∑

ki<0

(
1 − 1

1 − g−ki

)
≡ constant,

which implies

(2.9)
∑

ki>0

1
1 − gki

= constant − r +
∑

ki<0

1
1 − g−ki

.

Letting g tend to 0 and ∞ on both sides of (2.9), we have

m − r = constant, 0 = constant − r.

Thus m is even, constant = m
2 , and (2.9) becomes

(2.10)
∑

ki>0

1
1 − gki

=
∑

ki<0

1
1 − g−ki

.

Now assume that g is a complex variable with |g| < 1. We consider the Taylor
expansion on both sides of (2.10)

(2.11)
∑

ki>0

(gki + g2ki + · · · ) =
∑

ki<0

(g−ki + g−2ki + · · · ).

Comparing the lowest order terms of g on both sides of (2.11) step by step for m
2

times, we deduce that
{ki | ki > 0} = {−ki | ki < 0}.

This completes the proof of Lemma 2.4 and thus Theorem 1.1. �

Remark 2.5. Although we state this lemma for integers ki, from the proof we can
easily see that this lemma still holds if we replace these integers with real numbers.

3. Concluding remarks

Several articles have noted that, implicitly or explicitly, at y = −1, the coefficients of
lower order terms in the Taylor expansion of χy(M) could be given explicit expressions
and many applications. More precisely, if we write

χy(M) =:
n∑

i=0

ai(M) · (1 + y)i,

then

a0 = cn[M ], a1 = −n

2
cn[M ], a2 =

1
12

[
n(3n − 5)

2
cn + c1cn−1

]
[M ].

The calculation of a0 is trivial as we can set y = −1 in χy(M). The calculation
of a1 has been done in our Lemma 2.3. The calculation of a2 appears implicitly in
[8, p. 18] and [2, Corollary 5.3.12] and explicitly in [7, p. 141–143]. Narasimhan and
Ramanan used a2 to give a topological restriction on some moduli spaces of stable
vector bundles over Riemann surfaces. The primary interest of [2] in chapter five
is to interpret the famous Futaki invariant of Fano manifolds as a special case of
a family of integral invariants. However in Corollary 5.3.12, Futaki also implicitly
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computed the expression a2. Libgober and Wood used a2 to prove the uniqueness of
the complex structure on Kähler manifolds of certain homotopy types [7, Theorems
1 and 2]. Inspired by Narasimhan–Ramanan’s article [8], Salamon applied a2 [10,
Corollary 3.4] to obtain a restriction on the Betti numbers of hyper-Kähler manifolds
[10, Theorem 4.1]. In [3], Hirzebruch used a1, a2 and a3 to deduce a divisibility result
on the Euler number of almost-complex manifolds with c1 = 0. In [6, p. 182], the
author also provided a method to calculate a2.

Keeping these backgrounds in mind, the starting point of this paper is to compare
a0, a1 and a2 on both sides of (2.3) to see what we can obtain. Comparing a0 leads to

e(M) =
∑

F

e(F ),

which is well known and has been used in our proof of Theorem 1.1. Comparing a1

leads to our main result in this note. One may ask what we can obtain if we compare
a2 on both sides of (2.3). Unfortunately in general we cannot get useful information
even in the case that Fix(M) is isolated, which we shall explain in what follows.

Suppose the fixed points are isolated, say {P1, . . . , Pr}, and at each Pi the weights
are k

(i)
1 , . . . , k

(i)
n . Then (2.3) reduces to

(3.1) χy(M) =
r∑

i=1

n∏

j=1

1 + ygk
(i)
j

1 − gk
(i)
j

=
r∑

i=1

n∏

j=1

[
1 +

gk
(i)
j

1 − gk
(i)
j

(1 + y)

]
,

which is exactly what [5, Theorem 2.2] considers. Comparing a2(M) on both sides of
(3.1), we have

(3.2)
1
12

[
n(3n − 5)

2
cn + c1cn−1

]
[M ] =

r∑

i=1

∑

1≤p<q≤n

gk(i)
p +k(i)

q

(1 − gk
(i)
p )(1 − gk

(i)
q )

.

The expression of the RHS of (3.2) is closely related to an old result of Zagier
[11], which in turn is inspired by a conjecture connected with the topology of three-
dimensional manifolds. This conjecture asserted that the rational functions

frs(g) =
(1 + gr)(1 + gs)
(1 − gr)(1 − gs)

(r ≥ 2s > 0)

are linearly independent over the integers. For the topological background of this
conjecture, we refer the readers to [11, p. 321]. In [11] Zagier showed that there are in
fact infinitely many linear relations among these rational functions frs(g) and hence
disproved this conjecture [11, p. 322]. Therefore through Zagier’s this result we cannot
expect that, for these weights k

(i)
j satisfying (3.2), there is an analogue to Lemma 2.4

when considering a2.
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