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ON THE FUNDAMENTAL GROUPS OF COMPACT SASAKIAN
MANIFOLDS

Xiaoyang Chen

Abstract. We study the fundamental groups of compact Sasakian manifolds, which

we call Sasaki groups. It is shown that the fundamental group of any compact Hodge
manifold is Sasaki. In particular, all finite groups are Sasaki. On the other hand, we show
that there exist many restrictions on Sasaki groups. We also study the Abel–Jacobi map

of a compact Sasakian manifold and its applications to Sasaki groups.

1. Introduction

Recently Sasakian manifolds have attracted a lot of attention; see [5] for a comprehen-
sive treatment. However, very little is known for the fundamental groups of compact
Sasakian manifolds. Here we make some steps in this direction.

Sasakian manifolds are odd-dimensional analogues of Kähler manifolds. Recall that
a Riemannian manifold (M2n+1, g) (we always consider connected manifolds in this
paper) is Sasakian if it has a unit Killing vector field ξ, satisfying the equation

R(X, ξ)Y = g〈ξ, Y 〉X − g〈X, Y 〉ξ.

Given such a characteristic vector field ξ (also called Reeb vector field), we define a
(1, 1) tensor φ by φ(X) = ∇Xξ and the characteristic one form η by η(X) = g〈X, ξ〉.
Altogether we call (g, ξ, η, φ) a Sasakian structure. The vector field ξ defines the
characteristic foliation Fξ with one-dimensional leaves and the kernel of η denoted
by D, called the contact bundle, inherits an almost complex structure by restriction
of φ. Let gT = g − η ⊗ η. It turns out that (g, ξ, η, φ) is a Sasakian structure iff
(D, gT , φ|D, dη) defines a transversal Kähler structure with transversal Kähler form
dη.

A Sasakian structure on M is called quasi regular if all leaves of the characteristic
foliation Fξ are closed, otherwise it is called irregular. By a theorem of Wadsley [41],
if a Sasakian structure on M is quasi regular, ξ generates a locally free S1 action on
M . A Sasakian structure on M is called regular if this action is free. If the Sasakian
structure on M is quasi regular, then the quotient space M/Fξ is a Kähler orbifold.
In general, there is no quotient space if it is irregular.

There is a natural transversal Levi–Civita connection ∇T on M defined by ∇T
XY =

[∇XY ]p if X, Y ∈ D and ∇T
ξ Y = [ξ, Y ]p, ∇T

Xξ = 0, where Zp denotes the projection
of Z to D for any Z ∈ TM and ∇ is the usual Levi–Civita connection induced by g.
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Now define the transversal curvature tensor RT by

RT (X, Y )Z = ∇T
X∇T

Y Z −∇T
Y ∇T

XZ −∇T
[X,Y ]Z,

RT (X, Y, Z, W ) = g〈RT (X, Y )Z, W 〉,
where X, Y, Z, W ∈ D.

We say that (M, g) has nonpositive transversal sectional curvature if and only if
RT (X, Y, Y, X) ≤ 0, for any two vectors X, Y ∈ D. Examples of compact Sasakian
manifolds with nonpositive transversal sectional curvature are given by the Boothby–
Wang fibrations over compact Hodge orbifolds with nonpositive sectional curvature.
See section 2 for details on the Boothby–Wang fibration.

We say that a finitely generated group is Sasaki (Kähler) if it is the the fundamental
group of some compact Sasakian (Kähler) manifold.

It is known that any compact Sasakian manifold has even first Betti number; see
[4, 19, 39]. Since one can lift a Sasakian structure to the covering space of a Sasakian
manifold, the following proposition is immediate.

Proposition 1.1. A group that contains a finite index subgroup with odd first Betti
number is not Sasaki. In particular, nontrivial-free groups cannot be Sasaki.

The next proposition gives many examples of Sasaki groups.

Proposition 1.2. Suppose Γ is the fundamental group of some compact Hodge man-
ifold, then Γ is also a Sasaki group.

Using a classical result of Serre [1] that any finite group is the fundamental group
of some compact Hodge manifold and also Propositions 1.1 and 1.2, one easily gets

Corollary 1.3. All finite groups are Sasaki and an abelian group is Sasaki if and
only if it has even rank.

It was conjectured that any Kähler group is the fundamental group of some compact
Hodge manifold. So it is natural to propose the following:

Conjecture All Kähler groups are Sasaki.

It is easy to see that there exist Sasaki groups which are not Kähler. For example,
the discrete, torsion-free and cocompact subgroups of real Heisenberg group H2n+1

are Sasaki. However, they are not Kähler if n ≤ 3 by a theorem of Carlson and Toledo;
see [10].

The next theorem tells us that some well-known results for Kähler groups remain
true for Sasaki groups.

Theorem 1.4. Suppose Γ is a Sasaki group, then
(1) Γ has either zero or one end. In particular, Γ cannot split as a nontrivial-free

product.
(2) If Γ is solvable, it contains a nilpotent subgroup of finite index.

The next theorem classifies those Sasaki groups that are also the fundamental
group of some compact three-dimensional manifold.

Theorem 1.5. Suppose Γ is a Sasaki group, then it is the fundamental group of
some compact three-manifold V 3 if and only if V 3 has geometry modeled on S3 or
the three-dimensional Heisenberg group or ˜SL(2, R).
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Theorem 1.6. Suppose (M2n+1, g) is a compact Sasakian manifold with nonpositive
transversal sectional curvature, then π1(M2n+1) is an infinite group that cannot be
realized as the fundamental group of any compact Riemannian manifold with nonpos-
itive sectional curvature.

As a consequence of Theorem 1.6, we recover the following fact that was previous
proved by Eberlein’s splitting theorem [16]: suppose Γ = π1(M3), where M3 is a

compact three-manifold with geometry modeled on ˜SL(2, R), then Γ cannot be the
fundamental group of any compact Riemannian manifold with nonpositive sectional
curvature.

Theorem 1.6 suggests to study a new class of infinite groups, which we hope to
cover in the future.

The organization of this paper is as follows. In Section 2 we review two construc-
tions in Sasakian geometry and prove Proposition 1.2. Theorems 1.4 and 1.5 are
proved in Section 3. In Section 4, we study harmonic maps from compact Sasakian
manifolds and some applications. In Section 5, we prove Theorem 1.6. In Section 6,
we study the Abel–Jacobi map of a compact Sasakian manifold and its applications
to Sasaki groups.

2. Constructions in Sasakian geometry and proof of Proposition 1.2

We first recall two basic constructions in Sasakian geometry. For details, see [5]. For
simplicity, we restrict ourselves to the class of regular Sasakian manifolds.

2.1. Boothby–Wang fibration. Suppose (N2n, ω) is a compact Hodge manifold
with integral Kähler form ω. By a theorem of Kobayashi [25], there exists a principal
circle bundle P over N2n and a connection form η on P such that dη = p∗ω, where p
is the projection map. Let M2n+1 be the total space of P . Now define a Riemanian
metric g on M2n+1 by g = p∗h + η ⊗ η, where h is the associated Kähler metric for
ω on N2n. It is not hard to check that (M2n+1, g) becomes a Sasakian manifold with
transversal Kähler form ω. We say that (M2n+1, g) is the Boothby–Wang fibration
over (N2n, h). It is not hard to extend this construction to the case when (N2n, ω) is
a compact Hodge orbifold.

From the construction of Sasakian structure on M2n+1, it is easy to see (M2n+1, g)
has nonpositive transversal sectional curvature if (N2n, h) has nonpositive sectional
curvature. For example, (N2n, h) is a compact locally Hermitian symmetry space of
noncompact type.

2.2. Join construction. Suppose M1 and M2 are two compact Sasakian mani-
folds over compact Hodge manifolds (N1, ω1) and (N2, ω2), respectively. Then (N1 ×
N2, ω1 +ω2) is also a compact Hodge manifold. Let M1 ∗M2 be the Sasakian manifold
over N1 ×N2 coming from Boothby–Wang fibration. We say that M1 ∗M2 is the join
of M1 and M2. It turns out M1 ∗ M2 is an M2 bundle over N1; see [5]. It is easy to
see compact Sasakian manifolds with nonpositive transversal sectional curvature are
closed under join construction.

Now we give the proof of Proposition 1.2.

Proof. Suppose Γ = π1(N), where N is a compact Hodge manifold. Let M be the
Sasakian manifold over N coming from Boothby–Wang fibration. Let V = M ∗ S3.
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Then V is a compact Sasakian manifold and also an S3 bundle over N . From the long
exact sequence of homotopy groups, one gets π1(V ) 	 Γ. �

3. Orbifold fundamental groups of compact Kähler orbifolds

We refer the readers to [5, 13, 40] for definitions of orbifolds and orbifold fundamental
groups.

Recently there has been much interest in Kähler orbifold groups, namely, the orb-
ifold fundamental groups of compact Kähler orbifolds. For example, see [7, 35] for the
related work. A fundamental question on this topic is the following:

Does the restrictions for Kähler groups extend to Kähler orbifold groups?

Or we can ask the following much stronger question:

Suppose Γ is a Kähler orbifold group. Is it true that Γ contains a subgroup
of finite index Γ0 such that Γ0 is a Kähler group?

The work of Campana gives some partial answers to the above questions. More
precisely, we have the following two lemmas. See [6, 7] for proof.

Lemma 3.1. Suppose G is the orbifold fundamental group of a compact Kähler
orbifold, then

(1) G has zero or one end.
(2) If G is solvable, it contains a nilpotent subgroup of finite index.

Remark: The first part of lemma 3.1 is not explicitly stated in [7]; however, it follows
from the arguments there and the corresponding result in the manifold case.

Lemma 3.2. Suppose Γ is a Kähler orbifold group and also residually finite. Then Γ
contains a subgroup of finite index Γ0 such that Γ0 is a Kähler group.

Recall that a group is said to be residually finite if and only if the intersection of
all its subgroups of finite index is trivial. We also recall some basic facts on the end of
a finitely generated group. See [15] for more details. Suppose X is a locally compact
connected topological space. The set of ends of X, denoted by E(X), is defined as
the inverse limit:

lim
K⊆X

π0(Kc),

where K is a compact subset of X, Kc is the complement of K and π0(Kc) is the
number of path-connected components of Kc. If Γ is a finitely generated group, the
space of ends E(Γ) is defined as the set of ends of its Cayley graph. The elements in
E(Γ) are called the ends of Γ. Let e(Γ) be the cardinality of E(Γ). It can be shown
that e(Γ) is a quasi-isometric invariant of Γ. The following facts are due to Hopf and
Freudenthal:

1. e(Γ) ∈ {0, 1, 2,∞}.
2. e(Γ) = 0 if and only if Γ is finite.
3. e(Γ) = 2 if and only if Γ has an infinite cyclic subgroup of finite index.

It is a well-known theorem of Stalling that a finitely generated group has more
than one end if and only if it is a nontrivial amalgamated free product or an HNN
extension over a finite subgroup; see [3, 36, 37].
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Lemma 3.3. Suppose we have the following short exact sequence of groups:

1 → Z → A1 → A2 → 1,

then A1 has one or two ends.

Proof. If A2 is finite, A1 contains an infinite cyclic subgroup of finite index and hence
has two ends. Otherwise A2 is infinite, it follows that A1 has one end by Proposition
1.9 in [12]. �

Lemma 3.4. Suppose we have the following short exact sequence of groups:

1 → B1 → B2 → B3 → 1,

where B1 is a cyclic group and B3 is virtually nilpotent, then B2 is virtually nilpotent.
Here, we say a group is virtually nilpotent if it contains a nilpotent subgroup of finite
index.

Proof. By passing to a subgroup of finite index, we can assume that B3 is a nilpotent
group. Since B1 is normal in B2, we see B2 acts on B1 by conjugation. This gives a
group homomorphism from B2 to Aut(B1). Since B1 is a cyclic group, Aut(B1) is a
finite group. Hence, up to a subgroup of finite index, we get a central group extension

1 → B1 → B2 → B3 → 1,

where B1 is cyclic and B3 is nilpotent. Now it is easy to see B2 is also nilpotent. �

Proof of Theorem 1.4. In fact, assume Γ 	 π1(M), where M is a compact Sasakian
manifold. If the Sasakian structure (g0, ξ0, η0, φ0) on M is irregular, by a theorem of P.
Rukimbira [32], there is a sequence of quasi-regular Sasakian structures (gk, ξk, ηk, φk)
converging to (g0, ξ0, η0, φ0) in the compact-open C∞ topology. So we can always
assume that the Sasakian structure on M is quasi-regular. Now let M be an orbifold
S1 bundle over some compact Kähler orbifold N and p : M → N is the projection
map. Then we have the following long exact sequence

→ πorb
2 (N) → Z → π1(M) → πorb

1 (N) → 1,

from which we get the following short exact sequence:

1 → Γ1 → π1(M) → πorb
1 (N) → 1,

where Γ1 is a cyclic group.
Now we prove the first part of Theorem 1.4. First note that Γ cannot have two ends

otherwise it contains an infinite cyclic subgroup of finite index, which is impossible
by Proposition 1.1. If Γ1 is an infinite cyclic group, Γ has one end by Lemma 3.3.
Otherwise Γ1 is finite and Γ is quasi-isometric to πorb

1 (N). It follows that Γ has zero
or one end by Lemma 3.1.

Suppose Γ is solvable, then πorb
1 (N) is also solvable. It follows that πorb

1 (N) is a
virtually nilpotent group by Lemma 3.1 and Γ is also virtually nilpotent by Lemma 3.4.
This proves the second part of Theorem 1.4. �

Proof of Theorem 1.5. First of all, compact quotients of S3 or the three-dimensional
Heisenberg group or ˜SL(2, R) are compact Sasakian manifolds. So, one direction is
easy. Now we prove the other direction. Suppose Γ = π1(M) 	 π1(V 3), where M is
a compact Sasakian manifold and V 3 is a compact three-dimensional manifold. By
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passing to the orientable cover, we can assume that V 3 is orientable. Again we can
assume that M is an orbifold S1 bundle over some compact Kähler orbifold N and
p : M → N is the projection map. Then, we have the following long exact sequence:

→ πorb
2 (N) → π1(S1) → π1(M) → πorb

1 (N) → 1.

From which we get the following short exact sequence:

1 → i∗(π1(S1)) → π1(M) → πorb
1 (N) → 1,

where i : S1 → M is the inclusion map. If i∗(π1(S1)) = {1}, Γ = π1(M) 	 πorb
1 (N)

and so Γ is a Kähler orbifold group. By assumption, we have Γ 	 π1(V 3). It is known
that the fundamental groups of compact three manifolds are residually finite by the
work of Perelman and Hemple; see [23, 29, 30]. Now by Lemma 3.2, Γ contains a
subgroup of finite index Γ0 such that Γ0 is a Kähler group. It follows that Γ0 is finite
by a theorem of Dimca and Suciu; see [14] and [26]. So, Γ is finite and the universal
cover of V 3 is diffeomorphic to S3 by the work of Perelman [29, 30]. Now we assume
that i∗(π1(S1)) is a nontrivial cyclic group. Then π1(V 3) contains a nontrivial cyclic
normal subgroup. In this case, we first
Claim. V 3 is a Seifert manifold.

Given the above claim, it follows that V 3 carries one of the geometries S2 × R,

H2 × R, R3, S3, ˜SL(2, R), Nil, where Nil is the three-dimensional Heisenberg group.
However, those manifolds carrying one of the geometries S2 × R, H2 × R, R3 have
virtually odd first Betti number. However, any Sasaki group has even first Betti num-
ber by Proposition 1.1. So V 3 has geometry modeled on S3 or the three-dimensional
Heisenberg group or ˜SL(2, R).

Proof of claim. First of all, we can assume that V 3 is prime in the sense of being
indecomposable under connected sum, since a nontrivial-free product is never a Sasaki
group by Theorem 1.4. By assumption, π1(V 3) contains a nontrivial cyclic normal
subgroup Γ0. Firstly, suppose Γ0 is a finite cyclic group. Then π1(V 3) has nontrivial
torsion. Since V 3 is a prime also orientable three-manifold, it follows that π1(V 3)
must be finite by a theorem of Epstein; see [18, 22]. So, the universal cover of V 3 is
diffeomorphic to S3 by the work of Perelman. Now we assume that Γ0 is an infinite
cyclic group. Since V 3 is prime and orientable, it is either S2 ×S1 or irreducible, that
is, every embedded S2 bounds a three-cell. Since a Sasaki group cannot be infinite
cyclic by Corollary 1.3, we see V 3 must be irreducible. On the other hand, π1(V 3)
contains an infinite cyclic normal subgroup and so V 3 must be a Seifert manifold by
a theorem of Casson, Jungreis [11] and Gabai [20]. �

4. Harmonic maps from compact Sasakian manifolds

We first state the following theorem due to Petit; see [31].

Theorem 4.1. Suppose f is a harmonic map from a compact Sasakian manifold
(M1, h1) to a compact Riemannian manifold (M2, h2) with nonpositive sectional
curvature, then f∗(ξ) = 0, where ξ is the Reeb vector field associated to M1. Moreover,
if M1 is a regular Sasakian manifold fibering over Kähler manifold N and p : M1 → N
is the projection map, there exists a harmonic map g from N to M2 such that f = gp.
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It was known by Boyer and Galicki [5] that the connected sum of two compact
negatively curved manifolds cannot admit Sasakian structure. The following corollary
is a generalization of this result.

Corollary 4.2. There is no continuous map of nonzero degree from a compact
Sasakian manifold to the connected sum Mn

1 �Mn
2 , where (Mn

1 , g1) is a compact Rie-
mannian manifold with nonpositive sectional curvature and Mn

2 is any compact
n-dimensional manifold. In particular, Mn

1 �Mn
2 cannot admit Sasakian structure.

Proof. Suppose f1 is a continuous map of nonzero degree from a compact Sasakian
manifold (Mn

0 , g0) to Mn
1 �Mn

2 . Note there is a continuous map of degree one f2 :
Mn

1 �Mn
2 → Mn

1 . Let f3 = f2f1, then f3 : (Mn
0 , g0) → (Mn

1 , g1) is a continuous map
of nonzero degree. By a classical theorem of Eells and Sampson [17], within the same
homotopy class, we can find a harmonic map f4. On the other hand, by Theorem 4.1,
f4 cannot be surjective by Sard’s theorem. It follows that the degree of f4 is zero.
Contradiction. �

As an application of Corollary 4.2, any compact manifold admitting a metric of non-
positive sectional curvature cannot admit Sasakian structure. For example, suppose
H3 is a three-dimensional hyperbolic homology sphere and T 2 is the two-dimensional
torus. Then T 2 × H3 cannot admit Sasakian structure by corollary 4.2. However, as
far as the author knows, the nonexistence of Sasakian structure on T 2 ×H3 does not
follow from any previously known obstructions.

Corollary 4.3. Suppose Γ is the fundamental group of some compact regular Sasakian
manifold, then Γ cannot be a cocompact, discrete and torsion-free subgroup of G, where
G is SO(1, n), n > 2 or F4(−20).

Proof. Let M be a compact regular Sasakian manifold fibering over some compact
Kähler manifold N and p : M → N is the projection map. Let Γ = π1(M). We prove
Corollary 4.3 by contradiction. Suppose Γ 	 π1(B), where B = Γ \ G/K, where K
is a maximal compact subgroup of G. It follows that B is a compact locally sym-
metry space of noncompact type and so admits a Riemannian metric of nonpositive
sectional curvature. Since B is an aspherical manifold, there exists a continuous map
f inducing the isomorphism between π1(M) and π1(B). Then by a classical result
of Eells and Sampson, within the same homotopy class, there exists a harmonic map
g. By Theorem 4.1, there exists a harmonic map h from N to B such that g = hp.
It follows that p∗ : π1(M) → π1(N) is injective. On the other hand, from the long
exact sequence of homotopy groups we know that p∗ is surjective and hence p∗ is an
isomorphism. Now Γ is a Kähler group and also a cocompact lattice in G, where G
is SO(1, n), n > 2 or F4(−20). This is impossible by the results of Carlson, Hernández
and Toledo; see [8, 9]. �

5. A transversal Jacobi equation and proof of Theorem 1.6

The proof of Theorem 1.6 is based on the following transversal Cartan–Hadamard
theorem:

Theorem 5.1. Suppose (M2n+1, g) is a complete Sasakian manifold with nonpositive
transversal sectional curvature, then its universal cover is diffeomorphic to R

2n+1.
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Corollary 5.2. Suppose (M2n+1, g) is a compact Sasakian manifold with nonpos-
itive transversal sectional curvature, then its fundamental group cannot be Gromov
hyperbolic.

In fact, by a theorem of Mineyev [27, 28], any compact aspherical manifold has
positive simplicial volume if its fundamental group is Gromov hyperbolic. Since any
compact Sasakian manifold has vanishing simplicial volume, Corollary 5.2 follows.

By the classification of compact Sasakian manifolds in dimension 3 ([5, 21]), we get

Corollary 5.3. Suppose (M3, g) is a three-dimensional compact Sasakian manifold
with nonpositive transversal sectional curvature, then M3 is diffeomorphic to the com-
pact quotient of the three-dimensional Heisenberg group or ˜SL(2, R).

On the other hand, compact quotients of the three-dimensional Heisenberg group
( ˜SL(2, R)) are Seifert circle bundles over flat (hyperbolic) orbifolds and so admit
Sasakian structure with nonpositive transversal sectional curvature.

Before we prove Theorem 5.1, we show how to derive Theorem 1.6 from it. We
prove it by contradiction. Suppose Γ = π1(M, g) 	 π1(N, h), where (M, g) is a com-
pact Sasakian manifold with nonpositive transversal sectional curvature and (N, h)
is a compact Riemannian manifold with nonpositive sectional curvature. Since N is
an aspherical manifold, there exists a continuous map f inducing the isomorphism
between fundamental groups. Then by a classical result of Eells and Sampson, within
the same homotopy class, there exists a harmonic map g. By a theorem of Banyaga
and Rukimbira ([2, 33, 34]), there exists a closed leaf of the characteristic foliation
on M . Since M is compact, we see that this leaf is diffeomorphic to S1. From the
proof of Theorem 5.1, we see that this S1 is lifted to a real line under the covering
map p : ˜M → M , where ˜M is the universal cover of M . This implies that the inclu-
sion map i∗ : π1(S1) → π1(M) is injective. On the other hand, since g is harmonic,
g∗(ξ) = 0 by Theorem 4.1, where ξ is the Reeb vector field associated to M . So g∗
maps a nontrivial subgroup of Γ to zero, which contradicts that g∗ is an isomorphism.

Now we are in position to prove Theorem 5.1. The idea is similar to the proof of the
Cartan–Hadamard theorem. Suppose ˜M2n+1 is the universal cover of M2n+1 . Then it
is also a complete Sasakian manifold with nonpositive transversal sectional curvature.
Suppose α(s) is a leaf of the characteristic foliation Fξ on ˜M2n+1. We show that its

normal exponential map exp⊥ : α(s)⊥ → ˜M2n+1 is a diffeomorphism, where α(s)⊥

is the normal bundle of α(s). To do this, suppose γ(t), t ∈ [0, 1] is any minimizing
geodesic which is perpendicular to α(s) at α(0) = γ(0) and J(t) is any Jacobi field
along γ(t) such that J(0) = λξ(0) and J(1) = 0, where ξ(0) = α′(0). It suffices to
show J(t) ≡ 0. Then we see that there is no focal point to α(s). It follows that exp⊥

is a covering map and hence is a diffeomorphism since ˜M2n+1 is simply connected.
There is a natural splitting Tγ(t)M = ξ(t)⊕ξ(t)⊥, where ξ(t) is the tangential part

to leaves of the characteristic foliation Fξ and ξ(t)⊥ is the orthogonal part. Following
Wilking [42], define Y (t) = J⊥(t) and ∇⊥

∂
∂t

Y = (∇ ∂
∂t

Y )⊥ = (∇γ̇Y )⊥, where we denote

X⊥(t) is the projection of X(t) to ξ(t)⊥ for any vector field X(t) along γ(t).
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Lemma 5.4. Y (t) satisfies the following transversal Jacobi equation:

∇⊥
∂
∂t
∇⊥

∂
∂t

Y + RT (Y, γ̇)γ̇ = 0.

Before we prove it, we need the following lemma.

Lemma 5.5.

RT (X, Y )Y = (R(X, Y )Y )⊥ + 3〈X, φ(Y )〉φ(Y ), where X, Y ⊥ ξ.

Proof. Choose any vector field Z such that Z⊥ξ. We see

RT (X, Y, Y, Z) = 〈RT (X, Y )Y, Z〉 = 〈∇T
X∇T

Y Y −∇T
Y ∇T

XY −∇T
[X,Y ]Y, Z〉

= 〈∇X(∇Y Y − 〈∇Y Y, ξ〉ξ) −∇Y (∇XY − 〈∇XY, ξ〉ξ)
−∇T

[X,Y ]−〈[X,Y ],ξ〉ξY −∇T
〈[X,Y ],ξ〉ξY, Z〉

= 〈R(X, Y )Y, Z〉 + 〈∇XY, ξ〉〈∇Y ξ, Z〉 + 〈[X, Y ], ξ〉〈∇Y ξ, Z〉
= 〈R(X, Y )Y, Z〉 + 3〈X, φ(Y )〉〈φ(Y ), Z〉.

where the last equality follows from X, Y ⊥ ξ and ξ is a Killing vector field. �

Now, we are in position to prove Lemma 5.4. It suffices to prove it at generic t0,
i.e., J(t0) �= 0. Firstly note that we can assume that Y (t0) = J(t0). Choose vector
fields Xi(t), i = 1, 2, . . . , 2n such that Xi⊥ξ and also J(t0) = X1(t0),∇⊥

∂
∂t

Xi(t) =
0, 〈Xi, Xj〉(t) = δij for all t ∈ [0, 1]. Note that we have

X ′
i = 〈X ′

i, ξ〉ξ = 〈∇γ̇Xi, ξ〉ξ = −〈Xi,∇γ̇ξ〉ξ,
using this, at t0, we have

〈

∇⊥
∂
∂t
∇⊥

∂
∂t

Y, Xi

〉

=
〈

∇ ∂
∂t
∇⊥

∂
∂t

Y, Xi

〉

=
∂

∂t

〈

∇⊥
∂
∂t

Y, Xi

〉

−
〈

∇⊥
∂
∂t

Y,∇⊥
∂
∂t

Xi

〉

=
∂

∂t

〈

∇⊥
∂
∂t

Y, Xi

〉

=
∂2

∂t2
〈J, Xi〉

= 〈J ′′, Xi〉 + 2〈J ′, X ′
i〉 + 〈J, X ′′

i 〉
= −〈R(Y, γ̇)γ̇, Xi〉 + 2〈J ′, X ′

i〉 + 〈X1, X
′′
i 〉

= −〈R(Y, γ̇)γ̇, Xi〉 + 2〈J ′, X ′
i〉

+
d

dt t=t0
〈X1, X

′
i〉 − 〈X ′

1, X
′
i〉

= −〈R(Y, γ̇)γ̇, Xi〉 + 2〈J ′, X ′
i〉 − 〈X ′

1, X
′
i〉

= −〈R(Y, γ̇)γ̇, Xi〉 − 2〈J ′, ξ〉〈Xi, ξ
′〉 − 〈X1, ξ

′〉〈Xi, ξ
′〉

= −〈R(Y, γ̇)γ̇, Xi〉 − 2〈J, ξ′〉〈Xi, ξ
′〉 − 〈J, ξ′〉〈Xi, ξ

′〉
= 〈−RT (Y, γ̇)γ̇, Xi〉,

where the last equality follows from Lemma 5.5 and the last second equality follows
from

Lemma 5.6.
〈J ′(t), ξ(t)〉 = 〈J(t), ξ′(t)〉.
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Proof.

〈J ′(t), ξ(t)〉 = 〈∇γ̇J, ξ〉(t) = 〈∇J γ̇, ξ〉(t) = −〈γ̇,∇Jξ〉(t)
= 〈J,∇γ̇ξ〉(t) = 〈J(t), ξ′(t)〉.

�

Now define f(t) = 1
2‖Y (t)‖2, then f(0) = f(1) = 0, since Y (0) = Y (1) = 0.

Moreover, we have

f ′(t) =
〈

∇⊥
∂
∂t

Y, Y
〉

and also

f ′′(t) =
〈

∇⊥
∂
∂t

Y,∇⊥
∂
∂t

Y
〉

+
〈

∇⊥
∂
∂t
∇⊥

∂
∂t

Y, Y
〉

=
〈

∇⊥
∂
∂t

Y,∇⊥
∂
∂t

Y
〉

− RT (Y, γ̇, γ̇, Y ) ≥ 0,

from this we know f(t) is a convex nonnegative function with f(0) = f(1) = 0 and so
f(t) = 0 for any t ∈ [0, 1]. So Y (t) ≡ 0 and we can assume that J(t) = λ(t)ξ(t) with
λ(0) = λ. Then λ(t) = 〈J(t), ξ(t)〉 and λ(1) = 0 since J(1) = 0. Taking derivative
with respect to t, we get

λ′(t) = 〈J ′(t), ξ(t)〉 + 〈J(t), ξ′(t)〉
= 2〈J(t), ξ′(t)〉 = 2〈λ(t)ξ(t), ξ′(t)〉 = 0.

so J(t) ≡ 0 and exp⊥ : α(s)⊥ → ˜M2n+1 is a diffeomorphism. Hence, ˜M2n+1 is

diffeomorphic to the normal bundle of a one-dimensional manifold. Since ˜M2n+1 is
simply connected, we see ˜M2n+1 is diffeomorphic to R

2n+1.

6. Abel–Jacobi maps of compact Sasakian manifolds

We first recall the construction of the Abel–Jacobi map of any compact Riemannian
manifold; see [24] for more details.

Suppose (M, g) is a compact Riemannian manifold. Let π = π1(M) be its funda-
mental group. Let f : π → πab be the abelianization map of π and g : πab → πab/tor be
the quotient by torsion. Suppose M̄ is the covering space of M with π1(M̄) = ker(φ),
where φ = gf .

Let E be the space of harmonic one-form on M , with dual E∗ canonically identified
with H1(M, R). Fix a basepoint x0 ∈ M . Then any point x in the universal cover M̃ of
M is represented by a point of M together with a path c from x0 to it. By integrating
along the path c, we get a linear form, h → ∫

c
h, on E. We thus obtain a map

M̃ → E∗ = H1(M, R), which descends to a map

ĀM : M̄ → E∗, c �→
(

h �→
∫

c

h

)

.

By definition, the Jacobi torus of M is the torus

J1(M) = H1(M, R)/H1(M, Z)R
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and the Abel–Jacobi map
AM : M → J1(M),

is obtained from the map ĀM by passing to quotients. From the construction, it is not
hard to see the Abel–Jacobi map induces an isomorphism between the first homology
groups with real coefficient.

Proposition 6.1. Suppose (M, g) is a compact Sasakian manifold and Fξ is the
characteristic foliation on M . Then the restriction of the Abel–Jacobi map of M to
any leaf of Fξ is a constant map.

Proof. By a theorem of Tachibana [38], any harmonic one form h on M satisfies
h(ξ) = 0. Using it, Proposition 6.1 easily follows from the construction of the
Abel–Jacobi map. �

Corollary 6.2. Suppose (M, g) is a compact Sasakian manifold and i : S1 → M
is the inclusion map, where S1 is a closed leaf of the characteristic foliation Fξ on
M . Then i∗(π1(S1)) ⊆ kerφ, where φ is the map constructed in the beginning of this
section. In other words, S1 generates a trivial element in H1(M, R).

Proof. By Proposition 6.1, the Abel–Jacobi map of M takes S1 to a point. However,
the Abel–Jacobi map induces an isomorphism between the first homology groups with
real coefficient and so S1 generates a trivial element in H1(M, R). �

We end this paper by proposing several problems to be studied in the future.

Problem 1: How large is the class of Sasaki groups which are not Kähler groups?

Problem 2: Classify those nilpotent groups which are also Sasaki groups;

Problem 3: Are there examples of irregular compact Sasakian manifolds with non-
positive transversal sectional curvature?
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