CONGRUENCES BETWEEN HILBERT MODULAR FORMS: CONSTRUCTING ORDINARY LIFTS, II

THOMAS BARNET-LAMB, TOBY GEE AND DAVID GERAGHTY

ABSTRACT. In this paper, we improve on the results of our earlier paper [BLGG12], proving a near-optimal theorem on the existence of ordinary lifts of a mod l Hilbert modular form for any odd prime l.

Contents

1. Introduction	6
2. The adequate case	ϵ
3. Inadequate cases	6
Acknowledgment	7
References	7

1. Introduction

Let F be a totally real field with absolute Galois group G_F , and let l be an odd prime number. In our earlier paper [BLGG12], we proved a general result on the existence of ordinary modular lifts of a given modular representation $\overline{\rho}: G_F \to \mathrm{GL}_2(\overline{\mathbb{F}}_l)$; we refer the reader to the introduction of $op.\ cit.$ for a detailed discussion of the problem of constructing such a lift, and of our techniques for doing so.

The purpose of this paper is to improve on the hypotheses imposed on $\overline{\rho}$, removing some awkward assumptions on its image; in particular, if l=3 then the results of [BLGG12] were limited to some cases where $\overline{\rho}$ was induced from a quadratic character, whereas our main theorem is the following.

Theorem A. Suppose that l > 2 is prime, that F is a totally real field, and that $\overline{\rho}: G_F \to \operatorname{GL}_2(\overline{\mathbb{F}}_l)$ is irreducible and modular. Assume that $\overline{\rho}|_{G_{F_v}}$ is reducible at all places v|l of F.

If l=5 and the projective image of $\overline{\rho}|_{G_{F(\zeta_5)}}$ is isomorphic to $\mathrm{PSL}_2(\mathbb{F}_5)$, assume further that there is a finite solvable totally real extension F'/F such that $\overline{\rho}|_{G_F}$, is conjugate to a representation valued in $\mathrm{GL}_2(\mathbb{F}_5)$.

Then $\overline{\rho}$ has a modular lift $\rho: G_F \to \mathrm{GL}_2(\overline{\mathbb{Q}}_l)$, which is ordinary at all places v|l.

Received by the editors December 21, 2012. 2000 Mathematics Subject Classification. 11F33. (Note that the assumption that $\overline{\rho}|_{G_{F_v}}$ is reducible at all places v|l of F is necessary.) Our methods are based on those of [BLGG12]. The reason that we are now able to prove a stronger result is that the automorphy lifting results that we employed in [BLGG12] have since been optimized in [BLGGT10] and [Tho12]; in particular, we make extensive use of the results of the appendix to [BLGG13], which improves on a lifting result of [BLGGT10], and classifies the subgroups of $\operatorname{GL}_2(\overline{\mathbb{F}}_l)$, which are adequate in the sense of [Tho12]. In Section 2, we use these results to prove Theorem A, except in the case that l=3 or 5 and the projective image of $\overline{\rho}(G_{F(\zeta_l)})$ is isomorphic to $\operatorname{PSL}_2(\mathbb{F}_l)$, and certain cases where $\overline{\rho}$ is dihedral. In the dihedral cases, the result is proved in [All12]. In the remaining cases, the adequacy hypothesis we require fails, but in Section 3 we handle this case completely when l=3 by making use of the Langlands–Tunnell theorem, and we prove a partial result when l=5 using the results of [SBT97].

1.1. Notation. If M is a field, we let G_M denote its absolute Galois group. We write $\bar{\varepsilon}$ for the mod l cyclotomic character. We fix an algebraic closure $\overline{\mathbb{Q}}$ of \mathbb{Q} , and regard all algebraic extensions of \mathbb{Q} as subfields of $\overline{\mathbb{Q}}$. For each prime p we fix an algebraic closure $\overline{\mathbb{Q}}_p$ of \mathbb{Q}_p , and we fix an embedding $\overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}}_p$. In this way, if v is a finite place of a number field F, we have a homomorphism $G_{F_v} \hookrightarrow G_F$. We also fix an embedding $\overline{\mathbb{Q}} \hookrightarrow \mathbb{C}$.

We normalize the definition of Hodge–Tate weights so that all the Hodge–Tate weights of the l-adic cyclotomic character ε are -1. We refer to a two-dimensional potentially crystalline representation with all pairs of labelled Hodge–Tate weights equal to $\{0,1\}$ as a weight 0 representation. (The reason for this terminology is that the Galois representations associated to an automorphic representation, which is cohomological of weight 0 have these Hodge–Tate weights.)

If F is a totally real field, then a continuous representation $\bar{r}: G_F \to \mathrm{GL}_2(\overline{\mathbb{F}}_l)$ is said to be modular if there exists a regular algebraic automorphic representation π of $\mathrm{GL}_2(\mathbb{A}_F)$, such that $\bar{r}_l(\pi) \cong \bar{r}$, where $r_l(\pi)$ is the l-adic Galois representation associated with π .

We let ζ_l be a primitive lth root of unity.

2. The adequate case

2.1. The notion of an *adequate* subgroup of $GL_n(\overline{\mathbb{F}}_l)$ is defined in [Tho12]. We will not need to make use of the actual definition; instead, we will use the following classification result. Note that by definition an adequate subgroup of $GL_n(\overline{\mathbb{F}}_l)$ necessarily acts irreducibly on $\overline{\mathbb{F}}_l^n$.

Proposition 2.1.1. Suppose that l > 2 is a prime, and that G is a finite subgroup of $GL_2(\overline{\mathbb{F}}_l)$, which acts irreducibly on $\overline{\mathbb{F}}_l^2$. Then precisely one of the following is true:

- We have l=3, and the image of G in $PGL_2(\overline{\mathbb{F}}_3)$ is conjugate to $PSL_2(\mathbb{F}_3)$.
- We have l = 5, and the image of G in $PGL_2(\overline{\mathbb{F}}_5)$ is conjugate to $PSL_2(\mathbb{F}_5)$.
- G is adequate.

Proof. This is Proposition A.2.1 of [BLGG13].

In the case that $\overline{\rho}(G_{F(\zeta_l)})$ is adequate, our main result follows exactly as in section 6 of [BLGG12], using the results of Appendix A of [BLGG13] (which in turn build on the results of [BLGGT10]). We obtain the following theorem.

Theorem 2.1.2. Suppose that l > 2 is prime, that F is a totally real field, and that $\overline{\rho}: G_F \to \operatorname{GL}_2(\overline{\mathbb{F}}_l)$ is irreducible and modular. Suppose also that $\overline{\rho}(G_{F(\zeta_l)})$ is adequate. Then:

- (1) There is a finite solvable extension of totally real fields L/F which is linearly disjoint from $\overline{F}^{\ker \overline{\rho}}$ over F, such that $\overline{\rho}|_{G_L}$ has a modular lift $\rho_L: G_L \to \operatorname{GL}_2(\overline{\mathbb{Q}}_l)$ of weight 0, which is ordinary at all places v|l.
- (2) If furthermore $\overline{\rho}|_{G_{F_v}}$ is reducible at all places v|l, then $\overline{\rho}$ itself has a modular lift $\rho: G_F \to \operatorname{GL}_2(\overline{\mathbb{Q}}_l)$ of weight 0, which is ordinary at all places v|l.

Proof. First, note that (2) is easily deduced from (1) using the results of Section 3 of [Gee11] (which build on Kisin's reinterpretation of the Khare–Wintenberger method). Indeed, the proofs of Theorems 6.1.5 and 6.1.7 of [BLGG12] go through unchanged in this case.

Similarly, (1) is easily proved in the same way as Proposition 6.1.3 of [BLGG12] (and in fact the proof is much shorter). First, note that the proof of Lemma 6.1.1 of [BLGG12] goes through unchanged to show that there is a finite solvable extension of totally real fields L/F which is linearly disjoint from $\overline{F}^{\ker \overline{\rho}}$ over F, such that $\overline{\rho}|_{G_L}$ has a modular lift $\rho': G_L \to \operatorname{GL}_2(\overline{\mathbb{Q}}_l)$ of weight 0 which is potentially crystalline at all places dividing l, and in addition both $\overline{\rho}|_{G_{L_w}}$ and $\overline{\varepsilon}|_{G_{L_w}}$ are trivial for each place w|l (and in particular, $\overline{\rho}|_{G_{L_w}}$ admits an ordinary lift of weight 0), and $\overline{\rho}$ is unramified at all finite places. By Lemma 4.4.1 of [GK12], $\rho'|_{G_{L_w}}$ is potentially diagonalizable in the sense of [BLGGT10] for all places w|l of L.

Choose a CM quadratic extension M/L that is linearly disjoint from $L(\zeta_l)$ over L, in which all places of L dividing l split. We can now apply Theorem A.4.1 of [BLGG13] (with F' = F = M, S the set of places of L dividing l, and ρ_v an ordinary lift of $\overline{\rho}|_{G_{Lw}}$ for each w|l) to see that $\overline{\rho}|_{G_M}$ has an ordinary automorphic lift $\rho_M: G_M \to \operatorname{GL}_2(\overline{\mathbb{Q}}_l)$ of weight 0.

The argument of the last paragraph of the proof of Proposition 6.1.3 of [BLGG12] (which uses the Khare–Wintenberger method to compare deformation rings for $\overline{\rho}|_{G_L}$ and $\overline{\rho}|_{G_M}$) now goes over unchanged to complete the proof.

3. Inadequate cases

3.1. The first inadequate case. We now consider the case that l=3 and $\overline{\rho}|_{G_{F(\zeta_3)}}$ is irreducible, but $\overline{\rho}(G_{F(\zeta_3)})$ is not adequate. By Proposition 2.1.1, this means that the projective image of $\overline{\rho}(G_{F(\zeta_3)})$ is isomorphic to $\mathrm{PSL}_2(\mathbb{F}_3)$, and is in particular solvable. We now use the Langlands–Tunnell theorem to prove our main theorem in this case.

Theorem 3.1.1. Suppose that F is a totally real field, and that $\overline{\rho}: G_F \to \mathrm{GL}_2(\overline{\mathbb{F}}_3)$ is irreducible and modular. Assume that $\overline{\rho}|_{G_{F_v}}$ is reducible at all places v|3 of F, and that the projective image of $\overline{\rho}(G_{F(\zeta_3)})$ is isomorphic to $\mathrm{PSL}_2(\mathbb{F}_3)$.

Then $\overline{\rho}$ has a modular lift $\rho: G_F \to \mathrm{GL}_2(\overline{\mathbb{Q}}_3)$ which is ordinary at all places v|3.

Proof. First, note that since the projective image of $\overline{\rho}(G_{F(\zeta_3)})$ is isomorphic to $PSL_2(\mathbb{F}_3)$, the projective image of $\overline{\rho}$ itself is isomorphic to $PSL_2(\mathbb{F}_3)$ or $PGL_2(\mathbb{F}_3)$ (see, for example, Theorem 2.47(b) of [DDT97]).

Choose a finite solvable extension of totally real fields L/F which is linearly disjoint from $\overline{F}^{\ker \overline{\rho}}$ over F, with the further property that $\overline{\rho}|_{G_{L_w}}$ is unramified for each place w|l of L. Exactly as in the proof of Theorem 2.1.2, by the results of Section 3 of [Gee11] it suffices to show that $\overline{\rho}|_{G_L}$ has a modular lift of weight 0, which is potentially crystalline at each place w|l. By Hida theory, it in fact suffices to find some ordinary modular lift of $\overline{\rho}|_{G_L}$ (not necessarily of weight 0).

Since the projective image of $\overline{\rho}$ is isomorphic to $\operatorname{PSL}_2(\mathbb{F}_3)$ or $\operatorname{PGL}_2(\mathbb{F}_3)$, the image of $\overline{\rho}$ is contained in $\overline{\mathbb{F}}_3^{\times}$ $\operatorname{GL}_2(\mathbb{F}_3)$. Then the Langlands–Tunnell theorem implies that $\overline{\rho}|_{G_L}$ has a modular lift ρ corresponding to a Hilbert modular form of parallel weight one. This follows from the discussion after Theorem 5.1 of [Wil95] which also shows that the natural map $\rho(G_L) \to \overline{\rho}(G_L)$ may be assumed to be an isomorphism. Since $\overline{\rho}|_{G_{L_w}}$ is unramified at each place w|l of L, this implies that ρ is ordinary, as required. \square

3.2. The second inadequate case. We now suppose that l=5, that $\overline{\rho}|_{G_{F(\zeta_5)}}$ is irreducible but its image is not adequate. Then $\overline{\rho}(G_{F(\zeta_5)})$ has projective image conjugate to $\mathrm{PSL}_2(\mathbb{F}_5)$, and we see that $\overline{\rho}(G_F)$ has projective image conjugate to either $\mathrm{PGL}_2(\mathbb{F}_5)$ or $\mathrm{PSL}_2(\mathbb{F}_5)$. (This follows from [DDT97, Prop. 2.47].) Thus, after conjugating, we may assume that $\overline{\rho}: G_F \to \mathrm{GL}_2(\overline{\mathbb{F}}_5)$ takes values in $\overline{\mathbb{F}}_5^{\times}$ $\mathrm{GL}_2(\mathbb{F}_5)$.

In order to apply the results of [SBT97], we need to assume further that there is a finite solvable totally real extension F'/F such that $\overline{\rho}|_{G_{F'}}$ is valued in $\mathrm{GL}_2(\mathbb{F}_5)$. (This condition is not automatic, but it holds if the projective image of $\overline{\rho}(G_F)$ is isomorphic to $\mathrm{PSL}_2(\mathbb{F}_5)$.)

Theorem 3.2.1. Suppose that F is a totally real field, and that $\overline{\rho}: G_F \to \operatorname{GL}_2(\overline{\mathbb{F}}_5)$ is irreducible and modular. Assume that $\overline{\rho}|_{G_{F_v}}$ is reducible at all places $v|_5$ of F, and that the projective image of $\overline{\rho}(G_{F(\zeta_5)})$ is isomorphic to $\operatorname{PSL}_2(\mathbb{F}_5)$. Assume further that there is a finite solvable totally real extension F'/F so that $\overline{\rho}|_{G_{F'}}$ is conjugate to a representation valued in $\operatorname{GL}_2(\mathbb{F}_5)$.

Then $\overline{\rho}$ has a modular lift $\rho: G_F \to \mathrm{GL}_2(\overline{\mathbb{Q}}_5)$ which is ordinary at all places v|5.

Proof. Since $\overline{\rho}$ is totally odd, we can replace F'/F by a further finite solvable totally real extension and assume that $\overline{\rho}|_{G_{F'}}$ takes values in $\operatorname{GL}_2(\mathbb{F}_5)$ and has determinant equal to the cyclotomic character. Now, as in the proof of Theorem 2.1.2, to prove the current theorem, it suffices to show that $\overline{\rho}|_{G_{F'}}$ has a modular lift of weight 0, which is ordinary at each $v|_5$. (The only thing that needs to be checked is that Proposition 3.1.5 of [Gee11] applies to $\overline{\rho}|_{G_{F'}}$. The only hypothesis which is not immediate is that if the projective image of $\overline{\rho}|_{G_{F'}}$ is $\operatorname{PGL}_2(\mathbb{F}_5)$, then $[F'(\zeta_5):F']=4$. To see this, note that if $[F'(\zeta_5):F']=2$, then since the determinant of $\overline{\rho}|_{G_{F'}}$ is the mod 5 cyclotomic character, it has image $\{\pm 1\}$. This implies that the projective image is $\operatorname{PSL}_2(\mathbb{F}_5)$, as required.)

By [SBT97, Theorem 1.2], there exists an elliptic curve E/F' such that $E[5] \cong \overline{\rho}|_{G_{F'}}$ and the image of $G_{F'}$ in $\operatorname{Aut}(E[3])$ contains $\operatorname{SL}_2(\mathbb{F}_3)$ (and hence its image is equal to $\operatorname{Aut}(E[3])$ since the determinant is totally odd). We may further suppose that E has good ordinary reduction at each prime of F' dividing 5. (To see this, note that we may

incorporate Ekedahl's effective version of the Hilbert Irreducibility Theorem [Eke90] into the proof of [SBT97, Theorem 1.2] exactly as is done in [Tay03, Lemma 2.3].) By the Langlands–Tunnell theorem, E[3] has a modular lift corresponding to a Hilbert modular form f_0 of parallel weight 1. Replacing F' by a finite totally real solvable extension linearly disjoint from $\overline{F'}^{\ker E[3]}$, we may assume that f_0 is ordinary at each prime dividing 3. By Hida theory, E[3] then has a modular lift corresponding to a Hilbert modular form of parallel weight 2, which is ordinary at each prime dividing 3. Note that the conditions of the modularity lifting theorem [Gee09, Theorem 1.1], applied to $\rho := T_3 E$, are satisfied. (For the third condition, note that $E[3]|_{G_{F'}(\zeta_3)}$ is irreducible as $E[3]|_{G_{F'}}$ has non-dihedral image.) It follows that $T_3 E$ is modular and hence that $T_5 E$ is modular. Thus we have exhibited a modular lift of $\overline{\rho}|_{G_{F'}} \cong E[5]$ which has weight 0 and is ordinary at each prime above 5.

Finally, we deduce our main result from Theorems 2.1.2, 3.1.1 and 3.2.1.

Proof of Theorem A. If $\overline{\rho}|_{G_{F(\zeta_l)}}$ is reducible, then $\overline{\rho}$ is dihedral, and the result follows from Lemma 5.1.2 of [All12]. If l=3 (respectively l=5) and the projective image of $\overline{\rho}(G_{F(\zeta_l)})$ is isomorphic to $\mathrm{PSL}_2(\mathbb{F}_l)$, then the result follows from Theorem 3.1.1 (respectively, from Theorem 3.2.1). In all other cases, we see from Proposition 2.1.1 that $\overline{\rho}(G_{F(\zeta_l)})$ is adequate and the result follows from Theorem 2.1.2(2).

Acknowledgment

We would like to thank Vincent Pilloni for pointing out to us that we could make use of the results of [SBT97].

References

- [All12] P. Allen, Modularity of nearly ordinary 2-adic residually dihedral Galois representations, 2012
- [BLGG12] T. Barnet-Lamb, T. Gee and D. Geraghty, Congruences between Hilbert modular forms: constructing ordinary lifts, Duke Math. J. 161(8) (2012), 1521–1580.
- [BLGGT10] T. Barnet-Lamb, T. Gee, D. Geraghty and R. Taylor, *Potential automorphy and change of weight*, 2010, http://annals.math.princeton.edu/articles/7604
- [DDT97] H. Darmon, F. Diamond and R. Taylor, Fermat's last theorem, Elliptic curves, modular forms & Fermat's last theorem (Hong Kong, 1993), Int. Press, Cambridge, MA, 1997, 2–140.
- [Eke90] T. Ekedahl, 'An effective version of Hilbert's irreducibility theorem', in Séminaire de Théorie des Nombres, Paris 1988–1989, Progr. Math., 91, Birkhäuser, Boston, MA, 1990, 241–249.
- [Gee09] T. Gee, Erratum—a modularity lifting theorem for weight two Hilbert modular forms, Math. Res. Lett. **16**(1) (2009), 57–58.
- [Gee11] _____, Automorphic lifts of prescribed types, Math. Ann. 350(1) (2011), 107–144.
- [GK12] T. Gee and M. Kisin, The Breuil-Mézard conjecture for potentially Barsotti-Tate representations, 2012.
- [SBT97] N.I. Shepherd-Barron and R. Taylor, mod 2 and mod 5 icosahedral representations, J. Amer. Math. Soc. 10(2) (1997), 283–298.
- [Tay03] R. Taylor, On icosahedral Artin representations. II, Amer. J. Math. 125(3) (2003), 549–566.
- [Tho12] J. Thorne, On the automorphy of l-adic Galois representations with small residual image, J. Inst. Math. Jussieu 11(4) (2012), 855–920.
- [Wil95] A. Wiles, Modular elliptic curves and Fermat's last theorem, Ann. Math. (2) 141(3) (1995), 443–551.

Department of Mathematics, Brandeis University, 415 South St, Waltham, MA 02453, USA

E-mail address: tbl@brandeis.edu

Department of Mathematics, Imperial College London, South Kensington Campus,, Exhibition Rd, London SW7 2AZ, UK

 $E ext{-}mail\ address: toby.gee@imperial.ac.uk}$

Princeton University and Institute for Advanced Study, 1 Einstein Dr, Princeton, NJ 08540, USA

 $E\text{-}mail\ address: \verb|geraghty@math.princeton.edu|$